

SCIENCEDOMAIN *international* <www.sciencedomain.org>

Existence of Coupled Quasi-solutions of Nonlinear Integro-Differential Equations of Volterra Type in Banach Spaces

Yan Liang¹[∗](#page-0-0)

¹*Zhengzhou Infant Normal College, Zhengzhou 450000, China.*

Article Information DOI: 10.9734/BJMCS/2015/13726 *Editor(s):* (1) Jacek Dziok, Institute of Mathematics, University of Rzeszow, Poland. *Reviewers:* (1) Sanjukta Das, Department of Mathematics, Indian Institute of Technology, Roorkee, India. (2) Anonymous, Badji Mokhtar-Annaba University, Algeria. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=728&id=6&aid=6915

Original Research Article

Received: 31 August 2014 Accepted: 10 October 2014 Published: 14 November 2014

Abstract

We study an initial value problem for a class of integro-differential equations of Volterra type in a real Banach space. Using method of upper and lower solutions and Mönch and Von Harten theorem, we obtain an existence theorem of coupled quasi-solutions, which is an extension of those established by Y. Chen and W. Zhuang in [1].

Keywords: Banach space; measure of noncompactness; lower and upper solutions; normal cone; Quasi-solution.

2010 Mathematics Subject Classification: 45D05;34A12

1 Introduction and Preliminaries

Let E be a real Banach space with norm $\|\cdot\|$, and let E^* denote the dual of E. Let $K\subset E$ be a cone. By means of K a partial order \leq is defined as $v \leq u$ iff $u - v \in K$. We let $K^* = \{ \varphi \in E^* : \varphi(u) \geq 0 \}$ for all $u \in K$.

**Corresponding author: E-mail: 306572265@qq.com*

A cone K is said to be normal if there exists a real number $\delta > 0$ such that $0 \le v \le u$ implies $||v|| \leq \delta ||u||$, where δ is independent of u, v . We shall always assume in this paper that K is a normal cone.

Let β denote the measure of noncompactness of Hausdorff respectively. If F is a subspace of E and $M \subset F$ is bounded then we define

$$
\beta_F(M) = \inf \{ \varepsilon > 0 : M \subset \bigcup_{i=1}^{n(\varepsilon)} S(z_i^{\varepsilon}, \varepsilon) \text{ for some } z_i^{\varepsilon} \in F \}.
$$

We have

$$
\beta(B) \leq \beta_F(B) \leq 2 \cdot \beta(B)
$$
 for $B \subset F$ bounded.

For these and further properties we refer to Deimling [2] and Sadovskii [3].

For any $v, w \in C[I, E]$ such that $v(t) \leq w(t)$ on I, where $I = [0, T], T > 0$, we define the conical segment

$$
[v, w] = \{ u \in C[I, E] : v \le u \le w \}.
$$

From the definition of $[v, w]$ and the normality of the cone K, we know that $[v, w]$ is a bounded closed convex subset of $C[I, E]$.

In this paper, we consider the following initial value problem for nonlinear integro-differential equation (IVP) in a real Banach space, namely

$$
u^{'}(t) = H(t, u(t), (Su)(t)), \quad u(0) = u_0
$$
\n(1.1)

where $(Su)(t) = \int_0^t s(t,\tau)u(\tau)d\tau, s \in C[I \times I, R^+]$ and $s(t,s) \le s_0$ on $I \times I, s_0 > 0, H \in C[I \times E \times I, s_0]$ E, E]. We obtain an existence theorem of coupled quasi-solutions via the method of upper and lower solutions and Mönch and Von Harten theorem. The results of this paper are extensions of those established in [1].

In the proof of our main results the following lemmas are necessary. See [4],[5],[6] for details.

Lemma 1.1^[5] (Mönch and Von Harten theorem) Let E be a Banach space and β the Hausdorff measure of noncompactness on E. Let $\{x_n\}_{n\geq 1}$ be a sequence of continuously differentiable functions from $J=[a,b]$ to E such that there is some $\mu\in L^1(a,b)$ with $||x_n(t)||\leq \mu(t)$ and $||x_n^{'}(t)||\leq \mu(t)$ on J. Let $\psi(t) = \beta(\{x_n(t)\}_{n \geq 1})$. Then $\psi(t)$ is absolutely continuous on J and

$$
\psi^{'}(t)\leq 2\beta(\{x_n^{'}(t)\}_{n\geq 1})\quad a.e.\text{ on }J.
$$

Lemma 1.2^[5] Let E be a separable Banach space and β the Hausdorff measure of noncompactness on E. Let $\{x_n\}_{n\geq 1}$ be a sequence of continuous functions from $J = [a, b]$ to E such that there is some $\mu\in L^1(a,b)$ with $\|x_n(t)\|\leq\mu(t)$ on $J.$ Let $\psi(t)=\beta(\{x_n(t)\}_{n\geq 1}).$ Then $\psi(t)$ is integrable on J and

$$
\beta(\{\int_a^b x_n(s)ds\}_{n\geq 1}) \leq \int_a^b \psi(s)ds.
$$

Lemma 1.3^[6] Let $y(t) \in C[I, R]$, $y(0) \le 0$, and satisfy

$$
y^{'}(t) \le -My(t) - N \int_0^t s(t, \tau) y(\tau) d\tau
$$

where $M > 0, N \ge 0, s \in C[I \times I, R^+]$, $s(t, \tau) \le s_0$ for $(t, \tau) \in I \times I$. Suppose further that $Ns_0T(exp(MT) - 1) \leq M$. Then $y(t) \leq 0$ for all $t \in I$.

To define appropriate classes of upper and lower solutions of (1.1) , we shall suppose that H admits a decomposition of the form

$$
H(t, u, Su) = H_0(t, u, Su) + H_1(t, u, Su) + H_2(t, u, Su),
$$

where $H_0, H_1, H_2 \in C[I \times E \times E, E]$.

Definition 1.1 Let $v_0, w_0 \in C^1[I, E]$. Then v_0, w_0 are said to be coupled lower and upper quasi-solutions of (1.1) if

$$
\begin{cases}\nv'_{0} - H_{0}(t, v_{0}, Sv_{0}) - H_{1}(t, v_{0}, Sv_{0}) - H_{2}(t, w_{0}, Sw_{0}) \leq 0, & v_{0}(0) \leq u_{0}, \\
w'_{0} - H_{0}(t, w_{0}, Sw_{0}) - H_{1}(t, w_{0}, Sw_{0}) - H_{2}(t, v_{0}, Sv_{0}) \geq 0, & w_{0}(0) \geq u_{0}.\n\end{cases}
$$
\n(1.2)

If in (1.2), equalities hold, then v_0, w_0 are said to be coupled quasi-solutions of (1.1). Clearly one can define, based on definition 1.1, coupled maximal and minimal quasi-solutions of (1.1). We also need a stronger form of coupled upper and lower quasi-solutions of (1.1).

Definition 1.2 Let $v_0, w_0 \in C^1[I, E]$ be such that $v_0(t) \leq w_0(t)$ on *I*. Then v_0, w_0 are said to be strongly coupled lower and upper quasi-solutions of (1.1) if there exist constants $M > 0, N \ge 0$ such that

$$
\begin{cases}\nv'_{0} \leq H_{0}(t, \sigma, S\sigma) + H_{1}(t, v_{0}, Sv_{0}) + H_{2}(t, w_{0}, Sw_{0}) - M(v_{0} - \sigma) - N(Sv_{0} - S\sigma) \\
w'_{0} \geq H_{0}(t, \sigma, S\sigma) + H_{1}(t, w_{0}, Sw_{0}) + H_{2}(t, v_{0}, Sv_{0}) - M(w_{0} - \sigma) - N(Sw_{0} - S\sigma)\n\end{cases}
$$
\n(1.3)

for all $\sigma \in [v_0, w_0]$.

We list for convenience the following assumptions and suppose that $v_0, w_0 \in C^1[I, E]$ such that $v_0(t) \leq w_0(t)$ on I and $Ns_0T(exp(MT) - 1) \leq M$.

(A₁) For any bounded set $B \subset [v_0, w_0]$, $\beta({H_0(t, x, Sx) + H_1(t, x, Sx) : x \in B}) \le L\beta(B(t)),$ $\beta({H_2(t,x,Sx):x\in B}) \leq L\beta(B(t)),$ where $L > 0, B(t) = \{x(t) : x \in B\}.$ (A_1) For any $u, v \in [v_0, w_0],$ $||(H_0 + H_1)(t, u, Su) - (H_0 + H_1)(t, v, Sv)|| \le L||u(t) - v(t)||,$ $||H_2(t, u, Su) - H_2(t, v, Sv)|| \leq L||u(t) - v(t)||,$

where
$$
L > 0
$$
.

 (A_2) $H_1(t, x, Sx)$ is nondecreasing in x and $H_2(t, x, Sx)$ is nonincreasing in x relatively to the normal cone K.

Note Clearly, (A_1) implies (A_1) .

2 Main Results

Our main aim in this paper is to prove the following theorem.

Theorem 2.1 Assume that the cone K is normal and assumptions $(A_1), (A_2)$ and (1.3) are satisfied. Then there exists a unique solution $u(t)$ of (1.1) on I such that $u \in [v_0, w_0]$, provided $v_0(0) \leq u_0 \leq w_0(0)$.

In our paper, $H = H_0 + H_1 + H_2$, where H_0, H_1, H_2 satisfy different conditions respectively. The papers in [7-12] were concerned with single H , their conditons of measure of noncompactness were relatively strong.

The proof of the above theorem will be completed by a series lemmas.

First of all, we consider the following linear initial value problem (LIVP):

$$
u^{'} = \overline{H}(t, u, Su), \quad u(0) = u_0 \tag{2.1}
$$

where $\overline{H}(t, u, Su) = -Mu - N(Su) + H_0(t, \eta_1, S\eta_1) + H_1(t, \eta_1, S\eta_1) + H_2(t, \eta_2, S\eta_2) + M\eta_1 + N(S\eta_1),$ and $\eta_1, \eta_2 \in [v_0, w_0]$. Then we have

Lemma 2.1 For any $\eta_1, \eta_2 \in [v_0, w_0]$, there exists a unique solution $u(t)$ on I of (2.1).

The proof of this lemma is similar to a corresponding result given in [6] with minor modifications. For any $\eta_1, \eta_2 \in [v_0, w_0]$, we define the mapping A by $A[\eta_1, \eta_2] = u$, where $u = u(t)$ is the unique solution of (2.1) on I corresponding to η_1, η_2 . Then we have the following

Lemma 2.2 Suppose that assumptions (A_2) and (1.3) hold. Then A maps $[v_0, w_0] \times [v_0, w_0]$ into $[v_0, w_0]$.

Proof. Let $\eta_1, \eta_2 \in [v_0, w_0]$ and let $u = A[\eta_1, \eta_2]$. For any $\phi \in K^*$, set $p(t) = \phi(v_0(t) - u(t))$ and note that $p(0) = \phi(v_0(0) - u_0) \leq 0$. Then for all $\sigma \in [v_0, w_0]$, we have

$$
p^{'}(t) = \phi(v_{0}^{'}(t) - u^{'}(t))
$$

\n
$$
\leq \phi(H_{0}(t, \sigma, S\sigma) + H_{1}(t, v_{0}, Sv_{0}) + H_{2}(t, w_{0}, Sw_{0}) - M(v_{0} - \sigma) - N(Sv_{0} - S\sigma)
$$

\n
$$
-H_{0}(t, \eta_{1}, S\eta_{1}) - H_{1}(t, \eta_{1}, S\eta_{1}) - H_{2}(t, \eta_{2}, S\eta_{2}) + M(u - \eta_{1}) + N(Su - S\eta_{1})).
$$

Choosing $\sigma = \eta_1$, then we get

$$
p^{'}(t) \leq \phi((H_1(t, v_0, Sv_0) - H_1(t, \eta_1, S\eta_1)) + (H_2(t, w_0, Sw_0) - H_2(t, \eta_2, S\eta_2)))
$$

$$
-\phi(M(v_0 - u) - N(Sv_0 - Su))
$$

$$
\leq -Mp(t) - N \int_0^t s(t, \tau) p(\tau) d\tau,
$$

which implies $p(t) \leq 0$ by Lemma 1.3. This proves $v_0(t) \leq u(t)$ on I since $\phi \in K^*$ is arbitrary.

A similar argument yields that $u(t) \leq w_0(t)$ on I. Since $\eta_1, \eta_2 \in [v_0, w_0]$ are arbitrary, the proof is \Box complete. \Box

In view of Lemma 2.2, we can define the sequences $\{v_n\}, \{w_n\}$ as follows:

$$
v_{n+1} = A[v_n, w_n], w_{n+1} = A[w_n, v_n] \text{ and } v_n, w_n \in [v_0, w_0], n = 0, 1, 2, \cdots.
$$

We now prove the following lemma.

Lemma 2.3 Suppose that assumptions $(A_1), (A_2)$ and (1.3) hold. Then the sequences $\{v_n\}, \{w_n\}$ are uniformly bounded, equicontinuous and relatively compact on I.

Proof. Since the cone K is normal and $v_n, w_n \in [v_0, w_0]$ for all $t \in I$, it follows that $\{v_n\}, \{w_n\}$ are uniformly bounded on I.

By assumption (A_1) , $H_0 + H_1$ and H_2 map a bounded set into a bounded set. Noting that

$$
v'_{n}(t) = -Mv_{n} - N(Sv_{n}) + H_{0}(t, v_{n-1}, Sv_{n-1}) + H_{1}(t, v_{n-1}, Sv_{n-1}) +H_{2}(t, w_{n-1}, Sw_{n-1}) + Mv_{n-1} + N(Sv_{n-1}),
$$
\n(2.2)

so there exists a constant $M_0 > 0$ such that

$$
||v'_n(t)|| \le M_0, \quad t \in I, \quad n = 1, 2, \cdots.
$$

Therefore, by the mean value theorem (see theorem 1.3.2 in [13]), we have

$$
||v_n(t_1) - v_n(t_2)|| \le M_0|t_1 - t_2|, \quad t_1, t_2 \in I.
$$

This implies that $\{v_n(t)\}$ is equicontinuous on I. A similar argument shows that $\{w_n(t)\}$ is equicontinuous on I.

Let $\varphi(t) = \beta({v_n(t) : n \ge 0}), \quad \psi(t) = \beta({w_n(t) : n \ge 0}).$ Clearly ${v_n(t)}, {w_n(t)}$ satisfy the conditions of Lemma 1.2. Therefore

$$
\varphi^{'}(t)\leq 2\beta(\{v^{'}_{n}(t):n\geq 0\}),\quad \psi^{'}(t)\leq 2\beta(\{w^{'}_{n}(t):n\geq 0\})\quad \text{ a.e. on }I. \tag{2.3}
$$

Let $E_1 = \overline{span}\{v_n(t), w_n(t) : n \geq 0, t \in I \cap Q\}$, where Q is the set of rational numbers. By assumption (A_1) , we have

$$
\beta(\{H_0(t, v_{n-1}, Sv_{n-1}) + H_1(t, v_{n-1}, Sv_{n-1}) : n \ge 1\}) \le L\beta(\{v_{n-1}(t) : n \ge 1\}) = L\varphi(t), \quad (2.4)
$$

$$
\beta(\{H_2(t, w_{n-1}, Sw_{n-1}) : n \ge 1\}) \le L\beta(\{w_{n-1}(t) : n \ge 1\}) = L\psi(t). \tag{2.5}
$$

By the properties of Hausdorff's measure of noncompactness and Lemma 1.2, we obtain

$$
\beta(\{(Sv_{n-1})(t) : n \ge 1\}) \le \beta_{E_1}(\{(Sv_{n-1}) : n \ge 1\}) = \beta_{E_1}(\{\int_0^t s(t, \tau)v_{n-1}(\tau)d\tau : n \ge 1\})
$$

\n
$$
\le \int_0^t \beta_{E_1}(\{s(t, \tau)v_{n-1}(\tau) : n \ge 1\})d\tau = \int_0^t s(t, \tau)\beta_{E_1}(\{v_{n-1}(\tau) : n \ge 1\})d\tau
$$

\n
$$
\le 2\int_0^t s(t, \tau)\beta(\{v_{n-1}(\tau) : n \ge 1\})d\tau \le 2\int_0^t s_0\varphi(\tau)d\tau.
$$
\n(2.6)

By (2.2)-(2.6), we have

$$
\varphi'(t) \le 2(2M\varphi(t) + 2N \cdot 2s_0 \int_0^t \varphi(\tau)d\tau + L\varphi(t) + L\psi(t))
$$

= 2(2M + L)\varphi(t) + 2L\psi(t) + 8Ns_0 \int_0^t \varphi(\tau)d\tau \quad \text{a.e. on } I.

A similar argument yields that

$$
\psi^{'}(t) \le 2(2M+L)\psi(t) + 2L\varphi(t) + 8Ns_0 \int_0^t \psi(\tau)d\tau \quad \text{a.e. on } I.
$$

Set $m(t) = \varphi(t) + \psi(t)$, then

$$
m'(t) \le 2(2M+L)m(t) + 2Lm(t) + 8Ns_0 \int_0^t m(\tau)d\tau
$$
, **a.e. on** I,

that is,

$$
m'(t) \le 4(M+L)m(t) + 8Ns_0 \int_0^t m(\tau)d\tau
$$
 a.e. on *I*.

Noting that $m(0) = 0$, we have

$$
m(t) \le 4(M+L) \int_0^t m(\tau) d\tau + 8Ns_0 \int_0^t \int_0^{\tau} m(\xi) d\xi d\tau
$$

\n
$$
\le 4(M+L) \int_0^t m(\tau) d\tau + 8Ns_0 \int_0^t \int_0^t m(\xi) d\xi d\tau
$$

\n
$$
\le 4(M+L) \int_0^t m(\tau) d\tau + 8Ns_0 T \int_0^t m(\xi) d\xi
$$

\n
$$
= 4(M+L+2Ns_0T) \int_0^t m(\tau) d\tau.
$$

Consequently, $m(t) \leq m(0)exp(4(M + L + 2Ns_0T)) = 0$, we thus obtain $\varphi(t) = \psi(t) = 0, t \in I$. Hence, by Ascoli-Arzela theorem, the sequences $\{v_n\}$, $\{w_n\}$ are relatively compact in $C[I, E]$. The proof of Lemma 2.3 is complete.

□

Lemma 2.4 Suppose that assumptions (A'_1) , (A_2) and (1.3) hold. Then we have $p(t) \equiv 0$ on I for either

$$
p(t) = \overline{\lim_{n \to \infty}} ||v_n(t) - v_{n-1}(t)||
$$

or

$$
p(t) = \overline{\lim_{n \to \infty}} ||w_n(t) - w_{n-1}(t)||.
$$

Proof. Let $m_1(t) = \lim_{n \to \infty} ||v_n(t) - v_{n-1}(t)||$, $m_2(t) = \lim_{n \to \infty} ||w_n(t) - w_{n-1}(t)||$, $m(t) = m_1(t) +$ $m_2(t)$. In the following we will prove that $m(t) \equiv 0$ on I.

By the proof of Lemma 2.3, there exists a constant $M_0 > 0$ such that

$$
||v'_n(t)|| \le M_0, \quad ||w'_n(t)|| \le M_0, \quad \forall t \in I.
$$

Therefore, for all $t_1, t_2 \in I$, we have

$$
|||v_n(t_1) - v_{n-1}(t_1)|| - ||v_n(t_2) - v_{n-1}(t_2)|||
$$

\n
$$
\leq ||v_n(t_1) - v_n(t_2)|| + ||v_{n-1}(t_1) - v_{n-1}(t_2)||
$$

\n
$$
\leq 2M_0|t_1 - t_2|,
$$

thus

$$
||v_n(t_1) - v_{n-1}(t_1)|| \le ||v_n(t_2) - v_{n-1}(t_2)|| + 2M_0|t_1 - t_2|,
$$

$$
||v_n(t_2) - v_{n-1}(t_2)|| \le ||v_n(t_1) - v_{n-1}(t_1)|| + 2M_0|t_1 - t_2|.
$$

Taking the limit, we obtain

$$
m_1(t_1) \le m_1(t_2) + 2M_0|t_1 - t_2|, \quad m_1(t_2) \le m_1(t_1) + 2M_0|t_1 - t_2|
$$

and so

$$
|m_1(t_1) - m_1(t_2)| \le 2M_0|t_1 - t_2|,
$$

which proves that $m_1(t)$ is continuous on I. A similar argument yields that $m_2(t)$ is also continuous on I .

Now (A_1') yields

$$
||v_{n+1}(t) - v_n(t)|| \leq \int_0^t [||H_0(\tau, v_n(\tau), (Sv_n)(\tau)) + H_1(\tau, v_n(\tau), (Sv_n)(\tau))-H_0(\tau, v_{n-1}(\tau), (Sv_{n-1})(\tau)) - H_1(\tau, v_{n-1}(\tau), (Sv_{n-1})(\tau))||+||H_2(\tau, w_n(\tau), (Sw_n)(\tau)) - H_2(\tau, w_{n-1}(\tau), (Sw_{n-1})(\tau))|| + M||v_{n+1} - v_n||+N||Sv_{n+1} - Sv_n|| + M||v_n - v_{n-1}|| + N||Sv_n - Sv_{n-1}||d\tau\leq \int_0^t [(L+M)||v_n - v_{n-1}|| + L||w_n - w_{n-1}|| + M||v_{n+1} - v_n||+N||Sv_{n+1} - Sv_n|| + N||Sv_n - Sv_{n-1}||d\tau\leq \int_0^t [(L+M)||v_n - v_{n-1}|| + L||w_n - w_{n-1}||+(M + Ns_0T)||v_{n+1} - v_n|| + Ns_0T||v_n - v_{n-1}||d\tau= \int_0^t [(L+M + Ns_0T)||v_{n+1} - v_{n-1}|| + L||w_n - w_{n-1}||+(M + Ns_0T)||v_{n+1} - v_n||d\tau.
$$

By Fatou lemma, taking limit, we have

$$
m_1(t) \le \int_0^t [(L+M+Ns_0T)m_1(\tau)+Lm_2(\tau)+(M+Ns_0T)m_1(\tau)]d\tau
$$

=
$$
\int_0^t [(L+2M+2Ns_0T)m_1(\tau)+Lm_2(\tau)]d\tau.
$$

Similarly, we can obtain

$$
m_2(t) \le \int_0^t [(L+2M+2Ns_0T)m_2(\tau)+Lm_1(\tau)]d\tau.
$$

Therefore,

$$
m(t) = m_1(t) + m_2(t) \le 2 \int_0^t (L + M + Ns_0T)m(\tau)d\tau.
$$

Notice that $m(0) = 0$, so $m(t) \equiv 0$ on *I*. The proof of Lemma 2.4 is complete. **Proof of theorem 2.1**

By Lemma 2.3, the sequences $\{v_n\}, \{w_n\}$ have uniformly convergent subsequences $\{v_{n_k}\}, \{w_{n_k}\}.$ We let $\lim\limits_{k\rightarrow\infty}v_{n_k}=v, \lim\limits_{k\rightarrow\infty}w_{n_k}=w$ and notice that

$$
v_{n_k}(t) = u_0 + \int_0^t [-Mv_{n_k}(\tau) - N(Sv_{n_k})(\tau) + H_0(\tau, v_{n_k-1}(\tau), (Sv_{n_k-1})(\tau)) + H_1(\tau, v_{n_k-1}(\tau), (Sv_{n_k-1})(\tau)) + H_2(\tau, w_{n_k-1}(\tau), (Sw_{n_k-1})(\tau)) + Mv_{n_k-1}(\tau) + N(Sv_{n_k-1})(\tau)]d\tau,
$$

and Lemma 2.4 implies

$$
\lim_{k\to\infty}v_{n_k-1}=\lim_{k\to\infty}v_{n_k}=v, \lim_{k\to\infty}w_{n_k-1}=\lim_{k\to\infty}w_{n_k}=w \text{ uniformly on } I.
$$

Therefore, leting $k \to \infty$, we get

$$
v(t) = u_0 + \int_0^t [H_0(\tau, v(\tau), (Sv)(\tau)) + H_1(\tau, v(\tau), (Sv)(\tau)) + H_2(\tau, w(\tau), (Sw)(\tau))]d\tau.
$$

Similarly, we have

$$
w(t) = u_0 + \int_0^t [H_0(\tau, w(\tau), (Sw)(\tau)) + H_1(\tau, w(\tau), (Sw)(\tau)) + H_2(\tau, v(\tau), (Sv)(\tau))]d\tau.
$$

Thus v, w are the coupled quasi-solutions of (1.1) . By $(A_1^{'})$, we obtain

$$
||v(t) - w(t)|| \le 2L \int_0^t ||v(\tau) - w(\tau)|| d\tau.
$$

It then follows that $||v(t) - w(t)|| \equiv 0$ on I since $||v(0) - w(0)|| = 0$. That is, $v = w$ is a solution of (1.1). It is easy to prove that the solution of (1.1) is unique by (A_1) . The proof of theorem 2.1 is therefore complete.

Remark When $H_1 = H_2 = 0$, theorem 2.1 in this paper is just theorem 2.1 in [1].

3 Conclusions

In this paper, we obtain an existence theorem of coupled quasi-solutions for a class of integrodifferential equations of Volterra type in a real Banach space by using method of upper and lower solutions and Mönch and Von Harten theorem.

Competing Interests

The author declares that no competing interests exist.

References

[1]Chen Y, Zhuang W. Existence via method of upper and lower solutions for nonlinear integrodifferential equations in a Banach space, Journal of Maths. and Phy. Sciences. 1986;20(2):181- 191.

[2] Deimling K. Ordinary differential equations in Banach spaces. Berlin-Heidelberg, New York; 1997.

[3] Sadovskii BN. Limit-compact and condensing operators, Russian Math. Surveys. 1972;27:85- 155.

[4] Daher SJ. On a fixed point principle of Sadovski, Nonlinear Anal. 1978;2:643-645.

[5] Mönch H, Von Harten. On the Cauchy problem for O.D.E in Banach spaces, Arch. Math. 1982;39:153-160.

[6] Chen Y, Zhuang W. The existence of maximal and minimal solutions of the nonlinear integro-differential equations in Banach spaces, Applicable Analysis A. 1986;22(2):139-147.

[7] Chen Y, Zhuang W. Extremal solutions and comparison principle for nonlinear integrodifferential equations in a Banach space, Acta Mathematics Sinica. 1993;2:152-159.

[8] Liu L, Xu Y, Wu Y, Siew P. One unique solution of an initial value problem for nonlinear first-order impulsive integro-differential equations of Volterra type in Banach spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2006;13(5):641-652.

[9] Guo D. Initial value problems for integral-differential equations of Volterra type in Banach spaces, Journal of Applied Mathematics and Stochastic Analysis. 1994;7(1):13-23.

[10] Zhang X. Existence theorems of global solutions for nonlinear integral equations of Volterra type in Banach spaces, Journal of Shandong University(Natural Science). 2010;45(8):57-65.

[11] Zhang X, Liu L, Wu Y. Global solutions of nonlinear second-order impulsive integraldifferential equations of mixed type in Banach spaces, Nonlinear Analysis. 2007;27:2335-2349.

[12] Sun Y. Positive solutions for nonlinear integro-differential equations of mixed type in Banach spaces, Abstract and Applied Analysis. 2013;10/2013. DOI: 10.1155/2013/787038.

[13] Lakshmikantham V, Leela S. Nonlinear differential equations in abstract spaces. Pergamon, Oxford; 1981.

—— C ²⁰¹⁵ Liang; This is an Open Access article distributed under the terms of the Creative Commons Attribution *License [http://creativecommons.org/licenses/by/4.0,](http://creativecommons.org/licenses/by/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=728&id=6&aid=6915