

British Journal of Mathematics & Computer Science 5(4): 525-537, 2015, Article no.BJMCS.2015.038 ISSN: 2231-0851

SCIENCEDOMAIN international www.sciencedomain.org

Improved Power System State Estimation by Selected Node Technique

H. Nagaraja Udupa^{1*} and H. Ravishankar Kamath²

¹Research Scholar, Mewar University, Mewar, Rajastan, India. ²Department of Electrical Engineering, Research guide, Mewar University, Rajastan, India.

Article Information

DOI: 10.9734/BJMCS/2015/13435 <u>Editor(s):</u> (1) Kai-Long Hsiao, Taiwan Shoufu University, Taiwan. (2) Mohd Zuki Salleh, Universiti Malaysia Pahang, Malaysia. (3) Jose C. Valverde, Department of Mathematics, University of Castilla-La Mancha, Spain. (1) Anonymous, Georgia State University, USA. (2) Muhammad Qamar Raza, School of Electrical Engineering, The University of Faisalabad, Pakistan. (3) Anonymous, West Bengal University of Technology, India. Complete Peer review History: <u>http://www.sciencedomain.org/review-history.php?iid=728&id=6&aid=6920</u>

Original Research Article

Received: 16 August 2014 Accepted: 24 October 2014 Published: 14 November 2014

Abstract

The state estimator is integral part of any Energy Management System. First and foremost the state estimation must be executed followed by system control, tie-line control, economic dispatch, security analysis etc. Most importantly the system voltage controls and the tie-line power controls must be handled within milliseconds to a few seconds. Obviously, in order to meet the requirements, state estimator should be able to process the results very fast. Due to the kind of complexity associated with the power system it's very difficult to carry out the estimation in very short time. The author, H.N. Udupa & Dr. H.R. Kamath [1,2] had suggested a new innovative method to solve this complex problem in desired time without compromising on the results accuracy. In the said new approach, State Estimations are computed at each Node level.

This paper presents a unique technique to carried-out the State Estimation at selected Node Areas instead of every Node Area. As the network is interconnected, by selecting suitable Node Area it is possible to estimate all the state variables of the system. The method of selecting the Node Area is detailed in this paper. A node/bus along with its connected nodes/buses is called "Node Area". By computing the SE only at Selected Nodes reduces the complexity of the system and also results in huge cost saving. The Node Area level of state

^{*}Corresponding author: hnudupa@gmail.com;

estimation technique is suitable for smart grid application. This paper presents the Node Area selection technique along with its computational time and comparison with the conventional Integrated State Estimation (ISE) and Node Level State estimation.

Keywords: SE- State Estimation, WLS – Weight Least Square, NR – Newton-Raphson, ISE – Integrated State estimation, NASE – Node Area State estimation, SNSE – Selected Node State estimation, NA – Node Area- A node along with its connected Node is referred as Node Area.

Symbols

 $\begin{aligned} J - Jacobian matrix of the order of (m * (2n-1)) \\ H_{ij} - Sub matrices of Jacobian matrix 'J' \\ m - Total number of network measurements taken \\ n - Total number of network bus/node. \\ W - Diagonal Weight matrix of the order of (m * m) \\ \begin{bmatrix} x \end{bmatrix}^T = \begin{bmatrix} \delta_1, \delta_2, \dots, \delta_{n-1}; v_1, v_2, \dots, v_n, \end{bmatrix}, state variables \\ \begin{bmatrix} P_i, Q_i \end{bmatrix} - Injected real and reactive powers respectively \\ \begin{bmatrix} p_{ij}, q_{ij} \end{bmatrix} - Real and reactive line flow respectively \\ \begin{bmatrix} V_i, \delta_i \end{bmatrix} - Voltage and angle respectively. \\ \Delta z = z^{measured} - z^{calculated} \\ A = (J^T * W^* J) \text{ of the order of } (2n-1)^*(2n-1); b = (J^T * W^* \Delta z) \text{) of the order of } (2n-1)^*I \end{aligned}$

1 Introduction

The NR method of State Estimation is commonly applied in electric power system State Estimation. The N R method is also used in Two Level State Estimation approach. In Two Level State Estimation approach, a large power system network is physically divided into smaller area and initially, first level of Estimation is carried out at each area. At second level, boundary node state variables are estimated considering the first level results. In this regard various research contributions are available in the literature. A few such literatures are by M. Y. Patel and A. A. Girgis [3], Durgaprasad, S. S. Thakur, [4], Bahgat A., Sakr M. M. F., El-Shafei A. R., [5], K.L. Mofreh, M. Salem, McColl, R.D.Moffatt, and SULLEY J.L [6]. Habiballah. [7], Bahgat A., Sakr M. M. F., El-Shafei A. R., [8], Van Cutsem, T.H., Horward, J.L., and Ribben-Pavella M. [9]. A few other techniques used by the researchers are "Power System Tracking State Estimator" by W. W. Kotiuga, [10], "Real-time state estimation" by Kurzyn, M.S. [11] and "Hierarchical state estimation" by Van Cutsem, T.H. Horward J.L., Ribbens-Pavella, M., and EL-Fattah, Y.M, [12].

In case of NASE, neither the given network is physically divided nor is any approximation made in NR solution technique [2]. Even though NASE technique is unique and innovative but on the other side, every Node requires the state of the art computing and communication system. This in turn will results in increase in overall computing cost. This paper presents the SNSE technique which takes care of the cost factor.

1.1 Multi-processing [1]

Referring to Appendix-1, the standard NR solution for ISE is as follows

Let
$$A = (J^T * W * J)$$
 & $b = (J^T * W * \Delta z)$
Then, $A * \Delta x = b$ (1)

We must view equation (1) as a prescription for an iterative procedure which in finite number of steps will compute the state vector 'x' to a certain degree of accuracy. Hence, vector 'x' should therefore be changed accordingly until the convergence is reached.

$$x^{(c+1)} = x^{(c)} + (J^{T} * W * J)^{-1} * (J^{T} * W * \Delta z)$$

= $x^{(c)} + A^{-1} * b$
= $x^{(c)} + \Delta x^{(c)}$ (2)

$$J_{j}^{T*}W_{jj}*J_{j} = A_{j}\&J_{j}^{T*}W_{jj}*\Delta z_{j}=b_{j}.....(3)$$

Where, j = 1, 2, 3, ., ., m;

Where
$$A = [A_1 + A_2 + A_j + ... + A_m]$$
(4)

$$b = [b_1 + b_2 + b_j + \ldots + b_m]$$
(5)

For n^{th} Node Area measurements Jacobian relation is as follows [1]

$$\begin{bmatrix} \Delta P_{n} \\ \Delta Q_{n} \\ \Delta p_{ij}^{n} \\ \Delta q_{ij}^{n} \\ \Delta v_{n}^{n} \\ \Delta \partial^{n} \end{bmatrix}_{\Delta z_{NAn}} = \begin{bmatrix} |H_{1}^{n}| |H_{2}^{n}| \\ |H_{3}^{n}| |H_{4}^{n}| \\ |H_{3}^{n}| |H_{4}^{n}| \\ |H_{3}^{n}| |H_{4}^{n}| \\ |H_{3}^{n}| |H_{4}^{n}| \\ |H_{1}^{n}| |H_{8}^{n}| \\ |\Delta v_{i}|_{(\Delta x_{i})_{NAn}} \end{bmatrix}_{(\Delta x_{i})_{NAn}}$$
(6)

 Δp_{ij}^r , Δq_{ij}^r is the real and reactive line flow residuals ($p_{ij}^{r(measured)} - p_{ij}^{r(calculated)} = \Delta p_{ij}^r$) between the connected nodes of rth node area and similarly, Δv^r , $\Delta \partial^r$ is the voltage and angle residuals between the connected nodes of rth node area.

 $()_{NAi}$ The subscript 'NAi' refers to 'ith, node area

$$\sum_{j=1}^{n} (A_{NAj}) \Delta x = \sum_{j=1}^{n} (b_{NAj})$$
(7)

1.2 Node Area State Estimation (NASE) [2]

As given in the NASE technique by H.N. Udupa, Dr. H.R. Kamath [2] Node Area State Estimation is as follows.

The kth Node area measurements many include $[P_k, Q_k, p_{ij}^k, q_{ij}^k, v^k, \partial^k]$. If sufficient measurements are made available at each node area, form equation (6) and (7) it can be written as

$$(J_{NAk}^{T} * W_{NAk} * J_{NAk})(\Delta x_{i})_{NAk} = (J_{NAk}^{T} * W_{NAk} * z_{NAk})$$

$$A_{NAk}(\Delta x_{i})_{NAk} = b_{NAk}$$
(8)

where 'N_{Ak}' refers to kth node area and (Δx_i)N_{Ak} is the state vector corresponds to kth node area. $(x_i^{c+1})_{NAk} = (x_i^c)_{NAk} + (\Delta x_i^c)_{NAk}$; Where 'c' is the iteration count and 'k' =(1, 2, ., ., ., n). The equation (1) is for whole network whereas the eq (8) is for kth node area.

2 Selected Node State Estimation (SNSE) Technique

2.1 SNSE Introduction

The Selected Node State Estimation (SNSE) technique provides a method to carry-out the Node Level State Estimation only at selected nodes of the whole network. The NASE only at certain selected Node Areas of the power system network is termed as 'Selected Node State Estimation'. In the Node Level State Estimation [2], State Estimation is carried-out at each Node Area independently. As the bus/Nodes are interconnected it is not necessary to compute the state variables at all the Nodes. For example, if Node- k is connected to Node-j, then the state variables (vk, vj, ∂k , ∂j) will be estimated at kth Node Area and also at jth Node Area. Hence, it is possible to estimate all the state variables of the system by computing the state variables only at a few selected Nodes. The Nodes are selected to meet the following criteria,

- i. The combination of all the connected Nodes of the Selected Node Areas should cover all the Nodes of the system/network.
- ii. There has to be connectivity between selected Node Areas either directly or through a common Node so that a Node path can be established from NA-1 to NA-n.

2.2 Node Area Selection Steps

- Step1:- Start from node having maximum number of connected Nodes: NA-i(max) List all the Nodes of NA-i(max).
- Step2:- Among the connected nodes of NA under consideration identify which node has more number of parallel paths (more number of connected nodes).
- Step3: -Now consider the new NA identified from step 2.
- Step4:- Identify the new Nodes (other than covered so far) and add to the Node list
- Step5:- Check whether noted node list consists of all nodes of the given system?
- Step6: -If Yes stop, else go to step 2.

(Note: - there may a case wherein equal number parallel path among two or more than two connected nodes, in such case need to go one more level deeper).

2.3 Assumptions

- All measurements are taken at the same instant
- At selected nodes sufficient numbers of measurements are taken or in other words, at each selected node total of injected power measurements + voltage measurements + the line flow measurements should be equal to or greater than the number of state variables of that node Area.
- The nodes are selected in such a way that by carrying out SE for these nodes complete system state variables covered. Measurement redundancy may also be provided to ensure sufficient measurements at selected Node Areas.

2.4 Example: -13Bus System

2.4.1 Node selection steps: - 13 Bus example

The Node Area logic given in the section II part B is demonstrated below for 13 bus graph shown in Fig. 1.

NA	Connected	Self + connected	Selection	New node case1	New node
	nodes	nodes	sequence		case2
1	2	1,2		0	0
2	1,3	2,1,3	4(stop)	1,2	1,2,3
3	2,4	3,2,4		0	0
4	3,5,8	4,3,5,8	3	3	0
5	4,6,9	5,4,6,9	2	4,6	4,6
6	5,7	6, 5,7		0	0
7	6,10	7, 6,10		0	0
8	4,9	8, 4,9		0	0
9	5,8,10,12	9,5,8,10,12	1(start)	5,8,9, 10,12*	5,8,9, 10,12*
10	7,9,11	10,7,9,11	2	7,11	7,11
11	10,13	11,10,13	3	13	13
12	9,13	12, 9,13		0	0
13	11,12	13, 11,12		0	0

Table 1. Node selection table

* Start from Node-9. The node selection results are tabulated in Table-1: - Node Selection table

• Node Area-9* is having maximum number of connected nodes = 4

- At NA-9, Nodes covered are -5,8, 9,10,12;
- Number of connected nodes at NA-10 & NA-5 = 3

• At NA-10, new Nodes covered are – 7, 11; (other than previous NA Nodes);

- Number of connected nodes at NA-7 & NA-11= 2, but Node-7 has already been covered.
 - \circ At NA-11, new Node covered is 13; (other than previous NA Nodes);
 - At NA-5, new Nodes covered are 4, 6; (other than previous NA Nodes);

- Number of connected nodes at NA-4 & NA-6= 2, but Node 6 is connected to node-5 and Node-7 which are listed already.
 - At NA-4, new Node covered is -3; (other than previous NA Nodes);
- At NA-3, new Nodes covered are 2;

Case-1

- At NA-2, new Node covered is 1 Node-3 is common between NA-2 and NA-4, hence NA-3 can be dropped.
- Therefore, at NA-2, new Nodes covered are 1, 2;
- Numbers of Nodes listed so far are -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13; all nodes are listed stop.

Case-2

• If NA-4 is dropped, at NA-2, new Nodes – 1,2,3

2.4.2 Case-1

The Figs. 2 and 3 represents the Selected Node Area and node connectivity diagram. The dotted link between node-2 and node-4 in Fig. 3, shows that Node-3 is common between NA4 and NA2. The Case-1 satisfies the criteria stated in section 2.1.

2.4.3 Case-2

The Figs. 4 and 5 represents the Selected Node Area and node connectivity diagram for case-2. The dotted link between node-2, 3, 4 and node-5 in Fig. 5, shows that there is no common Node between NA2 and NA5. The Case-2 does not satisfy the criteria stated in section 2.1. Hence case-2 is not preferable.

Fig. 1. 13 bus test system

Fig. 2. Case-1 selected node area connectivity

Fig. 3. Case-1 selected node connectivity

Fig. 4. Case-2 selected node area connectivity

Fig. 5. Case-2 selected node connectivity

3 Example and Results

The above concept is tested on a 13 and 30 bus test systems for ISE and SNSE. The estimation results of both the methods are found to be same up to five decimal. The results of computational time are tabulated in the following section. In both the methods (ISE and SNSE) proper indexing is used to avoid non-zero computations.

3.1 Input Data: - Input Data for 13 and 30 Bus Systems are given in Appendix-2

3.2 Results

The 13 bus and 30 bus ISE and SNSE results are tabulated in the Tables 2 and 3 respectively. The ISE and SNSE voltage comparison for 13 bus, 30 bus system is shown in chart 1, chart 3 and phase angle comparison is shown in chart 2, chart 4 respectively.

Bus no.	V-ISE	∂-ISE	V-SNSE	∂-SNSE
1	1.05328	0	1.05327	0
2	0.979382	-0.0605903	0.979365	-0.060592
3	0.958245	-0.0861526	0.958230	-0.086152
4	0.945926	-0.101909	0.945931	-0.101910
5	0.928904	-0.123005	0.928905	-0.123004
6	0.925919	-0.126983	0.925939	-0.127
7	0.924528	-0.128747	0.924536	-0.12875
8	0.926483	-0.1247	0.926472	-0.1247
9	0.925293	-0.127228	0.925299	-0.12723
10	0.923413	-0.130107	0.923408	-0.13011
11	0.919752	-0.135169	0.919748	-0.13517
12	0.922148	-0.131696	0.9221141	-0.1317
13	0.920722	-0.133764	0.920714	-0.13377

Table 2. ISE& SNSE results (13 bus test system) number of iteration = 3

Chart 1. ISE Vs SNSE voltage profile for 13 bus test system

Chart 2. ISE Vs SNSE phase angle profile for 13 bus test system

Bus	V-ISE	δ-ISE	V-SNSE	δ-SNSE
1	1.05	0	1.05	0
2	1.0338	-0.04773	1.0338	-0.04773
3	1.0313	-0.08174	1.0313	-0.08174
4	1.0263	-0.09791	1.0263	-0.09791
5	1.0058	-0.15702	1.0058	-0.15702
6	1.0208	-0.1127	1.0208	-0.1127
7	1.0069	-0.14011	1.0069	-0.14011
8	1.023	-0.11303	1.023	-0.11303
9	1.0332	-0.14021	1.0332	-0.14021
10	1.0183	-0.17333	1.0183	-0.17333
11	1.0913	-0.10711	1.0913	-0.10711
12	1.0399	-0.16419	1.0399	-0.16419
13	1.0883	-0.14326	1.0883	-0.14326
14	1.0236	-0.17999	1.0236	-0.17999
15	1.0179	-0.18089	1.0179	-0.18089
16	1.0235	-0.17291	1.0235	-0.17291
17	1.0144	-0.17697	1.0144	-0.17697
18	1.0057	-0.19076	1.0057	-0.19076
19	1.0017	-0.19314	1.0017	-0.19314
20	1.0051	-0.18911	1.0051	-0.18911
21	1.0061	-0.18167	1.0061	-0.18167
22	1.0069	-0.18148	1.0069	-0.18148
23	1.0053	-0.18721	1.0053	-0.18721
24	0.9971	-0.18938	0.997099	-0.18938
25	1.0086	-0.19045	1.0086	-0.19045

Udupa and Kamath; BJMCS, 5(4): 525-537, 2015; Article no.BJMCS.2015.038

Bus	V-ISE	δ-ISE	V-SNSE	δ-SNSE
26	0.990798	-0.1979	0.990799	-0.1979
27	1.0245	-0.18617	1.0245	-0.18617
28	1.0156	-0.1199	1.0156	-0.1199
29	1.0047	-0.20759	1.0047	-0.20759
30	0.993197	-0.22297	0.993201	-0.22297

Chart 3. ISE Vs SNSE voltage profile for 30 bus test system

Chart 4. ISEVs SNSE Angle profile for 30 bus test system

Туре	Time (ms)
13 bus- SNSE	0.19 at NA9
30 bus-SNSE	0.41 at NA6
13 bus- ISE	2.16
30 bus-ISE	27.60

Table 4. Computational time for 13 and 30 bus systems

Note: -For 30 bus system the Node Area selected are

Node	NA	NA1	NA1	NA1	NA2	NA	NA2	NA1	NA	NA	NA11
area	6	0	2	5	7	4	5	9	5	1	
No. of connected nodes	7	6	5	4	4	4	3	2	2	2	1

• From Table 4, for 13 bus (SNSE)_{max} computing time is observed at Node Area9 (NA9),because the node 9 has maximum connected nodes and for 30 bus (SNSE)_{max} computing time is observed at Node Area 6 (NA6), because the node 6 has maximum connected nodes. The above timings are obtained using profiling tool. These timing are also dependent on the processor and the operating system. The Node-9 (NA9) of 13 bus system is has 4 connected nodes the time taken to compute is 0.19ms and the Node-6 (NA6) of 30 bus system is has 7 connected nodes the time taken to compute is 0.41ms.

4 Conclusion

As the power system network size increases, number node/bus also increase. But regardless of the size of the network, the size of the Node Area will depend only on its connected nodes. Hence, Node Area size does not depend on the network size (total number of node/bus in the network).Disadvantage of NASE technique [2] is the requirement of complete state of art data acquisition, communication and computation system at each node. And also other requirement is the increase in the measurements because at each node area sufficient measurements should be made available to obtain reliable results. The SNSE technique suggested here provides solution to the above said problems. Huge increase in the cost due to the said disadvantages of NASE can be avoided using SNSE technique. In case of SNSE same method (NASE) is applied only at selected Node Areas of the whole network. The results of SNSE is compared with the results of ISE (standard method) and found to be same up to five decimal. It is evident from the results that the SNSE is a good solution for large size, complex state estimation. The maximum computational time is the time taken by the Node Area having maximum number of connected nodes. In the above 13bus example, it is evident that NA9 is having maximum number of connected nodes and consumes maximum computing time which is equals to 0.19milli sec and for 30 bus, it is 0.41ms. Here, ISE time has no relevance because NASE/SNSE time depends on the Node Area having maximum number of connected nodes but not on the total network size. Practically, a node may have a maximum of 10 or 12 connected nodes. Hence, actual SE computational time required is the time taken by the Node Area- having 10 or 12 connected nodes. Using SNSE over NASE technique reduces the system cost.

Competing Interests

Authors have declared that no competing interests exist.

References

- Udupa HN, Kamath HR. Modified electric power system state estimation Multiprocessing technique,IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843. 2013;1(5):47-56.
 Available: <u>http://irdindia.in/Journal IJAEEE/PDF/Vol2 Iss4/14.pdf</u>
- [2] Udupa HN, Kamath HR. Power system state estimation distributed computing technique. International Journal of Scientific & Engineering Research. ISSN 2229-5518. IJSER. 2014;5(3). Available: <u>http://www.ijser.org/onlineResearchPaperViewer.aspx?Power-</u> System-State-Estimation-Distributed-Computing-Technique.pdf
- [3] Patel MY, Girgis AA. Two-level state estimation for multi-area power system. IEEE; 2007.
- [4] Durgaprasad G, Thakur SS. Robost dynamic state estimation of power systems based on M-Estimation and realistic Modeling. IEEE Transactions on Power Systems. 1998;13(4).
- [5] Bahgat A, Sakr MMF, El-Shafei AR. Two level dynamic state estimator for electric power systems based on nonlinear transformation. IEE Proceedings. 1989;136(1).
- [6] Mofreh KL, Salem M, McColl Moffatt RD, Sulley JL. Multi-level state estimation for electric power systems. 19th Universities Power Eng. Conf. Paper 14.2, Dundee; 1984.
- [7] Habiballah. Modified two-level state estimation approach" IEE Proc-Gener. Transm. & Distrib. 1996;143(2).
- [8] Bahgat A, Sakr MMF, El-Shafei AR. Two level dynamic state estimator for electric power systems based on nonlinear transformation. IEE Proceedings.1989;136(1).
- [9] Van Cutsem TH, Horward JL, Ribben-Pavella M. Application of a two-level state estimation for anomalous data analysis in electric power system. Proc. IFAC Symp. on automatic control in power generation, distribution and protection, Pretoria. 1980;423433.
- [10] Kotiuga WW. Development of a least absolute value power system tracking state estimator. IEEE transactions on Power Apparatus and Systems. 1985;104(5).

- [11] Kurzyn MS. Real-time state estimation for large-scale power systems. Ihid, 1983;102:2055-2063.
- [12] Van Cutsem TH, Horward JL, Ribbens-Pavella M, EL-Fattah YM. Hierarchial state estimation. Int. J. Electrical Power & Energy Syst. 1980;2:7-80.

APPENDIX-1

1. NR STATE ESTIMATION

1.1 Basic Derivation

Let 'z' be the measurement vector as a function of the state vector 'x',

$$x^{T} = [v_{1}, v_{2}, \dots, v_{n}, \delta_{1}, \delta_{2}, \dots, \delta_{n-1}]^{T};$$
(1.1.1)

Where

The state vector

- 'n' is the number of state variable,
- $[v_1, v_2, \dots v_n]$ are the respective voltage magnitudes and
- $\delta_1, \delta_2, \dots \delta_{n-1}$ are the respective phase angles.
- The dimension of the state vector 'x' = (2n-1)*1, because one of the bus is considered as the phase angle reference bus.

Let

- 's' be the Structure of the network
- 'c' be the information of the network

Then
$$z = f(x, c, s)$$
 (1.1.2)

The equation-2 computes 'm' measurement values as a function of state vector 'x'

$$z = f(x) + e \tag{1.1.3}$$

Where 'e' is the 'm' dimensional error vector as all the measurements may have some errors.

error vector
$$e = z - f(x)$$
 (1.1.4)

To estimate the state variables (x0) the norm of 'e' should be minimal.

Hence the cost function to estimate the sate variables

$$|U' = ||e||^2 = e^2 * e = \sum_{i=1}^{m} [z_i - f_i(x)]^2 \quad (1.1.5)$$

This is also known as "Least Square Minimization (WLS)" technique.

The error vector includes nonlinear vector function f(x), in-order to estimate x, an initial value 'x0' is assumed and using taylor expression it can be written as

$$f(x) = f(x_0) + f'(x_0)\Delta x + f''(x_0)\frac{\Delta x}{2!}$$
(1.1.6)

Neglecting the higher order terms and using the matrices, we have

$$f(x) = f(x_0) + J(x_0)\Delta x$$

$$f = f_0 + J_0\Delta x$$
(1.1.7)

The Jacobian matrix 'J' is defined as

$$\mathbf{J}_{\mathbf{k},\mathbf{n}} = \frac{\partial f_k}{\partial x_n} \tag{1.1.8}$$

$$e = z - f; \text{ let } \Delta z = z - f_0 \text{ or } z = \Delta z + f_0$$
(1.1.9)

Substituting the equations (7) and (9) in equation (5),

$$U(x) = e^{T} * e = (\Delta z + f_0 - f_0 - J_0 * \Delta x)^{T} * (\Delta z - J_0 * \Delta x)$$

= $(\Delta z - J_0 * \Delta x)^{T} * (\Delta z - J_0 * \Delta x)$ (1.1.10)

minimizing $\frac{\partial U(x)}{\partial x} = 0$, equation (3.1.10) reduces to

$$\left(J_0^T * J_0\right) * \Delta x = \left(J_0^T * \Delta z\right) \tag{1.1.11}$$

Let

- 'W' be the weight matrix, which is a diagonal matrix
- 'Wii' is the diagonal element, which is nothing but the Standard deviation (σ) of the meter.

Then
$$U(\mathbf{x}) = e^T * \mathbf{W} * \mathbf{e}$$
 (1.1.12)

$$\begin{pmatrix} J_0^T * W * J_0 \end{pmatrix} * \Delta x = \begin{pmatrix} J_0^T * W * \Delta z \end{pmatrix}$$

$$let \quad J_0 \Longrightarrow J$$

$$(1.13)$$

Let
$$A = \left(J^T * W * J\right) \& b = \left(J^T * W * \Delta z\right)$$
(1.1.14)

Then,
$$A * \Delta x = b$$
 (1.1.15)

We must view equation (3.1.15) as a prescription for an iterative procedure which in finite number of steps will compute the state vector 'x' to a certain degree of accuracy. Hence, vector 'x' should therefore be changed accordingly until the convergence is reached.

$$x^{(c+1)} = x^{(c)} + (J^{T} * W * J)^{-1} * (J^{T} * W * \Delta z)$$

= $x^{(c)} + A^{-1} * b$
= $x^{(c)} + \Delta x^{(c)}$ (1.1.16)

1.2 Jacobian Formation

$$P_{i} = \sum_{j=1}^{N} |V_{i}| |V_{j}| |Y_{ij}| \cos(\delta_{i} - \delta_{j} - \theta_{ij})$$
(1.2.1)

$$Q_{i} = \sum_{j=1}^{N} |V_{i}| |V_{j}| |X_{ij}| \sin(\delta_{i} - \delta_{j} - \theta_{ij})$$
(1.2.2)

$$S_{ij} = V_i I^* = V_i (I_{ij} - I_{i0})^*$$
; where, $I_{ij} = (V_i - V_j)$ & $I_{i0} = V_i y_{i0}$ (1.2.3)

Where

$$V_i = |V_i| \angle \delta_i; \ V_i = |V_j| \angle \delta_j; \ y_{ij} = |y_{ij}| \angle \alpha_{ij}; \ y_{i0} = |y_{i0}| \angle \alpha_{i0}$$

 $y_{ij} \rightarrow$ Primitive element, line admittance between ith and jth bus

 $y_{i0} \rightarrow$ Shunt admittance from corresponding (ith) bus to ground

 p_{ij} and $q_{ij} \rightarrow$ Real and Reactive power flow between ith jth bus respectively Simplifying the equation (3.2.3), yields to

$$S_{ij} = |V_i|^2 |y_{ij}| \angle -\alpha_{ij} - |V_i| |V_j| |y_{ij}| \angle (\delta_i - \delta_j - \alpha_{ij}) + |V_i|^2 |y_{i0}| \angle -\alpha_{i0}$$
(1.2.4)

$$p_{ij} = |V_i|^2 |y_{ij}| \cos(-\alpha_{ij}) - |V_i| |V_j| |y_{ij}| \cos(\delta_i - \delta_j - \alpha_{ij}) + |V_i|^2 |y_{i0}| \cos(-\alpha_{i0})$$
(1.2.5)

$$q_{ij} = |V_i|^2 |y_{ij}| \sin(-\alpha_{ij}) - |V_i| |V_j| |y_{ij}| \sin(\delta_i - \delta_j - \alpha_{ij}) + |V_i|^2 |y_{i0}| \sin(-\alpha_{i0})$$
(1.2.6)

$$\begin{bmatrix} \Delta P_{i} \\ \Delta Q_{i} \\ \Delta p_{ij} \\ \Delta q_{ij} \\ \Delta v_{i} \\ \Delta \delta_{i} \end{bmatrix} = \begin{bmatrix} |H_{1}||H_{2}| \\ |H_{3}||H_{4}| \\ |H_{5}||H_{6}| \\ |H_{7}||H_{8}| \\ |H_{7}||H_{8}| \\ |H_{9}||H_{10}| \\ |H_{11}||H_{12}| \end{bmatrix} \begin{bmatrix} \Delta \delta_{i} \\ \Delta v_{i} \end{bmatrix} \quad (1.2.7) \qquad H_{1} = \begin{bmatrix} \frac{\partial P_{1}}{\partial \delta_{1}} & \dots & \frac{\partial P_{1}}{\partial \delta_{n-1}} \\ \vdots \\ \frac{\partial P_{n}}{\partial \delta_{1}} & \dots & \frac{\partial P_{n}}{\partial \delta_{n-1}} \end{bmatrix} = \frac{\partial P_{i}}{\partial \delta_{j}} \quad (1.2.8)$$

Note : - $H_{odd number}$ - Number of coloum is (n - 1) because *o* ne bus is considered as angle reference bus

$$H_{1(ii)} = -\left|V_i^2\right| \left|Y_{ii}\right| \sin \theta_{ii} - Q_i^{cal} = \frac{\partial P_i}{\partial \delta_i}$$
(1.2.9)

$$H_{\substack{1(ij)\\j \models i}} = |V_i| |V_j| |Y_{ij}| \sin(\delta_i - \delta_j - \theta_{ij}) = \frac{\partial P_i}{\partial \delta_j}$$
(1.2.10)

$$H_{2(ii)} = \left(V_i^2 \left\| Y_{ii} \right\| \cos \theta_{ii} + P_i^{cal} \right) / \left| V_i \right| = \frac{\partial P_i}{\partial |V_i|}$$
(1.2.11)

$$H_{2(ij)}_{j \models i} = |V_i| |Y_{ij}| \cos(\delta_i - \delta_j - \theta_{ij}) = \frac{\partial P_i}{\partial |V_j|};$$
(1.2.12)

$$H_{3(ii)} = P_i^{cal} - \left| V_i^2 \right| Y_{ii} \left| \cos \theta_{ii} \right| = \frac{\partial Q_i}{\partial \delta_i}$$
(1.2.13)

$$H_{3(ij)} = -|V_i| |V_j| |Y_{ij}| \cos(\delta_i - \delta_j - \theta_{ij}) = \frac{\partial Q_i}{\partial \delta_j}$$
(1.2.14)

$$H_{4(ii)} = \left(Q_i^{cal} - \left| V_i^2 \right| |Y_{ii}| \sin \theta_{ii} \right) / |V_i| = \frac{\partial Q_i}{\partial |V_i|}$$
(1.2.15)

$$H_{4(ij)} = |V_i| |Y_{ij}| \sin(\delta_i - \delta_j - \theta_{ij}) = \frac{\partial Q_i}{\partial |V_j|};$$
(1.2.16)

$$H_{5} = \frac{\partial p_{ij}}{\partial \delta_{i}} = |V_{i}| |V_{j}| |y_{ij}| \sin(\delta_{i} - \delta_{j} - \alpha_{ij}) \text{ in column 'i'}$$
(1.2.16)

$$= \frac{\partial p_{ij}}{\partial \delta_j} = -|V_i| |V_j| |y_{ij}| \sin(\delta_i - \delta_j - \alpha_{ij}) \text{ in column'} j'$$
(1.2.17)

$$H_6 = \frac{\partial p_{ij}}{\partial V_i} = 2|V_i||y_{ij}|\cos(-\alpha_{ij}) - |V_j||y_{ij}|\cos(\delta_i - \delta_j - \alpha_{ij}) \text{ in column 'i'}$$
(1.2.18)

$$= \frac{\partial p_{ij}}{\partial V_j} = -|V_i| |y_{ij}| \cos(\delta_i - \delta_j - \alpha_{ij}) \text{ in column 'j'}$$
(1.2.19)

$$H_7 = \frac{\partial q_{ij}}{\partial \delta_i} = -|V_i| |V_j| |y_{ij}| \cos(\delta_i - \delta_j - \alpha_{ij}) \text{ in column 'i'}$$
(1.2.20)

$$= \frac{\partial q_{ij}}{\partial \delta_j} = |V_i| |V_j| |y_{ij}| \cos(\delta_i - \delta_j - \alpha_{ij}) \text{ in column'j'}$$
(1.2.21)

$$H_8 = \frac{\partial q_{ij}}{\partial V_i} = 2|V_i||y_{ij}|\sin(-\alpha_{ij}) - |V_j||y_{ij}|\sin(\delta_i - \delta_j - \alpha_{ij}) \text{ in column 'i'}$$
(1.2.22)

$$= \frac{\partial q_{ij}}{\partial V_j} = -|V_i| |y_{ij}| \sin(\delta_i - \delta_j - \alpha_{ij}) \text{ in column 'j'}$$
(1.2.23)

$$\begin{array}{l} H_9 \& H_{12} \rightarrow \text{all elements of the matrix are zero} \\ H_{10} \& H_{11} \rightarrow \text{both are unity diagonal matrix} \end{array} \tag{1.2.24}$$

APPENDIX-2

2.1 Input data: - Input data for 13 and 30 bus systems

Nodo i	Nodo i		v	;	:		v	w/2
INOUE-I	Noue-j	F 0.00149	X 0.0029676	1	J	r 0.0102	X 0.0575	y/2
2	2	0.00148	0.0028070	1	2	0.0192	0.0373	0.0204
2	3	0.000438	0.00124174	1	3	0.0432	0.1832	0.0204
3	4	0.000277	0.000/8488	2	4	0.057	0.1/3/	0.0184
4	5	0.000598	0.00166769	3	4	0.0132	0.0379	0.0042
4	8	0.0016	0.0031001/	2	5	0.0472	0.1983	0.0209
5	6	0.000343	0.0009719	2	6	0.0581	0.1763	0.0187
5	9	0.000343	0.0009719	4	6	0.0119	0.0414	0.0045
6	7	0.000324	0.00091669	5	7	0.046	0.116	0.0102
7	10	0.000324	0.00091669	6	7	0.0267	0.082	0.0085
8	9	0.000294	0.0008338	6	8	0.012	0.042	0.0045
9	10	0.000532	0.00150562	6	9	0	0.208	0
9	12	0.000378	0.0010705	6	10	0	0.556	0
10	11	0.000588	0.00166488	9	11	0	0.208	0
11	13	0.000324	0.00091669	9	10	0	0.11	0
12	13	0.000368	0.00104355	4	12	0	0.256	0
				12	13	0	0.14	0
				12	14	0.1231	0.2559	0
				12	15	0.0662	0.1304	0
				12	16	0.0945	0.1987	0
				14	15	0.221	0.1997	0
				16	17	0.0825	0.1932	0
				15	18	0.107	0.2185	0
				18	19	0.0639	0.1292	0
				19	20	0.034	0.068	0
				10	20	0.0936	0.209	0
				10	17	0.0324	0.0845	0
				10	21	0.0348	0.0749	0
				10	22	0.0727	0.1499	0
				21	22	0.0116	0.0236	0
				15	23	0.1	0.202	0
				22	24	0.115	0.179	0
				23	24	0.132	0.27	0
				24	25	0.1885	0.3292	0
				25	26	0.2544	0.38	0
				2.5	27	0.1093	0.2087	0
				28	2.7	0	0.396	0
				27	29	0.2198	0.4153	0
				2.7	30	0.3202	0.6027	0
				29	30	0.2399	0.4533	0
				8	28	0.0636	0.2	0.0214
				6	28	0.0169	0.0599	0.0065

TABLE 2.1.1 -LINE DATA FOR 13 AND 30 BUS SYSTEMS

13 bus syst	tem		30 bus system			
Bus No.	Vi	∂i (rad)	Bus No.	Vi	∂i (rad)	
1	1.053269	0	1	1.05		
3	0.958231	-0.08616	2	1.0338	-0.04773	
5	0.928889	-0.12301	3	1.0313	-0.08174	
9	0.925278	-0.12723	6	1.0208	-0.1127	
10	0.923398	-0.13011	7	1.0069	-0.14011	
11	0.919737	-0.13517	8	1.023	-0.11303	
13	0.920707	-0.13377	9	1.0332	-0.14021	
			11	1.0913	-0.10711	
			12	1.0399	-0.16419	
			13	1.0883	-0.14326	
			14	1.0236	-0.17999	
			17	1.0144	-0.17697	
			19	1.0017	-0.19314	
			20	1.0051	-0.18911	
			21	1.0061	-0.18167	
			22	1.0069	-0.18148	
			23	1.0053	-0.18721	
			24	0.9971	-0.18938	
			25	1.0086	-0.19045	
			26	0.9908	-0.1979	
			30	0.9932	-0.22297	

TABLE 2.1.2 - VOLTAGE AND ANGLE MEASUREMENTS FOR 13 AND 30 BUS SYSTEM

 TABLE 2.1.3: -INJECTED POWER MEASUREMENTS FOR 13 AND 30 BUS SYSTEMS

	13BUS Syst	em	30 BU	30 BUS System		
Bus No.	Pi	Qi	Pi	Qi		
1	28.162	13.18	1.38525	-0.0281959		
2	-5.89546	-1.07074	0.358726	-0.102251		
3	-3.42084	0.330078	-0.0239129	-0.0117302		
4	-2.47793	0.706497	-0.0759117	-0.0154608		
5	-6.9646	-0.50879	-0.696608	0.0359962		
6	-4.15897	0.041931	-0.000182518	-0.000893709		
7	-2.5218	0.616272	-0.228155	-0.109163		
8	-6.13422	-0.9848	0.0500946	0.0487403		
9	-4.89722	0.894775	1.22E-05	0.000443043		
10	-2.59491	0.689423	-0.0580753	-0.217182		
11	-5.998	-0.86444	0.179375	0.307797		
12	-3.93211	-0.04755	-0.111825	-0.0740924		
13	-2.38309	0.562073	0.169178	0.378012		
14			-0.0620029	-0.016046		
15			-0.0823402	-0.0255536		
16			-0.0348603	-0.0176984		
17			-0.0901929	-0.0583336		
18			-0.0321083	-0.00917765		
19			-0.0948698	-0.0336671		
20			-0.020027	-0.00706335		
21			-0.176513	-0.114945		
22			0.00164309	0.00324485		

	13BUS	System	30 B	30 BUS System		
Bus No.	Pi	Qi	Pi	Qi		
23			-0.0320577	-0.0160815		
24			-0.0871662	-0.106997		
25			-2.02E-05	-1.78E-05		
26			-0.0349631	-0.0229311		
27			-2.02E-05	2.31E-05		
28			-1.66E-05	-7.13E-05		
29			-0.0239568	-0.00890309		
30			-0.106086	-0.0190879		

TABLE 2.1.4:	-LINE FLOW	MEASUREMENT FOR	13 AND 3	30 BUS SYSTEMS
--------------	------------	------------------------	----------	-----------------------

	13BUS System					30BUS System				
NA	Node -i	Node - j	pij	qij	NA	Node-i	Node-j	p _{ii}	q _{ii}	
1	1	2	28.5327	13.0812	1	1	2	0.905766	-0.0142242	
2	1	2	28.5327	13.0812	1	1	3	0.479483	-0.0139709	
2	2	3	22.4874	8.978	2	1	2	0.905766	-0.0142242	
3	2	3	22.4874	8.978	2	2	4	0.292082	-0.0631865	
3	3	4	20.9456	7.7882	2	2	5	0.581169	0.0165859	
4	3	4	20.9456	7.7882	2	2	6	0.376949	-0.0553518	
4	5	4	-12.823	-4.76946	3	1	3	0.479483	-0.0139709	
4	4	8	7.53516	2.11797	3	3	4	0.446142	-2.01E-02	
5	5	4	-12.823	-4.76946	4	2	4	0.292082	-0.0631865	
5	5	6	4.02863	1.43748	4	3	4	0.446142	-0.0201448	
5	5	9	4.40723	1.90301	4	4	6	0.382601	0.024396	
6	6	5	-4.02136	-1.41695	4	4	12	0.276134	-0.0451944	
6	6	7	1.90622	0.733363	5	2	5	0.581169	0.0165859	
7	6	7	1.90622	0.733363	5	5	7	-0.130421	0.0331114	
7	7	10	1.4794	0.60305	6	2	6	0.376949	-0.0553518	
8	8	4	-7.42565	-1.90575	6	4	6	0.382601	0.024396	
8	8	9	2.72708	0.362727	6	6	7	0.3629	0.0507249	
9	9	5	-4.39807	-1.87707	6	6	8	-0.0066594	-0.0562558	
9	9	8	-2.72452	-0.35546	6	6	9	0.139488	-0.0588494	
9	9	10	1.81613	0.516504	6	6	10	0.113266	0.00809595	
9	9	12	4.02228	1.30623	6	6	28	0.138712	0.0431573	
10	10	7	-1.47842	-0.60032	7	5	7	-0.130421	0.0331114	
10	10	9	-1.8139	-0.51024	7	6	7	0.3629	0.0507249	
10	10	11	2.93549	1.00072	8	6	8	-0.0066594	-5.63E-02	
11	11	10	-2.92885	-0.98192	8	8	28	0.043405	0.00177545	
11	11	13	-1.45929	-0.45715	9	6	9	0.139488	-5.88E-02	
12	12	9	-4.01439	-1.2839	9	9	11	-0.179195	-2.86E-01	
12	12	13	1.89218	0.59386	9	9	10	0.316618	0.145397	
13	13	11	1.46017	0.459604	10	6	10	0.113266	0.00809595	
13	12	13	1.89218	0.59386	10	9	10	0.316618	0.145397	
					10	10	20	0.0886135	0.0252389	
					10	10	17	0.0545927	0.0261477	
					10	10	21	0.157434	0.0931937	
					10	10	22	0.0756292	0.0409909	
					11	9	11	-0.179195	-0.285745	
					12	4	12	0.276134	-0.0451944	
					12	12	13	-0.168952	-0.357845	

	13BUS System					30BUS System				
NA	Node -i	Node - j	pij	qij	NA	Node-i	Node-j	p _{ii}	q _{ii}	
					12	12	14	0.0794531	0.0285367	
					12	12	15	0.179044	0.0856797	
					12	12	16	0.0714446	0.0520546	
					13	12	13	-0.168952	-0.357845	
					14	12	14	0.0794531	0.0285367	
					14	14	15	0.0166392	0.0108046	
					15	12	15	0.179044	0.0856797	
					15	14	15	0.0166392	0.0108046	
					15	15	18	0.0598374	0.0277604	
					15	15	23	0.0510092	0.0383417	
					16	12	16	0.0714446	0.0520546	
					16	16	17	0.0359018	0.0329218	
					17	16	17	0.0359018	0.0329218	
					17	10	17	0.0545927	0.0261477	
					18	15	18	0.0598374	0.0277604	
					18	18	19	0.02728	0.0176657	
					19	18	19	0.02728	0.0176657	
					19	19	20	-0.0676561	-0.0161366	
					20	19	20	-0.0676561	-0.0161366	
					20	10	20	0.0886135	0.0252389	
					21	10	21	0.157434	0.0931937	
					21	21	22	-0.0202004	-0.0241708	
					22	10	22	0.0756292	0.0409909	
					22	21	22	-0.0202004	-0.0241708	
					22	22	24	0.0565438	0.0189744	
					23	15	23	0.0510092	0.0383417	
					23	23	24	0.0185591	0.021467	
					24	22	24	0.0565438	0.0189744	
					24	23	24	0.0185591	0.021467	
					24	24	25	-0.0125724	-0.0276312	
					25	24	25	-0.0125724	-0.0276312	
					25	25	26	0.0354161	0.0236078	
					25	25	27	-0.0481832	-0.0515615	
					26	25	26	0.0354161	0.0236078	
					27	25	27	-0.0481832	-0.0515615	
					27	28	27	0.174	-0.0169484	
					27	27	29	0.0619027	0.0166509	
					27	27	30	0.070957	0.0166505	
					28	28	27	0.174	-0.0169484	
					28	8	28	0.043405	0.00177545	
					28	6	28	0.138712	0.0431573	
					29	27	29	0.0619027	0.0166509	
					29	29	30	0.0370854	0.0061221	
					30	27	30	0.070957	0.0166505	
					30	29	30	0.0370854	0.0061221	

Uduna and Kamath	RIMCS	5/4	()· 525-537	2015	· Article no	RIMCS 2015 0	38
$\bigcirc aupa ana \Lambda amain,$	DJMCS,	214	·J. J2J-JJ/,	2015.	, Arncie no.	.DJMCS.2015.0.	0

Note: - The line measurements and vi, ôi are duplicated at the node-area but for ISE it is not necessary.

Transformer Number	Between Buses	Tap Setting
1	6 - 9	1.0155
2	6 - 10	0.9629
3	4 -12	1.0129
4	28 - 27	0.9581

TABLE 2.1.5: TRANSFORMER DATA FOR 30 BUS SYSTEM

TABLE 2.1.6: SHUNT CAPACITOR DATA FOR 30 BUS SYSTEM

Bus Number	Susceptance
10	0.19
24	0.04

© 2015 Udupa and Kamath; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=728&id=6&aid=6920