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Abstract

We study the existence of positive solutions of a sysiehigher-order nonlinear differential

equations subject to multi-point boundary conditions, whegenthnlinearities do not possess

any sublinear or superlinear growth conditions and mayirtgrilar. In the proof of the mai

results, we use the Guo-Krasnosel'skii fixed point theorem.

Keywords:Higher-order differential system, singular equations, mpdtint boundary conditions,
positive solutions.

1 Introduction

We consider the system of higher-order singular ordinaryrdiffeal equations

(5): {u(n)(t) +f(tv®) =0, te (0D,

v () + g(t,u(t)) =0, t€(0,T),
with the multi-point boundary conditions

(BO): {”(0)= Pau(€), uw'(0) = =uP0) =0, ul) =3, bu,),

v(0) = ¥_; cv((y), v'(0) = =v™2(0) =0, v(T) =3\, dv(p),
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wheren, m €N, n, m> 2, p,q,r,l € N. In the case = 2 orm = 2 the above conditions are
of the form w(0) =¥V, au(§), u(T) =Xl bu(m), or v(0) =X, cv((), v(T)=
. d;v(p;), respectively, that is without conditions on the derivatiotu andv in the point0.

We present some weaker assumptionsfamdg, which do not possess any sublinear or
superlinear growth conditions and may be singulat -at0 and/ort = T, such that positive
solutions for probleniS) — (BC) exist. By a positive solution ¢&) — (BC), we understand a
pair  of functions (u,v) € (C([0,T];R,) N C™((0,7))) x (C([0,T]; R,) n €™((0,T)))
satisfying (S) and (BC) with sup.cporju(t) > 0, supeeporv(t) > 0. This problem is a
generalization of the problem studied in [1], wheréRG) we havea; = 0 for alli = 1, ...,p and

c; =0foralli =1,..,r (denoted byBC)).

The systen(S) withn = m = 2 and the boundary conditiong0) = 0, u(T) = X"7%bu(&),
v(0) =0, v(T) = Y2 c;v(n;) has been investigated in [2]. In [3], the authors studkesl
existence of positive solutions for systélf) with n = m = 2 and the boundary conditions
u(0) =0, u(1) = au(n), v(0) =0,v(1) = av(n) with n € (0,1),0 < an <1 (T =1).In [4],
we investigated the existence and multiplicity of pesitsolutions for systerfs) wheref andg
are nonsingular functions and the boundary condit((ﬁs). The particular case df) with
n=m=2,T =1 and boundary conditions which contain only one intermediate pais been
studied in [5]. We also mention the paper [6], where the asitlged the fixed point index theory
to prove the existence of positive solutions for the syg®mwith £(t,v(t)) andg(t,u(t))
replaced byc(t)f (u(t),v(t)) and d(t)g(u(t),v(t)), respectively, (withf and § singular
functions) and(BC) where% S <M <-<ng <1, ;s pL<p<-<p <1(T=1).
Some multi-point boundary value problems for systems of argidifferential equations which
involve positive eigenvalues were studied in recent years ibg tise Guo-Krasnosel'skii fixed
point theorem. Namely, in [7], the authors give suéfiti conditions ford,u, f andg (f,g
nonsingular functions) such that the system

s,): {u(”)(t) +2a®)f (u),v@®) =0, te(0,T),
v v (£) + ub(H)gu(®), v(£)) =0, t € (0,T),

with the boundary condition&(C) has positive solutions. The systéfy) with the boundary
conditions (BC) has been studied in [8]. The systésp) withn = m = 2 and the multi-point

boundary conditiongu(0) — fu'(0) = 0, u(T) = ¥-7 a;u(§), yv(0) — 6v'(0) = 0, v(T) =
Z?;f b;v(n;), has been investigated in [9]. Some particular casdbeofabove problems have
been studied in [10-14].

In the last decades, nonlocal boundary value problems (ingludinti-point boundary value

problems) for ordinary differential or difference equatiegstems have become a rapidly
growing area of research. Several phenomena in engineeringicpland life sciences can be
modeled in this way. These problems have been studiedadmy muthors by using different
methods, such as fixed point theorems in cones, the Lerau@eh continuation theorem,
nonlinear alternatives of Leray-Schauder and coincielelegree theory.

In Section 2, we present some auxiliary results which investigat boundary value problems for
higher-order equations. In Section 3, we prove two existeswmaéts for the positive solutions with
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respect to a cone for our probléf) — (BC), which are based on the Guo-Krasnosel'skii fixed
point theorem (see [15]) which is presented below.

Theorem 1. LetX be a Banach space and Ietc X be a cone irk. Assumeg?; and{2, are
bounded open subsets &f with 0€ 2, c 2, €, and letA:CN (2, \2,)—>C be a
completely continuous operator such that, either

D) lAull < llull, u € € nan,, and||Aull = |lull, u € C N dR,, or
i) |lAu|| = lull, u € C NN, and||Au|| < ||lull, u € C nan,.

ThenA has a fixed point i€ N (2, \ £2,).

2 Auxiliary Results

In this section, we present some auxiliary results frojrafid [16] related to the following -
order differential equation with multi-point boundary conditions

u™() +y(t) =0, te(0,7), (2.1)
u(0) = X_, au(§), w'(0) = =u™2(0) =0, u(T)=3L,bu), (2.2)
where n EN,n>2 pqeN. If n=2 , the condition (2.2) has the form
u(0) = X_; q;u(§), u(l) =X, bu®y).
Lemma 2.1 ([7]) If A= (1—-X0 b)Y a;& +(1 =30 a) (Tt - b 1) # 0,

0<& << <T,0<n, <<y <T andy € €([0,T]), then the soluuon of2.1) —
(2.2) is given by

+ (1 - ZP (n — 1)' U (T —s)" Yy(s)ds — ) bifo (m; — S)n_13’(5)d5]}
+A%{(Z;a" l'n_l =D Uo (T =)™ y(s)ds - Zq 2 fom(m - S)n_ly“)ds]

i _ n-1
—(Tn—l— ! blnl f €i—s) (s)ds}. (2.3)

i= (-1

Lemma 2.2 ([7]) Under the assumptions of Lemma 2.1, the Green's fumdtr the boundary
value problen(2.1) — (2.2) is given by

G.(t,s) = g.(t,s)

+ Ail [(Tn—l —tn-1) (1 - ijlbi) + Zj:1bi(Tn_1 _ U?_l)] ijlai%(fi:s)
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+Ail[tn-1(1 - a)ty a Y bens), GoelTIx0T, @4

where

1 YT -l T 1t —s)"1 0<s<t<T,
91(t:9) = ¢ { T =s) (t—s) (2.5)

n—1)!Tn1 YT —s)"L, 0<t<s<T.

By usingG,, the solutionu of problem(2.1) — (2.2) given by(2.3) can be written ag(t) =
fOT G, (t,s)y(s)ds.

Lemma 2.3 ([16]; see also [4]) The functiory, given by(2.5) has the properties

a) g.:[0,T] x[0,T] » R, is a continuous function andgy,(t,s) =0 for all (¢,s) €
[0,T] % [0,T].

b) g.1(t,s) < g1(6:(s),s), forall (t,s) € [0,T] x [0, T].

n-—1
c) Foranyc € (0,T/2), we havemingercr_c) g1(t,5) = % g1(64(s),s), for all

s €[0,T],
;n__l, s €(0,T],
whered, (s) = s if n = 2 and6,(s) = { -(1-5)"" if n>3.
T(n-2) s=0
n-1 '’ !

Lemma 24 ([7]) Ifa; =0 for all i=1,..,p, ¥'_,a;<1,andb; >0 for all i=1,..,q,

le bi<1,0<é < <& <T,0<n < <ny<T, then the Green's functia® of the
problem(2.1) — (2.2) (given by(2.4)) is continuous o0, T] x [0, T] and satisfiesG, (t,s) = 0
for all (¢t,s) € [0,T] x [0, T]. Moreover, ify € C([0,T]) satisfiesy(t) = 0 for all t € [0, T], then
the unique solutiom of problem(2.1) — (2.2) satisfiesu(t) = 0 for all ¢ € [0, T].

Lemma 2.5 ([7]) Assume that; >0 for all i=1,..,p, ¥} ,a; <1,andb; >0 for all i=

Lo, Xl b <1,0<& < <& <T,0<n, <-<n,<T.Then the Green's functigh
of the problen{2.1) — (2.2) satisfies the inequalities

a) G,(t,s) < J,(s), V(t,s)€[0,T]x[0,T], where

1 q q
1) = 1(65(5),5) +A—1[T“-1(1 ‘Z,-:lbf) +), b —n?‘l)] x

P 1 P p q
E . . —|Tn-1 — E . § gn-1 E . .
X i=1algl(€l's) + A1 [T (1 =1 aj) + iz alfl ] i=1btgl(77us)- (2-6)
b) For everyc € (0,T/2), we have

i > > ' |
te{g%rlc] G,(t,s) = y1J1(s) =y, G,(t,s), Vt,s €[0,T], 2.7)
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wherey; = ¢ 1/T"" 1,

Lemma 2.6 ([7]) Assume that; >0 for all i=1,..,p, ¥/ a; <1,andb; >0 for all i=
Lu,q Xl bi<1l 0<&E<-<&<T,0<n<-<n,<T, c€(0,T/2) and y€
c([0,TD, y(t) = 0 for all t € [0,T]. Then the solution(t), t € [0,T] of problem(2.1) — (2.2)
satisfies the inequalityninepe r—c) u(t) = y3 maxpegor u(t).
We can also formulate similar results as Lemmag&labove for the boundary value problem
v () +h(t) =0, t€(0,T), (2.8)
v(0) = Xio; qv(), v'(0) = =v™D(0) =0, v(T) = Xi_,d;v(py), (2.9)
where0 < {; << <T,¢g=0for ali=1,..,r, 0<p; <+ <p, <T,d; =0 for all
i=1,..,landh € C([0,T]). We denote by,,v,, 9., 6., G, and/, the corresponding constants

and functions for the problef2.8) — (2.9) defined in a similar manner Aas,y;, g, 61, G; and
J1, respectively.

3 Main Results

In this section, we investigate the existence of posietions for our problerS) — (BC),
under various assumptions on singular functiprsidg.

We present the assumptions that we shall use in thelseque

(H) 0<& << <T, q;=0foral i=1,..,p, ¥ ,a,<1, 0<n <--<n,<T,
by=0for all i=1,.,q X, b<1 0<{ << <T, ¢=0foral i=1,..,r
Y <1,0<p <-<p <T,d;=0forall i=1,..,,Y¥_,d; <1

(H,) The functions f,g € C((0,T) X R,,R,) and there existp; € C((0,T),R,), gq; €
C(R,, Ry, i=1,2 with0 < [ p; ()dt <o, i = 1,2, ¢,(0) = 0, q,(0) = 0 such that

flt,x) <p (g (x), gt,x) <p,(H)q,(x), Vte (0,T), x€R,.
(H3) There existy, r, € (0,0) with r;r, = 1 such that

i) qfo = limsup,_o+ & € [0,0); i) g5 = limsup,_o+ 22 = 0.

(H,) There existy, I, € (0,0) with [;1, = 1 andc € (0,T/2) such that

f&x)

xl

) fl=liminf,_., infeerer-c)—7 € (0,0]; ii) gL = liminf, infeeper-c) girl:)
(Hs) There existy;, a, € (0,0) with a; @, < 1 such that

D ¢, = limsup,_, qlz) € [0,0); ii) ¢S5, = limsup,_,., qzi:) 0.

464



British Journal of Mathematics & Computer Scien¢#)4460-473, 2014

(Hg) There exisB,, B, € (0,0) with 3,8, < 1 andc € (0,T/2) such that

N p o Tes . F(tx) I . (%)
i) fo = liminf,_+ mfte[C,T_C]x—g € (0,]; ii) go = liminf,_ o+ infrepcr_g) ng’; =

The pair of functiongu,v) € (C([0,T]) n €™((0,T))) % (C([0,T]) n ¢™((0,T))) is a solution

for our problem(S) — (BC) if and only if (u,v) € C([0,T]) x C([0,T]) is a solution for the
nonlinear integral equations

Iu(t) = fTGl(t, s)f(s,v(s))ds, te[0,T],
0

r 3.1)
|v(©) = j G, (6,)g(s,u(s))ds, ¢ € [0,T].
0
The systen(3.1) can be written as the nonlinear integral system
T T
(u(t) =f G.(t,s)f <sf G,(s,1)g (7, u(1)) d‘[) ds, t€[0,T],
{ 0 0 (3.2)

| v (t) = j 6,6 9)g(5,u())ds, t € [0,7].
0

We consider the Banach spate= C([0,T]) with supremum nornfiul| = supejo,r) [u(t)| and
define the conePc X by P={ueX, u(t) =0, vte€[0,T]}. For anyr >0, let B, =
{ue c(0,TD, llull <r}anddB, = {u € C([0,T]), llull =r}.

We also define the operatgt: P — X by

T T
(Aw)() = J G,(t,s)f (S,J G,(s,1)g(t,u(t)) dT)) ds, t €[0,T]. 3.3)
0 0
Lemma 3.1 Assume thatH,) — (H,) hold. ThenA: P - P is completely continuous.

Proof. We denotex = fOT]1(s)p1(s) ds andp = fosz(s)pz(s) ds. Using (H,), we deduce that

0<a<wandd < f <o By Lemma 2.4 and the corresponding lemmagGigrwe get thatd
mapsP into P.

We shall prove tha#d maps bounded sets into relatively compact sets. Sugpcs® is an

arbitrary bounded set. First we prove ti&tD) is a bounded set. Becaudes bounded, then
there existsM; > 0 such that||u|| < M, for all u € D. By the continuity ofg,, there exists
M, > 0 such thatM, = supyejo,m,] 42(x). By using Lemma 2.5 fot,, for anyu € D and

s € [0,T], we obtain

T T
f G,(5,Dg(z,u(®) dr < f 625, D2 (D) 42 (u(r)) dr < BM,. 3.4)
0 0
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Becausey, is continuous, there exisk$; > 0 such thaM; = supyejo,pm,) 91 (x). Therefore, from
(3.4), (H,) and Lemma 2.5, we deduce

T

T
(Au)(t) < j G, (t, s)p1()qx <] G, (s, T)g(‘[,u(‘[))d‘[) ds

< Mj f T]1(s)p1(s)ds =aM;, Vtel0,T]. (3.5)
0

So,||Aul| < aM; for allu € D. ThereforeA(D) is bounded.

In what follows, we shall prove tha4(D) is equicontinuous. By using Lemma 2.2, for all
t € [0,T], we have

L S et
x Z”l a9 (605 + 5 [tn-l (1- Z;ai) Z ] Z bugs ()}
Xf(s, fOTGZ(S,T)g(T,u(T)) dT) ds = Wfo ("1 (T — syt
—Ti(e - s)n Y f (s. j 6,65, 19 (5 u() dr) ds + ﬁ j "1 — syt x
x f (s, foTGz(s, Dg(r,u(®) dT) ds + Ail [t ey (1 Z;bf)

+2j:1bi(T"_1 - 71?_1)] 2; a; jTgl(Sei;S)f <5:jTGz(5, 1)g(7,u(1)) dT) ds
1
) T i)
< ] o (s [ 6.5 95 u) i) as 36)

Therefore, we obtain

tyn—2 T — n—l_Tn—l _ n-2 T
o= * T f(s, [ 66599z u) dr) ds

f t:nz_(TZ)' Tzln 11f< ITGZ(S, 7)g(7,u(7)) dr) ds + A_11 [—(n — 1)tn2 (1 _ Z;bi)] %

x zi:l a fo 9109 f <s, fOTGZ (s,0)9(7, (1)) dT) ds + Ail [(n — 1)z (1 - z;ai)] x

q T T
X Zi:lbi.fo RGN (sfo G,(s,7)g(t,u(r)) d‘[) ds, vte(0,T). 3.7)

So, for anyt € (0,T), we deduce
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tgn=2(7 _ yn-1 4 Tn-1(p —
s [ P
0

A D (s) (fTG( Yg( )d)d
)|Tn 1 p1ls)qs . 208, T)9 T,u(‘[) T S

S)n—Z T
p1(s)qq (f G,(s, 1) g (T, u(r)) dT) ds
0

¢ (n—
-1 n-2 T
+%(1 DB f 91 P () ( [ 665,09 ue dr) ds
i= 1= 0 0
-1 tn—Z D q T T
PO 1= @)Y b [ mmomea ([ G neu) a) as
tgn=2(T _ gyn-1 4 Tn-1cf _ )12 T gn-2(T _ gyn-1
< M, <f T 5(31 — 2-;' Tn—1(t $) p.(s) ds + %pl(s) ds
0 ' t :
(n—1)t"2 a P T (n—1)t"2 P
+—A1 (1 - zizlbi) Zi:l aifo 91§, 5)p1(s) ds + —41 (1 - Zi:lai) X
q T
X Zi:l bifo 91(Mi, $)p1(s) dS) : (3.8)
We denote
tpn—2,m _ n-1 n-1/p _ \n-2 T n—2,p _ n-1
h(t) =f a 21 — 2-;7;,11_1(1: 5) pi(s) ds + %pl(s) ds, (3.9)
0 : t :
(TL _ )tn—z q
KO = k() + T(l Y)Y af aGone s

-1 n-2
+%( o Z fg1(m,5)p1(s)ds te(0,7). (3.10)

For the integral of the functioly by exchanging the order of integration, we obtain afteresom
computations

r T (T —s)"t (TP — s TP ()T — )"
fo h(t)dt = ) (n—2)!T”‘1< n—1 >P1(s) dS"r‘fO st

JT (T _ S)n—lsn—l
, (-t

2 T
(s)ds = mjo (T = s)" 1p,(s) ds < oo. (3.11)

For the integral of the functiom, we have

n—-1

f (T —s)" 1p,(s) ds + TA

fTu(t) dt <

(=2

"= 1 P T
Y af a@oonoar (1= @)Y n [ aGooneas

s<n_:)!(2+T;j<1—z;bi><z;af>+%?<1—2?=1af><21ﬁ>)x

1)'
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T
X f (T =) 1p,(s) ds < . (3.12)
0

We deduce that € L1(0,T). Thus for any givem,, t, € [0,1] with t; < t, andu € D, by (3.8),
we obtain

t

[(Aw)(t1) = (Aw)(t)] = 2(v‘lu)’(t)dt

< M, ftzu(t) dt. (3.13)
t

t1 1

From (3.12), (3.13) and absolute continuity of the integral function, we obtair #h@D) is
equicontinuous. This conclusion together wistb) and Ascoli-Arzela theorem yields th#t(D)
is relatively compact. Therefoed is a compact operator.

By using similar arguments as those used in the proof ofiaeth4 from [3], we can show that
A is continuous o®. ThereforeA: P — P is completely continuous. ]

Forc € (0,T/2), we define the cone
Py, = {u €X, u(t)=0, vte[0,T], min u(t) = yIIuII}, (3.14)
t€[c,T—c]

wherey = min{y,,y,}, y, andy, are given in Section 2. Under the assumpti@hg, (H,), we
haveA(P) c P,. Indeed, foru € P, letv = A(u). By Lemma 2.6, we hav@in.e[cr_¢ v(t) =
vallvll = yllvll, thatis v € P,.

Theorem 3.1 Assume thatH,) — (H,) hold. Then the probler(s) — (BC) has at least one
positive solutior(u(t),v(t)), t € [0,T].

Proof. We consider the con@ with ¢ given in(H,). From (H;) i) and(H,), we deduce that
there existg’; > 0 such that

q1(x) < C;x™, Yxe€[0,1]. (3.15)

From (H,) ii) and (H,), for C, = min {(1/(6101[371))1/“, 1/[5’} > 0 with @, 8 defined in the
proof of Lemma 3.1, we conclude that there exdste (0,1) such that

q2(x) < C,x™, Yx €[0,6]. (3.16)

From(3.16), (H;) and Lemma 2.5, for any € dBs, N P, ands € [0, T], we obtain

T T
[ G6.0a(uu@) dr < ¢, [ L@@ dr el = 685 <67 <1 (317)
0 0

By using (3.15) — (3.17) and(H,), for anyu € dB5, n P, andt € [0, T], we get
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T

T T
(Auw)(t) < C1J G1(t,s)p.(s) <] G, (s, T)g(‘r,u(‘r))d‘r) ds
T ° T ° 1
= C1f G1(t, s)pi(s) (sz G2 (s, Dp2 (D) (1)) dT) ds
0 0
T T T
< C1f J1(s)p1(s)ds '(sz ]z(T)Pz(T)dT> ™z < full. (3.18)
0 0
Therefore
[lAu|l < [lull, Vu € dBs, NP, (3.19)

From(H,) i), we deduce that there exi&t > 0 andx; > 0 such that

ft,x) = Cx", Vx=>x, Vtel[cT—cl (3.20)

-1/l
We consider now C, = max{(yzylzez)‘l, (Csyiyityhtze,0)) /1} >0, where 6, =

[ Ji(s)ds > 0 and @, = [[“J,(s)ds > 0. From (H,) ii), we conclude that there exists
X, = 1 such that

g(t,x) = Cox'2, Vx> x,, vtel[T—cl (3.21)

Now we choos&, = max{x;, x,} andR > max {Ro/y,R;/lz}. Then for any € B, N Py, we
havemin;er_q u(t) = yllull = yR > R,.

By using(3.20) and(3.21), for anyu € dB; N P, ands € [¢, T — c], we obtain

T T—c
_[GA&tM(LuﬁDdTZVﬂhf 1@ (@) dr
0 c

T—c
Zn@wf L@ dr - llull = fJull’2 = Rz > R,. (3.22)
c

Then for anyu € Bz N P, andt € [c, T — c], we have

T-c T
(Aw)(t) = j G.(t,s)f <SJ G, (s, T)g(‘r,u(‘r))d‘r) ds

T—c T—c . I
= (5 J G1(t: s) <Vz J J2 (‘[)C4(u(‘[)) sz> ds
l

T—c T—c 1
> C5C'ry! f G1(t, )y "2 lul "2 ( j ]z(T)dT) ds
CT—C T—c ¢ 21
> (3,7, y1y"e < ]1(S)d5>< ]z(T)dT) llull'2 = lull. (3.23)
c c

Therefore we deduce
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lAull > llull,  Vu€aBg NP, (3.24)

By (3.19), (3.24) and Theorem 1.1 i), we obtain thdthas a fixed point, € (Bg \ Bs,) N Py,
that is §; < llull < R. Let v, (t) = [ G,(t,5)g(s,u,(s))ds. Then (u;,v,) EPy x Py is @
solution of (§) — (BC). In addition||v,|| > 0. Indeed, if we suppose that(t) =0 for all
t € [0,T], then by usindH,) we havef(s,v,(s)) = f(s,0) = 0 for all s € [0, T]. This implies
u,(t) = 0 for all t € [0, T], which contradict§|u,|| > 0. By using Theorem 1.1 from [17] (see

also [18]), we obtaim, (t) > 0 andv,(t) > 0 for allt € (0, T — c]. The proof of Theorem 3.1 is
completed. =

Theorem 3.2 Assume thafH,), (H,), (Hs) and(H,) hold. Then the probleifs) — (BC) has at
least one positive solutidn(t), v(t)), t € [0, T].

Proof. We consider the coni, with ¢ given in(Hg). By (Hs) i) we deduce that there exist
Cs > 0 andC4 > 0 such that

q1(x) < Csx% + C4, V x € [0, ). (3.25)

From (Hs) ii), for €, > 0, €, < (2%1Csaf*)~Y%1, we conclude that there exists > 0 such
that

q2(x) < €px%2 4+ C;, V x € [0,). (3.26)

By using(3.25), (3.26) and(H,), for anyu € P,, we obtain

T

(Auw)(t) < f

0

T
G (t, s)p1(s)qs <f G, (s, T)Q(T'H(T))d'[> ds
T T ° a T
<G [ G ( [ 6. r)g(r,u@))dr) ds +Co [ (sIpa()ds
0 r 0 r @ 0
< Csf J1($)p1(s)ds <f ]z(r)pz(r)dr) (€ollull® + C7)** + aCy
0 0
< Cs2% €yt af % ||lul|*1%2 + Cs2%1aB*1C;* + aCq, YV t € [0,T]. (3.27)
By definition ofe,, we can choose sufficiently largg > 0 such that
[lAull < lull, Vu € 0B, N P,. (3.28)

From(Hy) i), we deduce that there exist positive constégts 0 andx; > 0 such thaif (t,x) =
CexPr,  for al  x€[0,xs5] and te€[c,T—c] From  (Hg)ii), for

= (CoyryLryPibe0,08) /7 lude that there exi h th >
€1 = (Cayrys 'yPrP20,00") > 0, we conclude that there exists > 0 such thatg(t, x) >
e, x%2 for all x € [0,x,] andt € [¢,T — c].

We considerxs = min{x;, x,}. So we obtain

ft,x) = CexPr,  gt,x)=exP2, Vv (t,x)€[c,T—c]x[0,xs]. (3.29)
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From assumptiomg,(0) = 0 and the continuity of,, we deduce that there exists sufficiently
smalle, € (0, min{xs, 1}) such thaty, (x) < p~1x. for all x € [0, &,].

Therefore for any € 9B, N P, ands € [0, T], we have

[ G5 0g(ru) dr < 7% [ @@ = x5 (330)
0 0

By (3.29), (3.30), Lemma 2.5 and Lemma 2.6, for an¢ [c, T — c], we get

T-c

T—c B1
(Aw)(t) = ng G,(t,s) <j G, (s, T)g(‘r,u(r))d‘r) ds

T—c T—c B1
= (g1 -[- J1(s) [(51)’2)'81 <fc ]Z(T)(u('f))ﬁzd'[) ] ds
> Coyryd ey 120,05 ull PP = Jlull, (331)
Therefore
[lAull = |ull, VYu € dB., NP, (3.32)

By (3.28), (3.32) and Theorem 1.1 ii), we deduce thdthas at least one fixed poinj €
(ERl \ Bez) N P,. Then our problendS) — (BC) has at least one positive solutian, v,) € P, X

P, wherev, (t) = fOT G, (t,5)g(s,u,(s))ds. The proof of Theorem 3.2 is completed.

4 Conclusions

We presented sufficient conditions on the functions (possibly singfilandg such that the
problem(S) — (BC) has positive solutions.
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