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Abstract 
 
We study the existence of positive solutions of a system of higher-order nonlinear differential 
equations subject to multi-point boundary conditions, where the nonlinearities do not possess 
any sublinear or superlinear growth conditions and may be singular. In the proof of the main 
results, we use the Guo-Krasnosel'skii fixed point theorem. 

Keywords: Higher-order differential system, singular equations, multi-point boundary conditions, 
positive solutions. 

 

1 Introduction 
 
We consider the system of higher-order singular ordinary differential equations 
 

 ���:                                  � �����	� + ��	, ��	�� = 0,   	 ∈ �0, ��,�����	� + ��	, ��	�� = 0,   	 ∈ �0, ��,� 
 
with the multi-point boundary conditions 
 

 ����:             ���0� = ∑ �������,   �′�0� = ⋯ = �������0� = 0,    ���� = ∑  ���!��,"�#$%�#$��0� = ∑ &���'��,   �′�0� = ⋯ = �������0� = 0,    ���� = ∑ (���)��,*�#$+�#$ �  
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where ,, - ∈ ℕ, ,, - ≥ 2, 1, 2, 3, 4 ∈ ℕ.  In the case , = 2 or - = 2 the above conditions are 
of the form ��0� = ∑ �������,   ���� = ∑  ���!��,"�#$%�#$  or ��0� = ∑ &���'��,   ���� =+�#$∑ (���)��,*�#$  respectively, that is without conditions on the derivatives of � and � in the point 0. 
 
We present some weaker assumptions on �  and � , which do not possess any sublinear or 
superlinear growth conditions and may be singular at 	 = 0  and/or 	 = � , such that positive 
solutions for problem ��� − ���� exist. By a positive solution of ��� − ����, we understand a 
pair of functions ��, �� ∈ ���70, �8; ℝ;� ∩ ����0, ���� × ���70, �8; ℝ;� ∩ ����0, ���� 
satisfying ���  and (���  with supA∈7B,C8 ��	� > 0 , supA∈7B,C8 ��	� > 0 . This problem is a 
generalization of the problem studied in [1], where in ���� we have �� = 0 for all E = 1, … , 1 and &� = 0 for all E = 1, … , 3 (denoted by ���H �). 
 
The system ��� with , = - = 2 and the boundary conditions ��0� = 0, ���� = ∑  ������,����#$     ��0� = 0, ���� = ∑ &���!������#$  has been investigated in [2]. In [3], the authors studied the 
existence of positive solutions for system ���  with , = - = 2  and the boundary conditions ��0� = 0, ��1� = I��!�, ��0� = 0, ��1� = I��!�  with  ! ∈ �0,1�, 0 < I! < 1 �� = 1�. In [4], 
we investigated the existence and multiplicity of positive solutions for system ��� where � and � 
are nonsingular functions and the boundary conditions ���H �.  The particular case of ��� with , = - = 2, � = 1 and boundary conditions which contain only one intermediate point has been 
studied in [5]. We also mention the paper [6], where the authors used the fixed point index theory 
to prove the existence of positive solutions for the system ���  with ��	, ��	�� and ��	, ��	�� 
replaced by &�	��K���	�, ��	��  and (�	��L���	�, ��	�� , respectively, (with �K  and �L  singular 

functions) and ���H �   where 
$� ≤ !$ < !� < ⋯ < !" < 1, $� ≤ )$ < )� < ⋯ < )* < 1  �� = 1�.  

Some multi-point boundary value problems for systems of ordinary differential equations which 
involve positive eigenvalues were studied in recent years by using the Guo-Krasnosel'skii fixed 
point theorem. Namely, in [7], the authors give sufficient conditions for N, O, �  and �  (�, � 
nonsingular functions) such that the system 
 

 ��$�:                              � �����	� + N��	�����	�, ��	�� = 0,   	 ∈ �0, ��,�����	� + O �	�����	�, ��	�� = 0,   	 ∈ �0, ��,� 
 
with the boundary conditions ���� has positive solutions. The system ��$� with the boundary 
conditions  ���H � has been studied in [8]. The system ��$� with , = - = 2 and the multi-point 

boundary conditions I��0� − P�′�0� = 0,   ���� = ∑ �������, Q��0� − R�′�0� = 0,   ���� =%���#$∑  ���!��,"���#$   has been investigated in [9]. Some particular cases of the above problems have 
been studied in [10-14]. 
 
In the last decades, nonlocal boundary value problems (including multi-point boundary value 
problems) for ordinary differential or difference equations/systems have become a rapidly 
growing area of research. Several phenomena in engineering, physics and life sciences can be 
modeled in this way. These problems have been studied by many authors by using different 
methods, such as fixed point theorems in cones, the Leray-Schauder continuation theorem, 
nonlinear alternatives of Leray-Schauder and coincidence degree theory. 
 
In Section 2, we present some auxiliary results which investigate two boundary value problems for 
higher-order equations. In Section 3, we prove two existence results for the positive solutions with 
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respect to a cone for our problem ��� − ����, which are based on the Guo-Krasnosel'skii fixed 
point theorem (see [15]) which is presented below. 
 
Theorem 1. Let S  be a Banach space and let � ⊂ S  be a cone in S . Assume U$  and U�  are 
bounded open subsets of S  with 0 ∈ U$ ⊂  U$VVVV ⊂ U�  and let W: � ∩ �U�VVVV ∖ U$� → �  be a 
completely continuous operator such that, either 
 
    i) ‖W�‖ ≤ ‖�‖, � ∈ � ∩ [U$, and ‖W�‖ ≥ ‖�‖, � ∈ � ∩ [U�, or  
    ii) ‖W�‖ ≥ ‖�‖, � ∈ � ∩ [U$, and ‖W�‖ ≤ ‖�‖, � ∈ � ∩ [U�. 
 
Then W has a fixed point in � ∩ �U�VVVV ∖ U$�. 
 

2 Auxiliary Results 
 
In this section, we present some auxiliary results from [7] and [16] related to the following , -
order differential equation with multi-point boundary conditions 

                      �����	� + \�	� = 0,    	 ∈ �0, ��,                                                                                                       �2.1� 
         ��0� = ∑ �������,   �′�0� = ⋯ = �������0� = 0,    ���� = ∑  ���!��,"�#$%�#$                         �2.2� 

 
where , ∈ ℕ, , ≥ 2, 1, 2 ∈ ℕ.  If , = 2 , the condition �2.2�  has the form ��0� = ∑ �������,   ���� = ∑  ���!��."�#$%�#$  
 
Lemma 2.1 ([7]) If ∆$= �1 − ∑  �"�#$ � ∑ ������$%�#$ + �1 − ∑ ��%�#$ �����$ − ∑  �!���$"�#$ � ≠ 0, 0 < �$ < ⋯ < �% < � , 0 < !$ < ⋯ < !" < �  and \ ∈ ��70, �8�,  then the solution of �2.1� −�2.2� is given by 
 ��	� = − _ �	 − `���$�, − 1�! \�`�(`A

B + 	��$∆$ �b1 − c  �"
�#$ d c �� _ ��� − `���$�, − 1�!ef

B
%
�#$ � \�`�(` 

+ �b1 − c ��%
�#$ d 1�, − 1�! g_ �� − `���$\�`�(`C

B − c  � _ �!� − `���$\�`�(`hf
B

"
�#$ ij 

     + 1∆$ �bc ������$%
�#$ d 1�, − 1�! g_ �� − `���$\�`�(` − c  � _ �!� − `���$\�`�(`hf

B
"
�#$

C
B i� 

�            − b���$ − c  �!���$"
�#$ d c �� _ ��� − `���$�, − 1�!ef

B
%
�#$ \�`�(`j.                       �2.3� 

     
Lemma 2.2 ([7]) Under the assumptions of Lemma 2.1, the Green's function for the boundary 
value problem �2.1� − �2.2� is given by 
 l$�	, `� = �$�	, `� + 1m$ n����$ − 	��$� b1 − c  �"

�#$ d + c  �����$ − !���$�"
�#$ o c ���$��� , `�%

�#$  
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      + 1m$ n	��$ b1 − c ��%
�#$ d + c ������$%

�#$ o c  ��$�!� , `�"
�#$ ,   �	, `� ∈ 70, �8 × 70, �8,            �2.4� 

 
where 
  �$�	, `� = 1�, − 1�! ���$ q	��$�� − `���$ − ���$�	 − `���$,   0 ≤ ` ≤ 	 ≤ �,	��$�� − `���$,   0 ≤ 	 ≤ ` ≤ �. �             �2.5� 

        
By using l$, the solution �  of problem �2.1� − �2.2� given by �2.3� can be written as ��	� =s l$�	, `�\�`�(`.CB  
 
Lemma 2.3 ([16]; see also [4]) The function  �$ given by �2.5� has the properties 
 

a)  �$: 70, �8 × 70, �8 → ℝ;  is a continuous function and  �$�	, `� ≥ 0  for all �	, `� ∈70, �8 × 70, �8. 
 

b)  �$�	, `� ≤  �$�t$�`�, `�,  for all �	, `� ∈ 70, �8 × 70, �8. 
 

c) For any & ∈ �0, � 2⁄ �, we have  minA∈7y,C�y8 �$�	, `� ≥ yz{|Cz{|  �$�t$�`�, `�,  for all ` ∈ 70, �8, 
where t$�`� = ` if , = 2 and t$�`� = } ~

$��$����z{|z{� ,   ` ∈ �0, �8,
C�������$ ,     ` = 0, �   if  , ≥ 3. 

 
Lemma 2.4 ([7])  If �� ≥ 0  for all  E = 1, … , 1,  ∑ ��%�#$ < 1,  and  � ≥ 0  for all  E = 1, … , 2, ∑  �"�#$ < 1, 0 < �$ < ⋯ < �% < � , 0 < !$ < ⋯ < !" < �, then the Green's function l$  of the 
problem �2.1� − �2.2� (given by �2.4�) is continuous on 70, �8 × 70, �8 and satisfies  l$�	, `� ≥ 0 
for all �	, `� ∈ 70, �8 × 70, �8. Moreover, if \ ∈ ��70, �8� satisfies \�	� ≥ 0 for all 	 ∈ 70, �8, then 
the unique solution � of problem �2.1� − �2.2� satisfies ��	� ≥ 0 for all 	 ∈ 70, �8. 
  
Lemma 2.5 ([7])  Assume that �� ≥ 0 for all  E = 1, … , 1, ∑ ��%�#$ < 1, and  � ≥ 0 for all  E =1, … , 2, ∑  �"�#$ < 1, 0 < �$ < ⋯ < �% < �, 0 < !$ < ⋯ < !" < �. Then the Green's function l$ 
of the problem �2.1� − �2.2� satisfies the inequalities 
 
    a)  l$�	, `� ≤ �$�`�,   ∀ �	, `� ∈ 70, �8 × 70, �8,  where 
 �$�`� =  �$�t$�`�, `� + 1∆$ g���$ �1 − c  �"

�#$ � + c  �����$ − !���$�"
�#$ i × 

               × c ���$���, `�%
�#$ + 1∆$ g���$ �1 − c ��%

�#$ � + c ������$%
�#$ i c  ��$�!� , `�."

�#$          �2.6� 

    
b) For every & ∈ �0, � 2⁄ �,  we have  
   minA∈7y,C�y8  l$�	, `� ≥ Q$�$�`� ≥ Q$ l$�	′, `�,   ∀ 	 ′, ` ∈ 70, �8,                                                           �2.7� 
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where Q$ = &��$ ���$.⁄  
 
Lemma 2.6 ([7] ) Assume that �� ≥ 0 for all  E = 1, … , 1, ∑ ��%�#$ < 1, and  � ≥ 0 for all  E =1, … , 2,  ∑  �"�#$ < 1,  0 < �$ < ⋯ < �% < � , 0 < !$ < ⋯ < !" < �,  & ∈ �0, � 2⁄ �  and \ ∈��70, �8�,  \�	� ≥ 0 for all 	 ∈ 70, �8. Then the solution ��	�, 	 ∈ 70, �8 of problem �2.1� − �2.2� 
satisfies the inequality minA∈7y,C�y8 ��	� ≥ Q$ maxA′∈7B,C8 ��	 ′�. 
 
We can also formulate similar results as Lemmas 2.1-2.6 above for the boundary value problem 

                      �����	� + ℎ�	� = 0,    	 ∈ �0, ��,                                                                                        �2.8� 
              ��0� = ∑ &���'��,   �′�0� = ⋯ = �������0� = 0,    ���� = ∑ (���)��,*�#$+�#$                     �2.9� 

 
where 0 < '$ < ⋯ < '+ < � , c� ≥ 0  for all E = 1, … , 3,  0 < )$ < ⋯ < )* < � , (� ≥ 0  for all  E = 1, … , 4 and ℎ ∈ ��70, �8�.  We denote by ∆�, Q�, ��, t�, l� and �� the corresponding constants 
and functions for the problem �2.8� − �2.9� defined in a similar manner as ∆$, Q$, �$, t$, l$ and �$, respectively.   
 

3 Main Results 
 
In this section, we investigate the existence of positive solutions for our problem ��� − ����, 
under various assumptions on singular functions � and �. 
 
We present the assumptions that we shall use in the sequel 
 ��$�  0 < �$ < ⋯ < �% < �,  �� ≥ 0  for all  E = 1, … , 1,  ∑ ��%�#$ < 1,  0 < !$ < ⋯ < !" < �,  � ≥ 0  for all  E = 1, … , 2,  ∑  �"�#$ < 1,  0 < '$ < ⋯ < '+ < �,  &� ≥ 0  for all  E = 1, … , 3, ∑ &�+�#$ < 1, 0 < )$ < ⋯ < )* < �, (� ≥ 0 for all  E = 1, … , 4, ∑ (�*�#$ < 1. 
 ����  The functions �, � ∈ ���0, �� × ℝ;, ℝ;�  and there exist 1� ∈ ���0, ��, ℝ;�,  2� ∈��ℝ;, ℝ;�, E = 1, 2,  with 0 < s 1�CB �	�(	 < ∞, E = 1, 2, 2$�0� = 0, 2��0� = 0  such that 
 ��	, �� ≤ 1$�	�2$���,   ��	, �� ≤ 1��	�2����,   ∀ 	 ∈ �0, ��,    � ∈ ℝ;.  
 ���� There exist 3$,  3� ∈ �0,∞� with 3$3� ≥ 1 such that 
 

     E�  2$B~ = limsup�→B� "|�����| ∈ 70,∞�;    EE� 2�B~ = limsup�→B� "������� = 0.   
 ���� There exist 4$, 4� ∈ �0,∞� with 4$4� ≥ 1 and & ∈ �0, � 2⁄ � such that 
 

     E�   �∞� = liminf�→∞ infA∈7y,C�y8 ��A,����| ∈ �0,∞8;    EE�  �∞� = liminf�→∞ infA∈7y,C�y8 ��A,����� = ∞. 
 ���� There exist I$,  I� ∈ �0,∞� with I$I� ≤ 1 such that 
 

     E�  2$∞~ = limsup�→∞ "|�����| ∈ 70,∞�;    EE� 2�∞~ = limsup�→∞ "������� = 0.   
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�� � There exist P$, P� ∈ �0,∞� with P$P� ≤ 1 and & ∈ �0, � 2⁄ � such that 
 

     E�   �B� = liminf�→B� infA∈7y,C�y8 ��A,���¡| ∈ �0,∞8;    EE�  �B� = liminf�→B� infA∈7y,C�y8 ��A,���¡� = ∞. 
 
The pair of functions ��, �� ∈ ���70, �8� ∩ ����0, ���� × ���70, �8� ∩ ����0, ���� is a solution 
for our problem ��� − ����  if and only if ��, �� ∈ ��70, �8� × ��70, �8�  is a solution for the 
nonlinear integral equations 
       

 
¢£¤
£¥��	� = _ l$�	, `���`, ��`��(`,   	 ∈ 70, �8,C

B��	� = _ l��	, `���`, ��`��(`,   	 ∈ 70, �8.C
B

�                                                                             �3.1� 

 
The system �3.1�  can be written as the nonlinear integral system 
 

 
¢£¤
£¥��	� = _ l$�	, `�� �`, _ l��`, ¦���C

B ¦, ��¦�� (¦�  (`,   	 ∈ 70, �8,C
B ��	� = _ l��	, `���`, ��`��(`,   	 ∈ 70, �8.C

B
�                                    �3.2� 

 
We consider the Banach space S = ��70, �8� with supremum norm ‖�‖ = supA∈7B,C8 |��	�| and 
define the cone ̈ ⊂ S  by ¨ = ©� ∈ S, ��	� ≥ 0, ∀ 	 ∈ 70, �8ª.  For any 3 > 0 , let �+ =©� ∈ ��70, �8�, ‖�‖ < 3ª and [�+ = ©� ∈ ��70, �8�, ‖�‖ = 3ª. 
 
We also define the operator W: ¨ → S by 
   �W���	� = _ l$�	, `�� �`, _ l��`, ¦���¦, ��¦�� (¦�C

B �  (`, 	 ∈ 70, �8.                                        �3.3�C
B  

 
Lemma 3.1 Assume that ��$� − ���� hold. Then W: ¨ → ¨ is completely continuous. 
 

Proof. We denote I = s �$�`�1$�`� (`CB  and P = s ���`�1��`� (`CB . Using ����, we deduce that 0 < I < ∞ and 0 < P < ∞. By Lemma 2.4 and the corresponding lemma for l�, we get that W 
maps ̈  into ̈ . 
 
We shall prove that W  maps bounded sets into relatively compact sets. Suppose « ⊂ ¨ is an 
arbitrary bounded set. First we prove that W�«� is a bounded set. Because « is bounded, then 
there exists ¬$ > 0  such that ‖�‖ < ¬$  for all � ∈ «.  By the continuity of 2�,  there exists ¬� > 0  such that ¬� = sup�∈7B,|8 2����.  By using Lemma 2.5 for l�,  for any � ∈ «  and ` ∈ 70, �8, we obtain 
      _ l��`, ¦���C

B ¦, ��¦�� (¦ ≤ _ l��`, ¦�1��¦�C
B 2����¦�� (¦ ≤ P¬�.                               �3.4� 
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Because 2$ is continuous, there exists ¬� > 0 such that ¬� = sup�∈7B,®�8 2$���. Therefore, from �3.4�, ���� and Lemma 2.5, we deduce 
 �W���	� ≤ _ l$�	, `�1$�`�2$ �_ l��`, ¦���¦, ��¦��(¦C

B �  (`C
B  

   ≤ ¬� _ �$�`�1$�`�(` = I¬�,   ∀ 	 ∈ 70, �8.                                                                       �3.5�C
B  

 
So, ‖W�‖ ≤ I¬� for all � ∈ «. Therefore W�«� is bounded. 
 
In what follows, we shall prove that W�«�  is equicontinuous. By using Lemma 2.2, for all 	 ∈ 70, �8, we have 
 �W���	� = _ q�$�	, `� + 1m$ n����$ − 	��$� b1 − c  �"

�#$ d + c  �����$ − !���$�"
�#$ o ×�C

B  

�× c ���$��� , `� + 1m$ n	��$ b1 − c ��%
�#$ d + c ������$%

�#$ o c  ��$�!� , `�"
�#$

%
�#$ ¯ × 

× � �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (` = 1�, − 1�! ���$ _ 7	��$�� − `���$C

B  

−���$�	 − `���$8� �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (` + 1�, − 1�! ���$ _ 	��$�� − `���$ ×C

A  

× � �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (` + 1∆$ n����$ − 	��$� b1 − c  �"

�#$ d� 
�+ c  �����$ − !���$�"

�#$ o c �� _ �$��� , `�� �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (`C

B
%
�#$  

               + 1m$ n	��$ b1 − c ��%
�#$ d    + c ������$%

�#$ o ×                        
  × c  � _ �$�!�, `�� �`, _ l��`, ¦���C

B ¦, ��¦�� (¦� (`.C
B

"
�#$                                     �3.6� 

 
Therefore, we obtain 
 �W��′�	� = _ 	����� − `���$ − ���$�	 − `�����, − 2�! ���$

A
B � �`, _ l��`, ¦���C

B ¦, ��¦�� (¦�  (` 

+ _ 	����� − `���$�, − 2�! ���$ � �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (`C

A + 1m$ n−�, − 1�	��� b1 − c  �"
�#$ do × 

× c �� _ �$��� , `�� �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (`C

B
%
�#$ + 1m$ n�, − 1�	��� b1 − c ��%

�#$ do × 

     × c  � _ �$�!� , `�� �`, _ l��`, ¦���C
B ¦, ��¦�� (¦�  (`C

B
"
�#$ ,   ∀ 	 ∈ �0, ��.           �3.7� 

 
So, for any 	 ∈ �0, ��, we deduce 
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|�W��′�	�| ≤ _ 	����� − `���$ + ���$�	 − `�����, − 2�! ���$
A

B 1$�`�2$ �_ l��`, ¦���¦, ��¦�� (¦C
B �  (` 

+ _ 	����� − `���$�, − 2�! ���$ 1$�`�2$ �_ l��`, ¦���¦, ��¦�� (¦C
B �  (`C

A  

+ �, − 1�	���m$ b1 − c  �"
�#$ d c �� _ �$��� , `�1$�`�2$ �_ l��`, ¦���¦, ��¦�� (¦C

B �  (`C
B

%
�#$  

+ �, − 1�	���m$ b1 − c ��%
�#$ d c  � _ �$�!� , `�1$�`�2$ �_ l��`, ¦���¦, ��¦�� (¦C

B �  (`C
B

"
�#$  

≤ ¬� �_ 	����� − `���$ + ���$�	 − `�����, − 2�! ���$
A

B 1$�`� (`� + _ 	����� − `���$�, − 2�! ���$ 1$�`� (`C
A  

+ �, − 1�	���m$ b1 − c  �"
�#$ d c �� _ �$��� , `�1$�`� (`C

B
%
�#$ + �, − 1�	���m$ b1 − c ��%

�#$ d × 

�                    × c  � _ �$�!�, `�1$�`� (`C
B

"
�#$ � .                                                                       �3.8� 

 
We denote 
 ℎ�	� = _ 	����� − `���$ + ���$�	 − `�����, − 2�! ���$

A
B 1$�`� (` + _ 	����� − `���$�, − 2�! ���$ 1$�`� (`C

A ,      �3.9� 

 O�	� = ℎ�	� + �, − 1�	���m$ b1 − c  �"
�#$ d c �� _ �$��� , `�1$�`� (`C

B
%
�#$  

+ �, − 1�	���m$ b1 − c ��%
�#$ d c  � _ �$�!� , `�1$�`� (`C

B
"
�#$ , 	 ∈ �0, ��.     �3.10� 

 
For the integral of the function ℎ, by exchanging the order of integration, we obtain after some 
computations 
 _ ℎ�	�(	C

B = _ �� − `���$�, − 2�! ���$ ����$ − `��$, − 1 � 1$�`� (`C
B + _ 1$�`��� − `���$�, − 1�!  (`C

B  

 + _ �� − `���$`��$�, − 1�! ���$
C

B 1$�`� (` = 2�, − 1�! _ �� − `���$1$�`� (` < ∞.                        �3.11�C
B  

 
For the integral of the function O, we have 
 _ O�	� (	 ≤C

B
2�, − 1�! _ �� − `���$1$�`� (`C

B + ���$m$ b1 − c  �"
�#$ d × 

× c �� _ �$�t$�`�, `�1$�`� (`C
B

%
�#$ + ���$m$ b1 − c ��%

�#$ d c  � _ �$�t$�`�, `�1$�`� (`C
B

"
�#$  

≤ 1�, − 1�! °2 + ���$m$ b1 − c  �"
�#$ d bc ��%

�#$ d + ���$m$ b1 − c ��%
�#$ d bc  �"

�#$ d± × 
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      × _ �� − `���$1$�`� (` < ∞.C
B                                                                   �3.12� 

 
We deduce that O ∈ ²$�0, ��.  Thus for any given 	$, 	� ∈ 70,18 with 	$ ≤  	� and � ∈ «, by �3.8�, 
we obtain 
       |�W���	$� − �W���	��| = ³_ �W��´�	�(	A�

A| ³ ≤ ¬� _ O�	� (	A�
A| .                             �3.13� 

 
From �3.12�, �3.13� and absolute continuity of the integral function, we obtain that W�«� is 
equicontinuous. This conclusion together with �3.5� and Ascoli-Arzela theorem yields that W�«� 
is relatively compact. Therefore W is a compact operator. 
 
By using similar arguments as those used in the proof of Lemma 2.4 from [3], we can show that W is continuous on ̈. Therefore W: ¨ → ¨ is completely continuous.                              ∎ 
  
For & ∈ �0, � 2⁄ �, we define the cone 
  B̈ = q� ∈ S,   ��	� ≥ 0,   ∀ 	 ∈ 70, �8, minA∈7y,C�y8 ��	� ≥ Q‖�‖¯,                                        �3.14� 

 
where Q = min©Q$, Q�ª,  Q$ and Q� are given in Section 2. Under the assumptions ��$�, ����, we 
have W�¨� ⊂ B̈. Indeed, for � ∈ ¨, let � = W���. By Lemma 2.6, we have minA∈7y,C�y8 ��	� ≥Q$‖�‖ ≥ Q‖�‖, that is  � ∈ B̈. 
 
Theorem 3.1 Assume that ��$� − ����  hold. Then the problem ��� − ����  has at least one 
positive solution ���	�, ��	��,   	 ∈ 70, �8. 
 
Proof. We consider the cone B̈  with &  given in ����. From ���� E�  and ����, we deduce that 
there exists �$ > 0 such that  
 2$��� ≤ �$�+| ,   ∀ � ∈ 70,18.                                                                                                      �3.15� 
 

From ���� EE�  and ����,  for �� = min ¶�1/��$IP+|��$/+| , 1/P¸ > 0  with I, P  defined in the 

proof of Lemma 3.1, we conclude that there exists R$ ∈ �0,1� such that 
     2���� ≤ ���+� ,   ∀ � ∈ 70, R$8.                                                                                             �3.16� 
 
From �3.16�, ����  and Lemma 2.5, for any � ∈ [�¹| ∩ B̈ and ̀ ∈ 70, �8, we obtain  
  _ l��`, ¦���C

B ¦, ��¦�� (¦ ≤ �� _ ���¦�1��¦� (¦ ∙C
B ‖�‖+� = ��PR$+� ≤ R$+� < 1.   �3.17� 

  
By using  �3.15� − �3.17� and ����, for any � ∈ [�¹| ∩ B̈ and 	 ∈ 70, �8, we get 
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�W���	� ≤ �$ _ l$�	, `�1$�`� �_ l��`, ¦���¦, ��¦��(¦C
B �+| (`C

B  

≤ �$ _ l$�	, `�1$�`� ��� _ l��`, ¦�1��¦����¦��+� (¦C
B �+| (`C

B  

≤ �$ _ �$�`�1$�`�(`C
B  ∙ ��� _ ���¦�1��¦�(¦C

B �+| ∙ ‖�‖+|+� ≤ ‖�‖.                        �3.18� 

 
Therefore   ‖W�‖ ≤ ‖�‖, ∀ � ∈ [�¹| ∩ B̈.                                                  �3.19� 
  
From ���� E�, we deduce that there exist �� > 0 and �$ > 0 such that 
          ��	, �� ≥ ���*| , ∀ � ≥ �$, ∀ 	 ∈ 7&, � − &8.                                         �3.20� 
 

We consider now �� = max ¶�Q�Q*�t���$, ���Q$Q�*|Q*|*�t$t�*|��$/*|¸ > 0,  where t$ =s �$�`�(`C�yy > 0  and t� = s ���`�(`C�yy > 0.   From ���� EE�,  we conclude that there exists �� ≥ 1 such that 
    ��	, �� ≥ ���*� , ∀ � ≥ ��, ∀ 	 ∈ 7&, � − &8.                                     �3.21� 
  

Now we choose »B = max©�$, ��ª and » > max ¶»B Q⁄ , »B$ *�⁄ ¸. Then for any � ∈ [�¼ ∩ B̈, we 

have minA∈7y,C�y8 ��	� ≥ Q‖�‖ = Q» > »B. 
 
By using �3.20� and �3.21�, for any � ∈ [�¼ ∩ B̈ and ̀ ∈ 7&, � − &8, we obtain 
 _ l��`, ¦���C

B ¦, ��¦�� (¦ ≥ Q��� _ ���¦����¦��*�(¦C�y
y  

      ≥ Q���Q*� _ ���¦� (¦C�y
y  ∙ ‖�‖*� ≥ ‖�‖*� = »*� > »B.                                   �3.22�  

 
Then for any � ∈ [�¼ ∩ B̈ and 	 ∈ 7&, � − &8, we have 
 �W���	� ≥ _ l$�	, `�� �`, _ l��`, ¦���¦, ��¦��(¦C

B �  (`C�y
y  

≥ �� _ l$�	, `� �Q� _ ���¦������¦��*�(¦C�y
y �*| (`C�y

y  

≥ ����*|Q�*| _ l$�	, `�Q*|*�‖�‖*|*� �_ ���¦�(¦C�y
y �*| (`C�y

y  

  ≥ ����*|Q�*|Q$Q*|*� �_ �$�`�(`C�y
y � �_ ���¦�(¦C�y

y �*| ‖�‖*|*� ≥ ‖�‖.                     �3.23� 

 
Therefore we deduce 
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           ‖W�‖ ≥ ‖�‖, ∀ � ∈ [�¼ ∩ B̈.                                                     �3.24� 
 
By �3.19�, �3.24� and Theorem 1.1 i), we obtain that W has a fixed point �$ ∈ ��V¼ ∖ �¹|� ∩ B̈, 
that is R$ ≤ ‖�$‖ ≤ ».  Let �$�	� = s l��	, `���`, �$�`��(`.CB  Then ��$, �$� ∈ B̈ × B̈  is a 
solution of ��� − ���� . In addition ‖�$‖ > 0.  Indeed, if we suppose that �$�	� = 0  for all 	 ∈ 70, �8, then by using ���� we have ��`, �$�`�� = ��`, 0� = 0 for all ̀ ∈ 70, �8. This implies �$�	� = 0 for all 	 ∈ 70, �8, which contradicts ‖�$‖ > 0. By using Theorem 1.1 from [17] (see 
also [18]), we obtain �$�	� > 0 and �$�	� > 0 for all 	 ∈ �0, � − &8. The proof of Theorem 3.1 is 
completed.       ∎ 
 
Theorem 3.2 Assume that ��$�, ����, ���� and �� � hold. Then the problem ��� − ���� has at 
least one positive solution ���	�, ��	��,   	 ∈ 70, �8. 
 
Proof. We consider the cone B̈  with &  given in �� �.  By ���� E�  we deduce that there exist �� > 0 and �  > 0 such that 
                2$��� ≤ ���½| + � ,   ∀ � ∈ 70,∞�.                                                         �3.25� 
    
From ���� EE�, for ¾B > 0,  ¾B < �2½|��IP½|��$/½| ,  we conclude that there exists �¿ > 0  such 
that  
                      2���� ≤ ¾B�½� + �¿,   ∀ � ∈ 70,∞�.                                                         �3.26� 
 
By using �3.25�, �3.26� and ����, for any � ∈ B̈, we obtain 
 �W���	� ≤ _ l$�	, `�1$�`�2$ �_ l��`, ¦���¦, ��¦��(¦C

B �  (`C
B  

≤ �� _ l$�	, `�1$�`� �_ l��`, ¦���¦, ��¦��(¦C
B �½| (` + �  _ �$�`�1$�`�(`C

B
C

B  

≤ �� _ �$�`�1$�`�(`C
B �_ ���¦�1��¦�(¦C

B �½| �¾B‖�‖½� + �¿�½| + I�                ≤ ��2½|¾B½|IP½|‖�‖½|½� + ��2½|IP½|�¿½| + I� ,   ∀ 	 ∈ 70, �8.                                 �3.27� 
 
By definition of ¾B, we can choose sufficiently large »$ > 0 such that 
                                             ‖W�‖ ≤ ‖�‖, ∀ � ∈ [�¼| ∩ B̈.                                                       �3.28� 
  
From �� � E�, we deduce that there exist positive constants �À > 0 and �� > 0 such that ��	, �� ≥�À�®| ,  for all � ∈ 70, ��8  and 	 ∈ 7&, � − &8.  From �� � EE�,  for ¾$ = ��ÀQ$Q�®|Q®|®�t$t�®|��$/®| > 0, we conclude that there exists �� > 0  such that ��	, �� ≥¾$�®� for all � ∈ 70, ��8 and 	 ∈ 7&, � − &8. 
 
We consider  �� = min©��, ��ª.  So we obtain 
           ��	, �� ≥ �À�®| , ��	, �� ≥ ¾$�®� , ∀ �	, �� ∈ 7&, � − &8 × 70, ��8.                       �3.29� 
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From assumption 2��0� = 0 and the continuity of 2�, we deduce that there exists sufficiently 
small ¾� ∈ �0, min©��, 1ª� such that 2���� ≤ P�$�� for all  � ∈ 70, ¾�8. 
 
Therefore for any � ∈ [�Á� ∩ B̈ and ̀ ∈ 70, �8, we have 
      _ l��`, ¦���C

B ¦, ��¦�� (¦ ≤ P�$�� _ ���¦�1��¦�(¦ = ��.                                    �3.30�C
B  

  
By �3.29�, �3.30�, Lemma 2.5 and Lemma 2.6, for any 	 ∈ 7&, � − &8, we get 
 

�W���	� ≥ �À _ l$�	, `� �_ l��`, ¦���¦, ��¦��(¦C�y
y �®| (`C�y

y  

≥ �ÀQ$ _ �$�`� Â�¾$Q��®| �_ ���¦����¦��®�(¦C�y
y �®|Ã (`C�y

y  

       ≥ �ÀQ$Q�®|¾$®|Q®|®�t$t�®|‖�‖®|®� ≥ ‖�‖.                                                          �3.31� 
 
Therefore 
                                ‖W�‖ ≥ ‖�‖, ∀ � ∈ [�Á� ∩ B̈.                                                  �3.32� 
 
By �3.28�, �3.32�  and Theorem 1.1 ii), we deduce that W  has at least one fixed point �� ∈��V¼| ∖ �Á�� ∩ B̈. Then our problem ��� − ���� has at least one positive solution ���, ��� ∈ B̈ ×

B̈ where ���	� = s l��	, `���`, ���`��(`.CB  The proof of Theorem 3.2 is completed.   
 

4 Conclusions 
 
We presented sufficient conditions on the functions (possibly singular) �  and �  such that the 
problem ��� − ���� has positive solutions.  
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