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Abstract

Using variational methods, we estabilish existence of positive solutions for a class of quasilinear
elliptic problems

−∆pu+ V (x)up−1 = H(u− β)f(u), in RN

where ∆pu = div(|∇u|p−2∇u), β > 0, 2 ≤ p < N , V is a positive, continuous perturbations of a
periodic function, H is the Heaviside function and f is a continuous function with subcritical growth.
The results of the semilinear equations are extended to the quasilinear problem.
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1 Introduction and basic results
In this paper, we study the existence of positive solution for the following class of quasilinear elliptic
problem {

−∆pu+ V (x)up−1 = H(u− β)f(u) a.e. in RN ,
u > 0, in RN ,

(P )β

where ∆pu = div(|∇u|p−2∇u), 2 ≤ p < N , β ≥ 0 is a parameter, and H is the Heaviside function
given by

H(t) =

{
1 if t > 0,
0 if t ≤ 0.

The function V : RN → R is a positive continuous function satisfying:

inf
x∈RN

V (x) = V0 > 0. (V0)
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There is a ZN -periodic continuous function Vm : RN → R, that is,

Vm(x+ y) = Vm(x) ∀ x ∈ RN , y ∈ ZN ,

such that
V (x) ≤ Vm(x), ∀ x ∈ RN , (V1)

There is x1 ∈ RN such that
V (x1) < Vm(x1) (V2)

and
|V (x)− Vm(x)| → 0, as |x| → +∞. (V3)

The function f : R→ R is a continuous function satisfying the following conditions
(f1) limt→0+

f(t)

tp−1 = 0.

(f2) limt→+∞
f(t)
tq

= 0, for some q ∈ (p− 1, p∗ − 1), where p∗ = Np
N−p .

(f3) There is θ ∈ (p, q + 1) such that 0 < θF (t) ≤ f(t)t, ∀t > 0, where F (t) =
∫ t

0
f(s)ds.

(f4) The function t → f(t)

tp
∗−1 is increasing on (0,∞), which implies t → f(t)

tp−1 is also increasing on
(0,∞).

The problem (1.1) appears in the study of non-Newtonian flows, chemotaxis, and biological
pattern formation etc. For example, in the study of non-Newtonian flows, the constant p is a characteristic
of medium. Media with p > 2 are called dilatant fluids and those with p < 2 are called pseudo-plastics.
If p = 2 they are Newtonian fluids (see [32] and the references therein). The interest in the study of
nonlinear partial differential equations with discontinuous nonlinearities has increased because many
free boundary problems arising in mathematical physics may be stated in this form. Among these
problems, we have the obstacle problem, the seepage surface problem, and the Elenbaas equation,
see [2,14,16].

There are many papers having studied the problems with discontinuous nonlinearities, and we
can refer the readers to [2,4,11,17-25] and the references therein. Several techniques have been
developed or applied in these papers, such as variational methods for nondifferentiable functionals,
sub and super solutions, and the theory of multivalued mappings.

When p = 2, the function V is periodic and f has a subcritical growth, the problem (P )β with
β = 0 has been studied in [26], where the main tool used was the variational methods for C1−
functionals.

In [27], Alves , Marcos and Miyagaki discussed the existence of solution for the critical periodic
and asymptotic periodic problem of the form{

−4u+ V (x)u = f(x, u) in R2,
u ∈ H1(R2), u(x) > 0.

(1.1)

And in [8] they also established conditions for the existence of a positive solution for the periodic
elliptic problem with critical growth, which given in the following form{

−4u+ V (x)u = λuq + up in RN ,
u ∈ H1(RN ), u(x) > 0, N ≥ 3,

(1.2)

where λ > 0 is a parameter, 1 < q < p = 2∗ − 1, 2∗ = 2N
N−2

, and V is a positive continuous periodic
function.

Recently, Alves and Nascimento [3] studied nonlinear perturbation of a periodic elliptic problem
with discontinuous nonlinearity, which was given by{

−4u+ V (x)u = H(u− β)f(u) a.e. in RN ,
u(x) > 0, in RN .

(1.3)

For p > 1, Alves and Bertone [11] studied the following problem

−∆pu = H(u− a)up
∗−1 + λh(x) x ∈ RN , (1.4)
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where H is the Heaviside function, p∗ = pN
N−p is the Sobolev critical exponent, and h is a positive

function.
On the other hand, C.O.Alves et al.[28] also studied the following quasilinear problem{

−∆pu+ a(x)up−1 = h(x)uq + k(x)up
∗−1 x ∈ RN ,

u ∈ H1,p(RN ), u(x) > 0, x ∈ RN ,
(1.5)

where 1 < p < N , p− 1 < q < p∗ − 1, p∗ = Np
N−p and a, h, k: RN → R are continuous functions and

there exist continuous Z-periodic functions A, H, K: RN → R such that a(x) ≤ A(x), h(x) ≤ H(x),
k(x) ≤ K(x), for all x ∈ RN , and

a(x)−A(x)→ 0, h(x)−H(x)→ 0, k(x)−K(x)→ 0, as |x| → +∞.

In the present paper, we will develop (1.3) into quasilinear one. Just as we know, when the
nonlinear term is discontinuous and the function V is periodic, our first difficulty involving this class
of problem is the fact that we can not use the classical variational methods, and it is necessary to
use some results for Locally Lipschitz functional. Moreover, when the nonlinearity is continuous and
satisfies some assumptions, the mountain pass level is equal to the minimum of the energy functional
on Nehari Manifolds, which is a key point in a lot of papers. However, this property is not true for
discontinuous nonlinearity. Hence, the arguments used in the above reference can not be repeated
directly, and a careful analysis is necessary to get similar results to those found in [8,29,30].

By a modification of the method given in [3], we obtain the following main result.

Theorem 1.1. Assume that (V0) − (V3) and (f1) − (f4) hold. Then, there is β∗ > 0, such that
problem (P )β has a positive solution for all β ∈ [0, β∗).

For the reader’s convenience, we give the following some basic results according to O.Alves and
Nascimento [3] and the references therein.

Theorem 1.2. [4] Let I ∈ Liploc(X,R) with I(0) = 0 and satisfying:
(i) There are r > 0 and τ > 0, such that I(u) ≥ τ , for ||u|| = r, u ∈ X;
(ii) There is e ∈ X \Br(0) with I(e) < 0.

If c = infγ∈Γ maxt∈[0,1] I(γ(t)) and

Γ = {γ ∈ C([0, 1], X), γ(0) = 0, and γ(1) = e},

then c ≥ τ and there is a sequence {un} ⊂ X satisfying

I(un)→ c and λ(un)→ 0.

2 The periodic case
To prove Theorem 1.1, firstly, we need to establish the existence of solution for the periodic case.
Thereby, in this section, we study the existence of positive solution for the following problem{

−∆pu+ Vm(x)up−1 = H(u− β)f(u) a.e. in RN ,
u > 0, in RN ,

((P )m,β)

Hereafter, we consider the Sobolev space W 1,p(RN ) endowed with the norm

||u||p =

∫
RN

(|∇u|p + Vm(x)up).
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A direct computation shows that this norm is equivalent to the usual norm in W 1,p(RN ).
The energy functional related to (P )m,β is given by

Im,β(u) =
1

p

∫
RN

(|∇u|p + Vm(x)up)−
∫
RN

G(u),

where G(t) =
∫ t

0
g(τ)dτ and g(t) = H(t− β)f(t).

From now on, since we intend to find positive solutions for problem (P )m,β , we will suppose that

f(t) = 0, ∀t ≤ 0. (2.1)

Using the same methods as [3], we have the following lemmas

Lemma 2.1. The functional Ip,β verifies the mountain pass geometry, that is, the conditions (i)
and (ii) of Theorem 1.2 hold.

From Lemma 2.1 and Theorem 1.2 there is a sequence {un} ⊂W 1,p(RN ) satisfying

Ip,β(un)→ cp,β and λp,β(un)→ 0, (2.2)

where cp,β is the mountain pass level for Ip,β .

Lemma 2.2. The sequence {un} is bounded in W 1,p(RN ).

Lemma 2.3. Let {un} ⊂ W 1,p(RN ) be the sequence given in (2.2), then for each R > 0, there
are {yn} ⊂ RN and α > 0 satisfying∫

BR(yn)

|un|pdx ≥ α ∀n ∈ N.

Remark 2.1. The sequence {yn} given in Lemma 2.3 can be chosen in ZN , and we can find
details in [8].

Using the same methods as Proposition 3.1 of [3], we have the following lemma

Lemma 2.4. Let vn(x) = un(x+ yn), where {yn} is given by Lemma 2.3. Then,

Im,β(vn)→ cm,β and λm,β(vn)→ 0.

Theorem 2.1. Assume that (V0) − (V3) and (f1) − (f4) hold. Then, there is β∗ > 0 such that
problem (P )m,β possesses a positive solution for all β ∈ [0, β∗).

Proof. From Lemma 2.2, there is a subsequence of {un}, still denoted by itself and there exists
u ∈W 1,p(RN ) such that

un ⇀ u in W 1,p(RN ),

and
un → u in Lsloc(R

N ), 1 ≤ s < p∗,

un → u a.e in RN .

Thus, the sequence {vn} given by Lemma 2.4 is also bounded and there is v ∈W 1,p(RN ) such that

vn ⇀ v in W 1,p(RN ),
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and
vn → v in Lsloc(R

N ), 1 ≤ s < p∗,

vn → v a.e in RN .

Combining the Sobolev embedding with Lemma 2.3, we get∫
BR(0)

vp = lim
n→∞

inf

∫
BR(0)

vpn = lim
n→∞

inf

∫
BR(yn)

upn ≥ α > 0,

showing that v 6≡ 0. On the other hand, from (2.1), we can assume without loss of generality that
vn ≥ 0. Then, v(x) ≥ 0, ∀x ∈ RN and v 6≡ 0.

Next, we will show that v is a nontrivial solution for (P )m,β .
In fact, we have prove that v 6≡ 0, thus, we need to show that v satisfies

−∆pv + Vm(x)vp−1 = H(v − β)f(v) a.e. in RN .

Once that {vn} satisfies
Im,β(vn)→ cm,β and λm,β(vn)→ 0,

we know that there are {ωn} ⊂ ∂Im,β(vn) and {ρn} ⊂ ∂Ψβ(vn) such that ||ωn||∗ → 0 and

〈ωn, φ〉 =

∫
RN

(|∇vn|p−2∇vn∇φ+ Vm(x)vp−1
n φ)−

∫
RN

ρnφ, ∀φ ∈W 1,p(RN ) (2.3)

with
ρn(x) ∈ [g(vn(x)), g(vn(x))] a.e. in RN . (2.4)

From (2.4) and {ρn} is bounded in L
q+1
q (RN ), there is C1 > 0 such that

|ρn| ≤ C1|vn|q, ∀n ∈ N.

from where it follows that

|ρn|
q+1
q

L
q+1
q (RN )

≤ C2

∫
RN

|vn|q+1.

Since {vn} is bounded in Lq+1(RN ), there is M > 0 such that

|ρn|
L

q+1
q (RN )

≤M, ∀n ∈ N.

Consequently, there is ρ0 ∈ L
q+1
q (RN ) satisfying

ρn ⇀ ρ0 in L
q+1
q (RN ), (2.5)

or equivalently, ∫
RN

ρnφ→
∫
RN

ρ0φ, ∀φ ∈ Lq+1(RN ). (2.6)

Letting n→∞ in (2.3) and using (2.6), we obtain the identity∫
RN

(|∇v|p−2∇v∇φ+ Vm(x)vp−1φ) =

∫
RN

ρ0φ, ∀φ ∈W 1,p(RN ),

which yields v is a weak solution of the problem{
−∆pv + Vm(x)vp−1 = ρ0 in RN ,
u > 0, in RN .

((P )0)

Repeating the similar arguments explored in [10,11], we can get that

ρn(x)→ ρ0 a.e. in RN . (2.7)
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Final, we will show that there exists β∗ > 0 such that Γβ = {x ∈ RN : v(x) = β} has null
measure for all β ∈ (0, β∗).

In fact, we know that
ρn(x) ≤ g(vn(x)) a.e. in RN .

Consequently, from definition of g, we have

ρn(x) ≤ f(vn(x)) a.e. in RN .

Therefore, for all nonnegative function φ ∈ Lq+1(RN ),∫
RN

ρnφ ≤
∫
RN

f(vn)φ.

The weak limit
ρn ⇀ ρ0 in L

q+1
q (RN )

together with the Sobolev embedding gives∫
RN

ρ0φ ≤
∫
RN

f(v)φ.

Since φ is arbitrary, we obtain
ρ0(x) ≤ f(v(x)) a.e. in RN .

From this, we have
ρ0(x) ≤ f(β) a.e. in Γβ . (2.8)

Now, if Γβ has a positive measure, by using the Morrey-Stampacchia’s Theorem (see [12,13]), we
have that

−4p v(x) = 0 a.e. in Γβ .

Thereby, we have
Vm(x)βp−1 ≤ f(β) a.e. in Γβ ,

and thus
V0 ≤

f(β)

βp−1
.

By (f1), we have
f(β)

βp−1
→ 0, as β → 0.

Hence, we can conclude that there is β∗ > 0 such that Γβ = {x ∈ RN : v(x) = β} has null measure
for all β ∈ (0, β∗).

Now, for β ∈ (0, β∗) and from the following limit

vn(x)→ v(x) a.e. in RN ,

and (2.4), we can see that

ρn(x)→ H(v(x)− β)f(v(x)) a.e. in RN . (2.9)

The last limit combined with (3.11) yields

ρ0 = H(v(x)− β)f(v(x)) a.e. in RN .

Moreover, since the set Γβ has null measure, we see that v(x) satisfies (P )m,β in the ”strong” sense,
i.e.,

−∆pv + Vm(x)vp−1 = H(v(x)− β)f(v(x)) a.e. in RN .

The positivity of v follows by maximum principles. Therefore, we have showed that v is a nontrivial
solution for (P )m,β .

479



British Journal of Mathematics and Computer Science 4(4), 474-486, 2014

3 The General Case
In this section, we will prove the existence of solution for problem (P )β . Moreover, we denote by I0,
Im,0 : W 1,p(RN ) → R the energy functional associated with the problems (P )0 and (P )m,0, which
are given by

I0(u) =
1

p

∫
RN

(|∇u|p + V (x)up)−
∫
RN

F (u),

and
Im,0(u) =

1

p

∫
RN

(|∇u|p + Vm(x)up)−
∫
RN

F (u).

These functionals are C1 and it is well known that there are ψm, ϕ ∈W 1,p(RN ) such that

Im,0(ψm) = cm,0 and I ′m,0(ψm) = 0,

and
I0(ϕ) = c0, and I ′0(ϕ) = 0,

where cm,0 and c0 denote the mountain pass levels. In addition, from (V1)− (V2), we can prove that
c0 < cm,0. Since its proof follows by using the similar methods used in [8], we omit it here. Thereby,
we can find R > 0 and δ > 0 satisfying

I0(ϕR) < c0 +
δ

4
and c0 + 2δ < cm,0 (3.1)

where ϕR = η( x
R

)ϕ and η ∈ C∞0 (RN ) satisfies

0 ≤ η ≤ 1, η(x) = 1, ∀x ∈ B1(0) and η(x) = 0. ∀x ∈ Bc2(0).

According to Lebesgue’s Theorem,

ϕR → ϕ ∈W 1,p(RN ) as R→ +∞.

Consequently, ϕR 6≡ 0 for R large enough. Moreover, there is tR > 0 with limR→+∞ tR = 1 such that

I0(tRϕR) = max
t≥0

I0(tϕR).

Thereby, we choose R > 0 large enough satisfying

I0(tRϕR) < c0 +
δ

4
.

Furthermore, for each β > 0, the energy functionals associated with (P )m and (P )m,β will be denoted
by

Iβ(u) =
1

p

∫
RN

(|∇u|p + V (x)up)−
∫
RN

G(u),

and
Im,β(u) =

1

p

∫
RN

(|∇u|p + Vm(x)up)−
∫
RN

G(u),

respectively. In what follows, let us denote by cβ , cm,β the mountain pass levels of these functionals.

Using the same methods as Lemma 4.1 of [3], we have the following lemma

Lemma 3.1. There exists β∗ > 0 such that cβ < cm,β for all β ∈ (0, β∗).

Since Iβ verifies the mountain pass geometry, there is a sequence {un} ⊂W 1,p(RN ) satisfying

Iβ(un)→ cβ and λβ(un)→ 0.
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Using the same arguments explored in Sect.3, we can get that {un} is bounded in W 1,p(RN ), and
there is u ∈W 1,p(RN ) such that

un ⇀ u in W 1,p(RN ),

and
un → u in Lsloc(R

N ), 1 ≤ s < p∗,

un → u a.e in RN .

Hereafter, we will use the following notations for the functionals Iβ and Im,β :

Iβ(u) = Q(u)−Ψβ(u)

and
Im,β(u) = Qm(u)−Ψβ(u),

where
Q(u) =

1

p

∫
RN

(|∇u|p + V (x)up), Qm(u) =
1

p

∫
RN

(|∇u|p + Vm(x)up)

and
Ψβ(u) =

∫
RN

G(u)

.

Lemma 3.2. The weak limit u is nontrivial, that is u 6≡ 0.

Proof. Arguing by contradiction, we suppose that u = 0. Then,

un ⇀ 0 in W 1,p(RN ). (3.2)

By (V3), given r > 0 and ε > 0, there is n0 ∈ RN such that∫
|x|≥r

|V (x)− Vm(x)|upn ≤ ε, ∀n ≥ n0. (3.3)

On the other hand, once that

un → 0 in Lsloc(R
N ), 1 ≤ s < p∗,

it follows that
lim

n→+∞

∫
|x|≤r

|V (x)− Vm(x)|usn = 0 (3.4)

and in particular,

lim
n→+∞

∫
|x|≤r

|V (x)− Vm(x)|upn = 0. (3.5)

From (3.3) and (3.5), we have

lim
n→+∞

∫
RN

|V (x)− Vm(x)|upn = 0.

The above limit implies that
Qm(un) = Q(un) + on(1)

and
Q′m(un) = Q′(un) + on(1).

Hence, we have
Im,β(un) = Iβ(un) + on(1)→ cβ
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and
λm,β → 0.

From Lemma 3.2 and Remark 2.1, there are {zn} ⊂ ZN , r1 > 0 and η1 > 0 satisfying∫
Br1

(zn)

upn ≥ η1 > 0.

Setting vn(x) = un(x + zn) and repeating the same arguments explored in Sect.2, we have {vn} is
bounded in W 1,p(RN ). Thus, there is v ∈W 1,p(RN \ {0}) and a subsequence of {vn}, still denoted
by itself, such that

vn(x) ⇀ v in W 1,p(RN )

with
Im,β(vn)→ cm,β and λm,β(vn)→ 0.

Moreover, v is a positive solution of the problem

−∆pv + Vm(x)vp−1 = H(v(x)− β)f(v(x)) a.e. in RN , (3.6)

with
med(Γβ) = 0.

In what follows, let t > 0 satisfying

tv ∈ Nm,0 = {u ∈W 1,p(RN ) \ {0}; I ′m,0(u)u = 0},

where Nm,0 is the Nehari manifold associated with Im,0. Then,∫
RN

(|∇v|p + Vm(x)vp) =

∫
RN

f(tv)tv

tp
=

∫
RN

f(tv)v

tp−1
(3.7)

Once that, ∫
RN

(|∇v|p + Vm(x)vp) <

∫
RN

f(v)v, (3.8)

the condition (f4) together with (3.7) and (3.8) yields t ∈ (0, 1). Additionally, the below characterization

cm,0 = inf
u∈Nm,0

Im,0(u)(see[9]),

gives the inequality
cm,0 ≤ Im,0(tv),

which leads to

cm,0 ≤ tp(
1

p
− 1

q + 1
)||v||p +

∫
RN

[
1

q + 1
f(tv)tv − F (tv)]

By (f4), the function

h(s) =
1

q + 1
f(s)s− F (s)

is nondecreasing, then,

cm,0 < (
1

p
− 1

q + 1
)||v||p +

∫
RN

[
1

q + 1
f(v)v − F (v)],

or equivalently

cm,0 < (
1

p
− 1

q + 1
)||v||p +

∫
[v≤β]

[
1

q + 1
f(v)v − F (v)] +

∫
[v>β]

[
1

q + 1
f(v)v − F (v)].
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From Lebesgue’s Theorem, we have∫
[v≤β]

[
1

q + 1
f(v)v − F (v)]→ 0 as β → 0.

Hence, there is β∗ > 0 such that∫
[v≤β]

[
1

q + 1
f(v)v − F (v)] <

δ

8
, ∀β ∈ (0, β∗).

Thereby,

cm,0 < (
1

p
− 1

q + 1
)||v||p +

∫
[v>β]

[
1

q + 1
f(v)v − F (v)] +

δ

8
∀β ∈ (0, β∗).

Combining the fact that v is a solution of (4.6) with med(Γβ) = 0, we get

(
1

p
− 1

q + 1
)||v||p +

∫
[v>β]

[
1

q + 1
f(v)v − F (v)] ≤

∫
[v>β]

[
1

p
f(v)v − F (v)].

Consequently,

cm,0 <

∫
[v>β]

[
1

p
f(v)v − F (v)] +

δ

8
∀β ∈ (0, β∗). (3.9)

Recalling that 〈ωn, vn〉 = on(1), we have

Im,β(vn) = Im,β(vn)− 1

p
〈ωn, vn〉+ on(1) =

∫
RN

[
1

p
ρnvn −G(vn)] + on(1).

Since ∫
[vn<β]

[
1

p
ρnvn −G(vn)] = 0,

it follows that

Im,β(vn) =

∫
[vn≥β]

[
1

p
ρnvn −G(vn)] =

∫
[vn≥β]

[
1

p
f(vn)vn −G(vn)].

Now, the below inequality

−G(t) = −F (t) + F (β) ≥ −F (t), ∀t ≥ 0,

leads to
Im,β(vn) =

∫
[vn≥β]

[
1

p
f(vn)vn −G(vn)] ≥

∫
[vn≥β]

[
1

p
f(vn)vn − F (vn)].

The condition (f3) together with Fatou’s Lemma and med(Γβ) = 0 implies that

lim
n→∞

inf Im,β(vn) ≥
∫

[v>β]

[
1

p
f(v)v − F (v)]. (3.10)

From (3.9) and (3.10), we obtain

cm,0 < lim
n→∞

inf Im,β(vn) +
δ

8
= cβ +

δ

8
,

that is,

cm,0 < cβ +
δ

8
.

From (4.18) of [3], we have

cm,0 < c0 +
δ

2
+
δ

8
< c0 + δ.
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On the other hand, by (3.1), we can obtain

cm,0 < cm,0 − δ,

which is an absurd. Thus, the weak limit u is nontrivial.
Proof of Theorem 1.1. Once that the Lemma 3.1 and 3.2 were established, we can repeat the

same arguments explored in the proof of Theorem 2.1 to conclude that u is a positive solution for (P )β .

4 Conclusion
In this paper, by using variational methods, we studied the existence of positive solutions for quasilinear
elliptic equation with discontinuous nonlinearity and nonlinear perturbations. Just as we know, when
the nonlinear term is discontinuous and the function V is periodic, our first difficulty involving this
class of problem is the fact that we can not use the classical variational methods, and it is necessary
to use some results for Locally Lipschitz functional. Moreover, when the nonlinearity is continuous
and satisfies some assumptions, the mountain pass level is equal to the minimum of the energy
functional on Nehari Manifolds, which is a key point in a lot of papers. However, this property is not
true for discontinuous nonlinearity. Hence, the arguments used in the above reference can not be
repeated directly, and a careful analysis is necessary to get similar results to those found in [8,29,30].
What’s more, the problem we have studied is one of the mathematical models occurring in the studies
of the p-Laplacian equation, generalized reaction-diffusion theory, non-Newtonian fluid theory, and
the turbulent flow of a gas in porous medium. In the non-Newtonian fluid theory, the quantity p is
characteristic of the medium. Media with p > 2 are called dilatant fluids and those with p < 2 are
called pseudoplastics. If p = 2, they are Newtonian fluids. When p 6= 2, the problem becomes more
complicated since certain nice properties inherent to the case p = 2 seem to be lost or at least difficult
to verify.
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