
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Interaction decompositions for tensor network
regression
To cite this article: Ian Convy and K Birgitta Whaley 2022 Mach. Learn.: Sci. Technol. 3 045027

View the article online for updates and enhancements.

You may also like
Hand-waving and interpretive dance: an
introductory course on tensor networks
Jacob C Bridgeman and Christopher T
Chubb

-

Quantum compression of tensor network
states
Ge Bai, Yuxiang Yang and Giulio
Chiribella

-

Decorated tensor network renormalization
for lattice gauge theories and spin foam
models
Bianca Dittrich, Sebastian Mizera and
Sebastian Steinhaus

-

This content was downloaded from IP address 106.213.28.225 on 07/07/2023 at 12:49

https://doi.org/10.1088/2632-2153/aca271
https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3
https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3
https://iopscience.iop.org/article/10.1088/1367-2630/ab7a34
https://iopscience.iop.org/article/10.1088/1367-2630/ab7a34
https://iopscience.iop.org/article/10.1088/1367-2630/18/5/053009
https://iopscience.iop.org/article/10.1088/1367-2630/18/5/053009
https://iopscience.iop.org/article/10.1088/1367-2630/18/5/053009

Mach. Learn.: Sci. Technol. 3 (2022) 045027 https://doi.org/10.1088/2632-2153/aca271

OPEN ACCESS

RECEIVED

6 September 2022

REVISED

31 October 2022

ACCEPTED FOR PUBLICATION

14 November 2022

PUBLISHED

20 December 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Interaction decompositions for tensor network regression
Ian Convy1,2,∗ and K Birgitta Whaley1,2
1 Department of Chemistry, University of California, Berkeley, CA 94720, United States of America
2 Berkeley Quantum Information and Computation Center, University of California, Berkeley, CA 94720, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: ian_convy@berkeley.edu

Keywords: tensor regression, interaction decomposition, tensor network machine learning

Abstract
It is well known that tensor network regression models operate on an exponentially large feature
space, but questions remain as to how effectively they are able to utilize this space. Using a
polynomial featurization, we propose an interaction decomposition as a tool that can assess the
relative importance of different regressors as a function of their polynomial degree. We apply this
decomposition to tensor ring and tree tensor network models trained on the MNIST and Fashion
MNIST datasets, and find that up to 75% of interaction degrees are contributing meaningfully to
these models. We also introduce a new type of tensor network model that is explicitly trained on
only a small subset of interaction degrees, and find that these models are able to match or even
outperform the full models using only a fraction of the exponential feature space. This suggests
that standard tensor network models utilize their polynomial regressors in an inefficient manner,
with the lower degree terms being vastly under-utilized.

1. Introduction

Tensor network regression has emerged as a promising and active area of machine learning research, having
achieved impressive results on common benchmark tasks such as the Movie 100K [1], MNIST [2–5], and
Fashion MNIST [3–5] datasets. The effectiveness of these models can be attributed to the tensor-product
transformation that is applied to the data features, which maps the original feature vector into an
exponentially large vector space. By performing linear operations on this expanded feature space, tensor
network models are able to generate regression outputs that are highly non-linear functions of the original
features.

In most tensor network models, the tensor-product transformation is constructed from a set of
vector-valued functions that each act on only a single data feature. The form of these functions is important
to the operation of the model, as it determines how regression on the transformed space is related to
regression on the original feature space. Conventional wisdom regarding the choice of these functions can be
traced back to the parallel works of Stoudenmire and Schwab [2] and Novikov et al [1], who each proposed a
different transformation scheme. The method from [2] was inspired by techniques in quantum many-body
physics, and mapped each feature x ∈ [0,1] into the L2-normalized vector [cos(π2 x), sin(

π
2 x)]. The approach

in [1], by contrast, was motivated by a desire to characterize interactions within categorical (discrete) data,
and therefore had each feature mapped to the vector [1, x]. The advantage of this latter mapping is that every
element of the transformed feature space is a product of some subset of the original features, which makes
the resulting regression output easier to interpret.

The purpose of this work is to quantitatively assess how well tensor network models are able to utilize the
exponential feature space induced by their tensor-product transformations. We shall focus specifically on
models which are built upon the [1, x] featurization from Novikov et al [1], since this allows us to easily
interpret different regions of the transformed space in terms of interactions (products) between the original
features. To this end, we introduce the interaction decomposition of a tensor network model, which casts the
regression output as the sum of terms which each contain all feature products of a fixed degree. Here the
degree of an interaction is defined as the number of features that are multiplied together, such that,

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/aca271
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/aca271&domain=pdf&date_stamp=2022-12-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1818-2677
https://orcid.org/0000-0002-7164-4757
mailto:ian_convy@berkeley.edu

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

e.g. interactions of degree three take the form x1x2x3. By applying this decomposition to tensor network
models that were trained on a given machine learning task, we can determine the importance of each
interaction degree to the final output of the model. Furthermore, by implementing new models that regress
on only a subset of degrees, we can assess whether the tensor network models are under-utilizing those
interactions.

The remainder of this paper has the following structure. Section 2 provides an overview of tensor
network regression, starting with a review of tensor operations and ending with a description of the tensor
ring and tree tensor network architectures that we used for our tests. In section 3, we describe the motivation
and mechanics of the interaction decomposition, and then apply it to tensor network classifiers trained on
the MNIST and Fashion MNIST datasets. From these tests, we find that some models utilize up to
three-quarters of all interaction degrees generated by the tensor-product transformation, which collectively
contain roughly 1019 different regressors. However, we also determine that the tensor network classifiers are
vastly under-utilizing the lower-degree interactions, since separate models trained using only interactions
less than, e.g. sixth degree are able to achieve classifications accuracies very near those of the full regression
models. We discuss the implications of these results and directions for future work in section 4. The
appendix contains technical details about the procedure used to carry out the interaction decompositions, as
a well as a tabulation of important numerical results.

2. Tensor network regression

2.1. Background
2.1.1. Tensor overview
Throughout this work, we consider machine learning models that are constructed using tensors [6, 7]. For
our purposes, a tensor is simply a multidimensional array of numbers, such that each number is indexed by a
non-negative integer along every dimension. The order of a tensor is equal to the number of dimensions that
it has, or equivalently the number of integers needed to specify one of its elements. From this perspective,
vectors and matrices can be viewed as first-order and second-order tensors respectively. We will denote
tensors with order greater than one using uppercase letters (A,B,C, . . .), while vectors will be denoted using a
lower case letter under an arrow (⃗a, b⃗, c⃗, . . .). Elements of a tensor are specified using subscripts, so that an
element of the third-order tensor A is given by Aijk, where i, j,k are non-negative integers (all dimensions are
indexed starting from zero). When referring to elements of a vector, the arrow symbol is dropped. To specify
the ith member of a set of tensors, we use a superscript with parentheses, e.g. A(i).

There are a wide variety of operations that can be defined between tensors, but in this work we focus
primarily on the tensor product and the tensor contraction. The tensor product C= A⊗B constructs a new
tensor C from every pairwise product between elements of tensor A and elements of tensor B, such that each
element of C is given by

Ci0...im−1 j0...jn−1 = Ai0...im−1Bj0...jn−1 (1)

and the order of C is the sum of the orders of A and B. The tensor contraction between A and B is similar to
the corresponding tensor product, except that it generates a new tensor C by taking elements of A⊗B and
summing them along a set of specified dimensions. As an example, if A and B are both third order, then a
contraction between the second dimension of A and the third dimension of B is written as

Cjklm =
∑
i

AjikBlmi. (2)

Note that C is fourth order rather than sixth order, since two of the dimensions of A⊗B were summed
together.

2.1.2. Tensor networks
Although we have described the tensor product and the tensor contraction as operations which construct a
new tensor C from existing tensors A and B, it is equally valid to take the reverse view and interpret
equations (1) and (2) as representing an existing tensor C in terms of new components A and B. This
approach is the foundation of the tensor network representation, in which a tensor of interest is decomposed
into a set of contractions between component tensors [8, 9]. The number and order of these component
tensors are ultimately arbitrary, but most networks are constructed such that the component orders are all
significantly smaller than the order of the original tensor. Since the number of elements in a tensor scales
exponentially with its order (for a fixed index size), these component tensors will generally contain far fewer

2

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

Figure 1. Tensor network representing fifth-order tensor H, depicted using explicit summations (top) and a tensor diagram
(bottom). The network is generated by four different contractions, each of which is indicated in the diagram by a shared leg.
While it is possible to discern the contraction pattern of the component tensors by studying the index notation, the diagram
makes it obvious at a glance.

elements than the original tensor. This can allow for operations to be performed on the network that would
have been computationally intractable on the original, higher-order tensor.

As a very simple example of a tensor network, consider the sixth-order tensor C that is represented by the
contraction of two fourth-order tensors A and B, such that the elements of C are given by

Cijklmn =
t−1∑
r=0

AijkrBlmnr. (3)

Assuming that each index in equation (3) is of size t > 2, it is clear that tensor C has significantly more
elements (t6) than are contained in A and B combined (2t4). Using this representation, operations on C
which are localized to indices {i, j,k} or {l,m,n} can instead be performed on A or B respectively,
dramatically reducing their computational cost. Further inspection of equation (3) shows that the
contraction of A and B can yield a combined tensor that has rank at most t across dimension r, which is far
smaller than the largest possible rank of t3. This implies that most sixth-order tensors can only be
approximately represented by the contraction of A and B, with the quality of the approximation depending
on both the underlying rank structure of C and the size constraints placed on A and B. Similar trade-offs
occur across all tensor networks, with different contraction structures being better suited to represent
different higher-order tensors [10, 11].

Due to its simplicity, the network formed from A and B in equation (3) can be clearly conveyed by simply
listing out all of the indices explicitly. However, many tensor networks involve contractions between dozens
or even hundreds of tensors, each with their own set of indices. For notational clarity, it is common to use
tensor diagrams (also referred to as Penrose notation [12]) to represent the sets of contractions within more
complicated tensor networks. In these diagrams, each tensor is denoted using a geometric shape, while each
index is represented by a line or leg protruding outward from the shape. A tensor product is implied by
placing two tensors next to one another, and a contraction is indicated by having those tensors share one or
more legs. Figure 1 shows the relative simplicity of the diagram notation versus explicit summations when
several tensors are involved in the network. We utilize tensor diagrams, along with explicit index expressions,
throughout the remainder of this paper to help illustrate the relevant tensor operations.

2.1.3. Regression with tensors
Our work focuses on the use of tensor networks as a means of performing regression [13]. In a regression
task, the goal is to learn (or estimate) the relationship between a set ofm independent variables {xi}m−1

i=0

called features and a set of n dependent variables {yi}n−1
i=0 called labels. We denote a joint sample of these

m+ n variables as (⃗x, y⃗), where x⃗ ∈ Rm is a vector containing the values of the features and y⃗ ∈ Rn is a vector
containing the values of the labels. In the case of parametric regression, the relationship between x⃗ and y⃗ is
modeled by a function f⃗ such that

y⃗≈ f⃗ (⃗x;W), (4)

whereW is a set of learned parameters which determines the behavior of the function. We do not expect the
relationship in equation (4) to be exact for any intuitive function f⃗, except when the data is generated
artificially. Indeed, an exact reconstruction will generally be undesirable for real-world data, since the labels

3

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

are likely to contain noise that should not be directly copied into the model. Once f⃗ is learned, it can be used
to make predictions about the value of y⃗ for an unlabeled sample x⃗.

Tensor network regression can be understood as a specific form of tensor regression [14], in which a large
tensor of regression coefficients is generated by a network of smaller component tensors. In tensor
regression, the function f⃗ of equation (4) is expressed as the contraction of a data tensor X(⃗x), which is a
function of the features in a given sample, and a weight tensorW whose elements make up the set of
parametersW . The data tensor can, in principle, take on any form, but it is usually constructed from the
tensor product of a set ofm vector-valued functions {h⃗(i)}m−1

i=0 that each take as input a single feature:

where xi is the ith element of x⃗ and thus the ith feature out ofm. Note that the sequence of tensor products in
equation (5) is similar to a tensor network, insofar as it expresses a higher-order tensor X using a set of
order-one components which collectively contain exponentially fewer elements. The regression output
f⃗ (⃗x;W) is computed by contracting the weight tensorW with X:

whereW contains an additional dimension k that indexes the output vector of the model. This form of
regression is quite distinct from the standard deep learning paradigm, in that the transformation of the data
is effectively set in advance here via the data tensor featurization X(⃗x). All that is then left to optimize are the
coefficientsWki0...im that should be assigned to each of the new regressors. The same delineation cannot in
general be made for deep learning models, since they are formed from a composition of non-linear functions
that has no clear relation to any series expansion.

The precise role that the original features {xi}m−1
i=0 play in equation (6) depends on the form of X and

therefore on the set of functions {h⃗(i)}m−1
i=0 that were chosen. For our work we follow Novikov et al and use

functions of the form

h⃗(i)(xi) =

[
1
xi

]
, (7)

which have been used in other implementations of tensor network regression [4, 15, 16]. When equation (7)
is used to construct X, the regression function f⃗ (⃗x;W) from equation (6) becomes

fk(⃗x;W) =
1∑

i0...im−1=0

Wki0...im−1x
i0
0 x

i1
1 · · ·x

im−1

m−1, (8)

where 00 = 1 is assumed. Equation (8) shows that tensor regression, when using the definition of h⃗(i)(xi)
from equation (7), is equivalent to linear regression on all possible products formed between the original
features, plus a bias term when all of the indices are zero. Regression on the elements of X can therefore
generate functions f⃗ which have non-zero mixed derivatives with respect to the original features. For
example,

∂2

∂x0∂x1
fk(⃗x;W) =

1∑
i2...im−1=0

Wk11i2...im−1x
i2
2 x

i3
3 · · ·x

im−1

m−1. (9)

These non-zero derivatives make f⃗ significantly more expressive than functions generated by linear regression
directly on the original features in x⃗, for which all mixed derivatives must vanish.

2.2. Regression using tensor rings and tree tensor networks
Although straightforward mathematically, the approach to tensor regression outlined in section 2.1.3 is often
impractical due to the size of the weight tensorW. Inspection of equation (8) reveals that there are 2m

parameters inW, which is exponential in the number of features. Given that many regression tasks involve
data with hundreds or even thousands of features, this method of parameterization cannot be used. Tensor
network regression offers an alternative approach, in which the weight tensor is decomposed into a set of
low-order component tensors. The parametersW of the regression model are then taken to be the elements

4

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

Figure 2. Tensor diagrams depicting a tensor ring (TR) and a tree tensor network (TTN), which can both be used for regression.
The five component tensors of the TR are arranged in a line and connected together horizontally by five virtual indices, with a
physical index dangling vertically from each component. By contrast, the three components of the TTN are arranged in a binary
tree, with a pair of virtual indices connecting the two layers. The physical indices of the TTN are placed along the bottom layer,
although when used for regression an additional physical index is added to the top tensor to represent the output, as shown here.

of these tensors, rather than the elements ofW directly. This decomposition can be illustrated using figure 1,
in which H serves as the weight tensor while the components D, E, F, and G contain the actual parameters of
the model. Since the data tensor X is itself composed of vectors {h⃗(i)(xi)}m−1

i=0 , it is possible for the
contraction in equation (6) to be carried out using only the components ofW and X.

There exist a wide variety of tensor network architectures which can be used for regression. Our work
here will focus on two of the more popular designs: tensor rings [17, 18] and tree tensor networks [19, 20].
The structures of these networks are illustrated using tensor diagrams in figure 2, and are described in the
following subsections.

2.2.1. Tensor rings
The tensor ring (TR) is a popular type of tensor network, having been utilized for neural network
compression [21, 22] and image reconstruction [23–25]. As depicted in figure 2, a TR is constructed from a
1D sequence of third-order tensors contracted along a set of virtual indices that link neighboring tensors
together. The ‘ring’ part of a TR references the fact that the tensors at the beginning and end of the sequence
are also contracted together, forming a closed loop. In addition to its two virtual indices, each component
tensor also has a physical index, which becomes an index of the higher-order tensor after contraction of the
virtual indices. When a TR is used for regression, the physical indices are contracted with the {h⃗(i)(xi)}m−1

i=0

from the data tensor, except for one tensor whose physical index is left uncontracted to serve as the index of f⃗.
The TR is closely related to the matrix product state (MPS), which is used heavily in quantum many-body
physics [26] and also frequently utilized for tensor network regression [1, 2, 15]. The structure of an MPS
network, also referred to as a tensor train decomposition [27], is identical to that of a TR, except that the
tensors at the ends of the chain are second-order and thus not contracted together. In this work we use TRs
rather than MPSs due to the greater symmetry of the former, which allows us to employ simpler contraction
algorithms.

For tensor network regression to be practical, the sequence of contractions between components of X
and components of the network must be carried out such that all of the intermediate tensors are low-order.
For a TR, this can be easily achieved by performing the contractions in two stages, with the vectors
{h⃗(i)(xi)}m−1

i=0 first being contracted with their corresponding component tensors in the TR along the
physical index, which produces a new set of second-order tensors. These matrices are then contracted
together, along with the third-order tensor containing the regression output, using the virtual indices. For
m= 4, the diagrams of these steps are given by

where the legs colored in red are those that are contracted from one step to the next. When using the
functions from equation (7), the total number of parameters in a TR regression model is 2(m+ 1)r2, where r
is the size of the virtual indices. Since the number of featuresm is generally fixed for a given regression task
(after preprocessing), r serves as the primary tunable parameter in the model, with larger values of r placing
fewer restrictions on the elements ofW. If r is allowed to grow exponentially withm, then the TR can
represent an arbitrary weight tensorW, although this generally defeats the purpose of using a tensor
network. In practice, r is typically capped at between 10 and 100 for regression.

2.2.2. Tree tensor networks
A common alternative to the TR/MPS network is the tree tensor network (TTN), in which the component
tensors are arranged in a (typically binary) tree pattern. TTNs have been used for quantum simulation [19,
28], efficient tensor representation [29] (where it is known as the hierarchical Tucker decomposition), and for
regression [4, 30]. An example TTN is depicted in figure 2, showing that each component tensor has both a

5

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

horizontal and vertical position in the network. Similar to a TR, a TTN contains both virtual and physical
indices, but only the lowest layer of component tensors are contracted directly with the data tensor X. While
the structure of a TR can be applied easily to any value ofm, a binary TTN works most efficiently when
m= 2l, where l is the number of layers in the tree. Although these networks can be modified to handle other
values ofm, our work here will only consider regression tasks where the number of features is a power of two.

When used for tensor regression, the components in the bottom layer of the TTN are first contracted
with the {h⃗(i)(xi)}m−1

i=0 of X, which generates a new layer of m
2 first-order tensors. This is shown in the second

diagram of equation (11), where the new first-order tensors are depicted as dark blocks. These tensors are
then contracted with the second layer of the tree, generating m

4 first-order tensors. This process repeats

layer-by-layer until the regression output f⃗ (⃗x) is generated by contracting the top tensor, which is shown in
the third diagram of equation (11). The intermediate tensors created at each layer are always first-order,
which ensures that the procedure will be computationally tractable. Form= 4, the tensor diagrams for the
contractions are given by

with the number of tensors being approximately halved after each layer is contracted. As in equation (10), the
legs shown in red are contracted between each step. When using h⃗(i)(xi) of the form in equation (7), the
number of parameters in a TTN is 2mr+(m2 − 1)r3, which scales asO(r3) in contrast with theO(r2) scaling
of a TR. As a result, the size r of the virtual index is typically chosen to be on the order of 10. As with a TR, a
TTN can represent an arbitrary weight tensorW if r is allowed to scale exponentially withm.

3. Interaction decomposition

3.1. Motivation
Throughout our discussion of tensor network regression in section 2.2, the weight tensorW and data tensor
X were treated principally as abstract objects, in that they were only operated on numerically via their
component tensors. This was necessary on practical grounds, since the exponential scaling of bothW and X
makes it virtually impossible to perform operations on either tensor when the data has even a modest
number of featuresm. That said, there is an obvious mathematical clarity that comes from working directly
withW and X via the decomposition of equation (8), since the elements of X are simply products of the
original features while the elements ofW are the corresponding linear regression coefficients. If, for example,
we wished to perform regression using only a specific portion of the feature products, then we could just set
the elements ofW for all other feature products to zero and learn the remaining parameters as usual. Such a
straightforward modification is generally not possible when representing the weight tensor as a tensor
network, since each element ofW is a complicated function of all of the parameters in the model.

In this section we introduce the interaction decomposition of a tensor network, with the aim of recovering
some of the fine-tuned control and interpretability that comes from an element-wise representation of the
weight tensorW. In an interaction decomposition, the terms of the sum in equation (8) are grouped together
by the number of features included in their product, for a total ofm+ 1 groupings. The number of features in
a given product is labeled its interaction degree, such that x1 has degree 1, x1x2 has degree 2, and so on, with
the bias having degree 0. Under an interaction decomposition, the regression output f⃗ (⃗x;W) is written as

f⃗ (⃗x;W) =
m∑
j=0

d⃗ (j)(⃗x;W), (12)

where d⃗ (j)(⃗x;W) is the contribution to the regression output from all terms of degree j. As with f⃗ (⃗x;W),
these contributions are functions of both the original features x⃗ and the parametersW of the decomposed
network. We discuss ways of interpreting this decomposition in terms of vector subspaces in section 3.2.

Using equation (12), the relative importance of the jth interaction degree can be assessed by analyzing the
average magnitude of d⃗ (j)(⃗x;W), as well as its effect on the regression output. We carry out this analysis on
TR and TTN models in section 3.3. Furthermore, by choosing to keep only a specific subsetD of the
decomposition terms in equation (12), it is possible to construct a new type of regression model which we
call aD-degree tensor network. These networks utilize the same parameterization scheme forW as normal
tensor network models of the same architecture, but are restricted to generating only the feature products of
degrees contained inD. By comparing the performance of a full tensor network with that of aD-degree

6

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

version of the network, we can quantify how effectively the standard network is able to utilize interaction
degrees withinD. We introduce these models and perform numerical tests on them in section 3.4.

3.2. Interaction subspaces
In the context of vector spaces, the weight tensorW acts as a parameterized multilinear map between the
data tensor space X, which we take to be R2m , and the label space Y. Under this construction, the data tensor
X is simply a vector within X whose elements are generated from the features in x⃗ via the tensor-product
operations of equation (5). The nature of the d⃗ (j)(⃗x;W) terms from equation (12) can be understood by
considering the action ofW on a particular subspace decomposition of X. Using the definition of h⃗(i)(xi)
from equation (7), we can expand X on a standard basis of X as

X=
m−1⊗
i=0

(⃗e (i)
0 + xi⃗e

(i)
1) =

1∑
i1,...,im=0

xi00 · · ·x
im−1

m−1 e⃗
(0)
i0

⊗ . . .⊗ e⃗ (m−1)
im−1

, (13)

where {⃗e (i)
0 , e⃗ (i)

1 } spans the two-dimensional space inhabited by h⃗(i)(xi). In words, equation (13) shows that

the tensor products e⃗ (0)
i0

⊗ . . .⊗ e⃗ (m−1)
im−1

form a basis for X upon which the coefficients of X take the form of
feature products.

Looking at the structure of the tensor-product basis used in equation (13), it is possible to divide X into
the direct sum of subspaces {D(0), . . . ,D(m)}, where D(j) is a subspace spanned by the basis tensors

e⃗ (0)
i0

⊗ . . .⊗ e⃗ (m−1)
im−1

such that j of the component basis vectors are of the form e (i)
1 andm− j are of the form

e⃗ (i)
0 . The coefficients of X on the bases in D(j) consist of feature products of degree j, so we therefore refer to
D(j) as the degree-j subspace of X. The dimension of D(j) is given by

dim(D(j)) =

(
m

j

)
, (14)

which is the number of ways to draw j features from the total set ofm features. The dimension of the
combined feature space for a setD of degrees, denoted dim(D), is then

dim(D) =
∑
j∈D

(
m

j

)
, (15)

which is simply the sum of the subspace dimension for each degree inD. If we denote the projection into the
degree-j subspace as P(j), then the interaction decomposition becomes

where the regression output is a sum of contractions betweenW and the projection of X into each of the
m+ 1 degree subspaces. Due to the linearity of tensor contractions, this equality can be easily verified by
performing the sum over j first, since

∑
jP

(j) gives the identity.

The form of equation (16) provides two interpretations of the degree contributions d⃗ (j)(⃗x;W). If we
consider the projector P(j) acting on X, as originally envisioned, then d⃗ (j)(⃗x;W) is the contraction ofW
with the portion of X that inhabits D(j). This could be viewed as a form of data tensor preprocessing, where
elements of X corresponding to interaction degrees other than j are removed. Alternatively, the tensor
diagrams in equation (16) show that it is equally valid to consider P(j) acting on the weight tensorW. Under
this interpretation, the set {⃗d (j)(⃗x;W)}mj=0 consists of regressions on X performed by different models, each
derived from a common tensorW by keeping only those elements corresponding to interactions of degree j.
We will shift between these two interpretations freely throughout the remainder of this section, describing
the interaction decomposition as a procedure which picks out different pieces of a tensor network model and
which restricts the set of feature products that can be used for regression.

3.3. Interaction decompositions of TR and TTNmodels
The interaction decomposition of a TR or TTN regression model allows us to quantify the relative
importance of the jth interaction degree to the overall value of the output. This information is not available
when performing the standard contraction operations laid out in equations (10) and (11), since the elements

7

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

Figure 3. Plots of the L1 norm of d⃗ (j) (⃗x;W), averaged across the MNIST and Fashion MNIST test datasets, for ten TR models
and ten TTN models trained using all interaction degrees. Each dashed line represents the average magnitudes from one of the
models, which is plotted against the interaction degree j of the contribution. The trend for all models is broadly the same, with
magnitudes starting near 10−1 for the bias term and then gradually rising to a peak before dropping off significantly by degree 45.
Large variations in magnitude can be seen when comparing individual TR models and TTN models.

of the intermediate tensors are sums of contributions from a wide range of interaction degrees, making it
impossible to separate out the impact of any one degree. Given the unfavorable scaling of equation (14), a
brute force evaluation of each feature product in d⃗ (j)(⃗x;W) is also impractical for even modest values of j. In
appendix section ‘Procedure for the interaction decomposition’, we describe an alternative procedure that
efficiently contracts the TR and TTN component tensors in a manner that ultimately yields the same output
as the standard contraction, but also separates out the various d⃗ (j)(⃗x;W) contributions.

In this section, we carry out these interaction decompositions on TR and TTN models that were trained
to classify digits from the MNIST [31] and Fashion MNIST [32] datasets. These datasets have been widely
used to evaluate tensor network models in the literature, and thus serve as reasonable benchmarks for our
analysis. Given that the number of operations needed for a full interaction decomposition can scale
quadratically with the number of features (see appendix section ‘Procedure for the interaction
decomposition’), we resized each image from 28× 28 pixels to 8× 8 pixels in order to reduce the
computational burden of the tests. The grayscale pixels were also normalized to floating-point values on the
range [−0.5,0.5] to improve the numerical stability of the networks. The bond dimension of the TR and
TTN models was set to 20, providing them with sufficient representational power without excessive
overfitting. The regression output f⃗ (⃗x;W) was fit against one-hot encodings of the digit labels and optimized
using gradient descent with a mean squared error loss function. During training the networks were
contracted normally, with the interaction decomposition being performed at the end using the test dataset.

To begin our analysis, we focus first on the magnitudes of the different d⃗ (j)(⃗x;W) contributions. To
produce a single magnitude for each degree, we computed the L1 norm of d⃗ (j)(⃗x;W) for each image in the
test dataset, and then averaged over the set. Figure 3 shows the resulting magnitudes for ten TR models and
ten TTN models, all trained using the same hyperparameters but with different initial values for the tensor
elements. Across both datasets the TR and TTN plots show a similar pattern, with the degree magnitudes
starting at approximately 10−1 for j= 0 and then growing steadily to some maximum value before declining
again at larger j. The size and location of the peak varies significantly between the MNIST and Fashion

8

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

Figure 4. Plots of the average classification accuracy for the TR models and TTNmodels, trained using all interaction degrees, as a
function of interaction degree j, using the MNIST and Fashion MNIST test datasets. The scatter plots show the accuracy of each

d⃗ (j) (⃗x;W) term individually, while the solid line shows the accuracy of the sum of contributions from all degrees less than or
equal to its position on the x-axis. On MNIST (Fashion MNIST), the cumulative accuracies of the TR and TTN models are equal
to 98.31% (82.73%) and 98.49% (83.43%) respectively when all degrees are included, with the performance plateauing at degree
31 (44) for the TRs and 38 (54) for the TTNs. The accuracies of the individual contributions are all very low, with the vast
majority of interaction degrees having almost no independent classification ability.

MNIST models, with the MNIST models peaking from 0.1 to 1 at around degrees 10 to 15 while the Fashion
MNIST models peak from 102 to 104 at around degrees 17 to 23. After the peak, the magnitudes begin to
drop off precipitously, with interaction degrees greater then 45 typically having contributions orders of
magnitude smaller than those from degrees before the peak. The inset plots of figure 3 show that there is a
significant amount of variation between individual models of a given network type and dataset, with some
models having magnitudes 10 or even 100 times larger than others.

A significant limitation of the magnitude analysis from figure 3 is that it can be difficult to assess the true
importance of a degree contribution using only its average magnitude. Indeed, even if a set of degrees all have
small individual magnitudes, their cumulative effect on the output may still be important. To better assess
the ‘usefulness’ of the degree contributions, we computed the accuracy of the TR and TTN classifiers as a
function of interaction degree, both individually and cumulatively. Figure 4 shows these accuracies after
averaging over the models of each network type. The cumulative accuracy (shown using a solid line) of
degree j denotes the accuracy of the output generated by the sum of all degree contributions less than or
equal to j, while the individual accuracy of degree j (shown as a point on the scatter plot) gives the
performance of d⃗ (j)(⃗x;W) alone. The dimension of the expanded feature space corresponding to each data
point is determined by equation (15).

From the plots of cumulative accuracy, we can see that the average performance of both the TR and TTN
networks plateaus at slightly over 98% on MNIST (98.31% for the TRs and 98.47% for the TTNs when all
degrees are included), which is consistent with prior work [2, 4, 15]. On Fashion MNIST the accuracies are

9

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

signficantly lower, at 82.73% for the TR and 83.43% for the TTN3. These final accuracy values are of less
significance to us than the interaction degree at which the curve flattens. On MNIST (Fashion MNIST) this
occurs at approximately j= 31 (44) for the TRs, and at j= 38 (54) for the TTNs. Looking back at the
magnitudes from figure 3, this indicates that even contributions on the order of 10−3 can still improve the
performance of the classifier. Interestingly, all four of the accuracy curves show a temporary flattening before
degree 10, followed by a second upward rise. This effect is least visible on the TR MNIST curve and most
visible on the two Fashion MNIST curves, with the latter pair of curves seeing most of their accuracy gains
after degree 10.

Based on the accuracies of the individual contributions d⃗ (j)(⃗x;W), which are shown in figure 4 using
scatter plots, it is clear that only the first few interaction degrees are having their coefficients optimized such
that they can classify images independently. The remaining contributions, which constitute the vast majority
of regressors, have accuracies close to 10% and therefore do not separate the different digit classes to any
appreciable extent when used in isolation. This suggests that the higher-degree d⃗ (j)(⃗x;W) have been trained
essentially to correct or finesse the cumulative output from the lower degrees, since the cumulative accuracy
continues to increase as their outputs are incorporated. This trend is particularly marked for the Fashion
MNIST models, where only degrees 1 and 2 have accuracies above 12%. Indeed, plots C and D from figure 3
show that many of the regressors in these models are being used to cancel out the large magnitudes of the
intermediate degrees, since the final regression output needs to be roughly in the range [0, 1] to achieve a
reasonable loss value.

3.4. Interaction decompositions as regressionmodels
In section 3.3, we used the interaction decomposition as a tool to analyze tensor network models that had
been trained using standard methods. As a result, the parameters of each model were optimized under the
assumption that every interaction degree would contribute to the final output, without any truncation or
isolation. This offers the greatest flexibility to the model in principle, but it can also obscure the potential
success that a single degree or subset of degrees might have had if the parameters of the network had been
optimized to improve their performance specifically.

In light of this fact, we propose a new type of tensor network model called theD-degree tensor network.
In these models, only interaction degrees in the setD are used to construct the regression output, such that

f⃗ (⃗x;W) =
∑
j∈D

d⃗ (j)(⃗x;W). (17)

Comparing this expression to the full interaction decomposition given in equation (12), it is clear that ifD is
the set of all interaction degrees (i.e. ifD = {0,1, . . . ,m}), then the correspondingD-degree network is
equivalent to a standard tensor network with the same structure. However, we will focus our attention on
models whereD contains only a fraction of them+ 1 possible interaction degrees. By restricting the
regression in this manner, we are effectively inducing sparsity in the weight tensorW by zeroing the
coefficients for all interaction degrees not included inD. However, unlike in the case of sparse neural
networks [34, 35], this sparsity does not necessarily lead to a reduction in the number of trainable
parameters or to an improvement in the computational overhead. Instead, the sparsity leads to a
simplification in the structure of the regression function, which can yield a model that is more easily
interpretable while still achieving the same level of performance.

Using the decomposition procedure described in appendix section ‘Procedure for the interaction
decomposition’, it is possible to efficiently trainD-degree models on the same regression tasks used in
section 3.3, and thus compare their classification accuracies with those shown in figure 4. For our tests, we
selectedD-degree models that fell into two categories: the cumulative-jmodels, in which all degrees less than
or equal to j are included in the output, and the degree-jmodels, in which the output is simply the
contribution from the jth degree:

Cumulative-j : f⃗ (⃗x;W) =

j∑
j ′=0

d⃗ (j ′)(⃗x;W), Degree-j : f⃗ (⃗x;W) = d⃗ (j)(⃗x;W). (18)

These two groups describe only a small portion of the 2m+1 − 1 possibleD-degree models, but they will
allow us to easily compare our results with the plots in figure 4. For our numerical tests, we trained the

3 Tensor networks can achieve significantly higher accuracies on 28× 28 FashionMNIST [3–5], but the decrease in performance at 8× 8
is much more severe than for standard MNIST, due to the greater image complexity. For comparison to more state-of-the-art methods,
an Inception convolutional network [33] can achieve accuracies of 99.09% on 8× 8 MNIST and 86.5% on 8× 8 Fashion MNIST (see
appendix section ‘Regression model comparisons’).

10

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

Figure 5. Plots of average accuracy on the MNIST and Fashion MNIST test datasets forD-degree models parameterized by TRs
and TTNs, with ten models being averaged for each degree. The solid black line indicates the cumulative accuracy of the standard
tensor network models analyzed in section 3.3, as plotted in figure 4, with the dashed line showing the accuracy when all
interaction degrees are included. The degree-jmodels generally demonstrate worse performance than the cumulative-jmodels,
though the difference is very small on MNIST. The cumulative-jmodels were able to closely match the accuracies of the full
models on both datasets, and even slightly exceed their performance on MNIST.

models on 8× 8 images from the MNIST and Fashion MNIST datasets prepared in the same manner
described in section 3.3. TheD-degree models take somewhat longer to train than standard tensor network
models due to the added complexity of the interaction decomposition, but their times are still on par with
those of neural network models (see appendix section ‘Regression model comparisons’).

Figure 5 shows average accuracies of the cumulative-j (blue plots) and degree-j (orange plots) models as a
function of j, with each data point representing an average across ten models. These averages are plotted
alongside the cumulative data from figure 4, which shows the performance of the full tensor network models
as a reference. We emphasize that the cumulative-j and degree-j curves in figure 5 are computed in precisely
the same manner as the line and scatter plots from figure 4, except that the models which generated figure 4
were trained using all of the interaction degrees rather than just the specific subset being plotted. The plots
for theD-degree models omit results for j= 0, since those models contain only the bias term and thus
predict the same digit for every image. The data used to generate these plots is given in appendix section
‘Tabulation ofD-degree Model performance’.

The first trend to observe from figure 5 is that both the cumulative-j and degree-jmodels have accuracies
that are significantly greater than the corresponding cumulative accuracy at degree j from the full tensor
network models. This performance gap is notable, because it implies that the standard models are utilizing
the feature-product regressors in a highly inefficient manner. For MNIST in particular, the degree-j classifiers
with j> 3 were able to perform within 0.5% of the full model. As a comparison, the cumulative MNIST
accuracy of the regular TR and TTN models using degrees 0–4 is only 71% and 61% respectively. The
disparity is even larger when looking at the single-degree accuracies from figure 4, which show that most
individual d⃗ (j)(⃗x;W) were unable to classify images at all when trained as part of a full tensor network

11

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

model. When those degree contributions were optimized directly, however, they were able to perform
classification with more than 98% accuracy. The degree-jmodels did not perform as well on Fashion MNIST,
though they still achieved accuracies that were vastly higher than the corresponding cumulative accuracies
from figure 4. The cumulative-jmodels, on the other hand, were able to closely match the performance of the
standard models, with the cumulative-10 TR and cumulative-8 TTN models coming within 0.1% of their
full-degree counterparts.

The dashed horizontal lines in figure 5 mark the accuracy of the full tensor network models when every
degree contribution is included. Using these values as a benchmark, we can see that several of the
cumulative-j TTN models (6⩽ j⩽ 10) and degree-j TTN models (7⩽ j⩽ 10) actually outperformed the
corresponding full model on the MNIST dataset. This is a counter-intuitive result, as it suggests that
regressing on all of the interaction degrees can actually yield slightly worse results than regressing on only a
small subset of them. A cumulative-8 TTN model, for example, uses only one-billionth of the feature
products contained within the data tensor X, yet achieves an average accuracy roughly 0.1% higher than a
TTN model which has access to all of X.

Finally, we note that a comparison can be made between the performance of theseD-degree network
models, which constrain the feature product coefficients to all be generated by the same low-rank tensor
network, and a more general multilinear regression model in which every coefficient can be determined
arbitrarily. In appendix section ‘Regression model comparisons’, we give results for this type of
unconstrained regression on features products up to degree 4, which shows that the cumulative-jmodels
achieve accuracies very near the arbitrary models of degree j, and can outperform them for larger values of j
even when the tensor network models contain fewer trainable parameters. This demonstrates the utility of
incorporating more interactions (up to a point), since constrained regression on higher-degree feature
products is more effective than unconstrained regression on lower-degree feature products.

4. Discussion

The exponential feature space induced by the transformation in equation (5) lies at the heart of tensor
network regression, and there is no doubt that these models utilize it to achieve a level of performance that
far exceeds standard linear regression. That said, it is easy to feel incredulous toward the idea that tensor
network models, or indeed any regression model, could truly make use of the 264 different regressors that are
generated from an 8× 8 image. The goal of our work here has been to develop the interaction decomposition
as a tool to test this claim, and then apply it to tensor network models under a pair of standard machine
learning tasks. By evaluating the magnitudes and accuracies of the different interaction degrees, we can begin
to draw conclusions about how effectively the exponential space is being utilized.

To this end, our results from section 3.3 show that more than half of the interaction degrees contributed
meaningfully to the output of the classifiers, with the Fashion MNIST TTN models in particular using up to
degree 50. In the language of section 3.2, this indicates that the tensor network models are utilizing a portion
of the expanded feature space X that has a dimension on the order of 1019, which can be computed by
summing equation (14) across all significant degrees. It is important to note, however, that figure 4 only
shows the change in accuracy for the jth interaction degree when the entirety of subspace D(j) is
incorporated into the regression. It may very well be that the models in section 3.3 are utilizing only a small
portion of this space, and thus the number of relevant feature products could be far smaller than the
upper-bound of 1019. The interaction decomposition cannot separate out different parts of a given degree-j
subspace, so future work might look into alternate algorithms that are able to divide up these spaces into
meaningful components.

For a given interaction degree, one can ask not only if the set of feature products is being utilized by a
tensor network model, but also how well the model is using them relative to some standard. In section 3.4 we
introduced theD-degree tensor network to serve as this standard, since its parameters could be trained to
maximize performance using only a specific subset of interaction degrees. In our tests, the networks were
limited to interaction degrees of at most 10, which corresponds to an expanded features space of dimension
at most 1011 as given by equation (15). The results shown in figure 5 demonstrate that the full tensor network
models are significantly under-utilizing the lower-degree interactions, since theD-degree models are able to
achieve accuracies up to 60 percentage points higher when constrained to those same degrees. This
under-utilization was especially acute for Fashion MNIST, where the full models only reached cumulative
accuracies of 25% for the first ten degrees, despite the fact that the cumulative-10 models had accuracies near
83%.

More significantly, someD-degree models trained using only the first six interaction degrees were able to
achieve accuracies on MNIST that were greater than those of models trained using all degrees. While this
could simply be due to more overfitting in the full models, it might also point to inherent limitations in the

12

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

tensor network representation ofW. We know, for example, that the regression coefficients in a tensor
network model are necessarily coupled together by the elements of the component tensors, which may force
the model to use suboptimal coefficients for the lower interaction degrees in order to avoid harmful
contributions from the higher degrees. Given that detailed, ‘under-the-hood’ analyses of these models are
possible using methods such as the interaction decomposition introduced here, the existence and nature of
this compromise seems like a promising area for further study.

Taken together, the results discussed here support the following two conclusions:

(a) Common tensor network models are capable of utilizing regressors from a large portion of the
expanded feature space generated by the featurization from [1].

(b) However, a comparable level of performance may also be achieved by regression on a minuscule fraction
of that same space.

For those looking to use tensor network models for machine learning, there is cause here for both
optimism and caution. While the first conclusion makes it clear that tensor network regression models can
incorporate useful information from a wide range of interaction degrees, the second conclusion implies that
it is difficult for these models to extract any unique information from the higher-degree regressors. In light of
this, we believe that theD-degree tensor network models, which have been absent in the literature up to this
point, represent a promising approach for tensor network regression. Using these models, it is possible to
exploit the representational efficiency of tensor networks while constraining the regression to a reasonable
and interpretable set of feature products based on the inherent complexity of the dataset.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgment

Funding for this work was provided by the UC Noyce Initiative.

Appendix

Procedure for the interaction decomposition
In this section, we describe a procedure that can be used to carry out the interaction decomposition of any
tensor network. At its core is a tensor operation that we call the degree-preserving tensor product, denoted ⊗̃,
which is defined betweenm+ 1th order tensor A and n+ 1th order tensor B as

(A ⊗̃ B)ji0...im−1k0...kn−1 =
∑

ja+jb=j

Ajai0...im−1Bjbk0...kn−1 , (19)

where the resulting tensor is of orderm+ n+ 1 and 0⩽ j⩽max(ja)+max(jb). Note that this operation
attaches special significance to the first dimension, which we will hereafter refer to as the degree index. As
shown in equation (19), the jth slice of A ⊗̃ B along the degree index is given by the sum of tensor products
taken between slices of A and of B, such that the sum of the degree indices for those slices is equal to j. Like
the normal tensor product, the degree-preserving tensor product is associative and commutative up to a
permutation of the (non-degree) indices, and multilinear in its two arguments. Using this new variation of
the tensor product, we can also define a degree-preserving contraction in the same manner as equation (2),
such that the contraction of fourth-order tensors A and B is given by

Cjklqr =
∑

ja+jb=j

∑
i

AjakilBjbqri. (20)

The utility of these degree-preserving operations becomes apparent if we alter the featurization in
equation (7) to be

H(i)(xi) =

[
1 0
0 xi,

]
, (21)

which simply embeds h⃗(i)(xi) along the diagonal of a 2× 2 matrix. Note that the degree index of this tensor
matches up with the interaction degree of its non-zero elements, since the first row (index 0) is a constant

13

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

while the second row (index 1) is xi. This correspondence is maintained by the degree-preserving tensor
product of H(i) and H(k):

H(i) ⊗̃ H(k) =

[1 0
0 0

]
,

[
0 xi
xk 0

]
,

[
0 0
0 xixk

] , (22)

where the non-zero elements all have an interaction degree equal to their position along the degree index.
Since the zero elements do not contribute anything during a tensor contraction, equation (22) also indicates
that any degree-preserving contraction between H(i) and H(k) would likewise maintain the correspondence
between degree index and interaction degree.

Using the degree-preserving tensor product and contraction operations, along with the new featurization
maps H(i)(xi), the interaction decomposition of a tensor network regression model can be carried out using
the following procedure:

(a) Add a degree index of size one (i.e. an index that can only take a value of 0) to each component tensor of
the network representingW. This increases the order of each tensor by one, but leaves the actual number
of elements unchanged.

(b) Construct (implicitly) a modified data tensor X̃ using the mappings from equation (21), such that
X̃(⃗x) =H(0)(x0) ⊗̃ H(1)(x1) ⊗̃ . . . ⊗̃ H(m−1)(xm−1).

(c) Use degree-preserving contraction operations to contract X̃ with the tensor network, following
whichever efficient contraction scheme is appropriate for the network architecture of the model.

(d) If the decomposition is being used to contract aD-degree network, then the degree index of all
intermediate tensors can be be truncated to the largest degree inD.

Since the contraction of the network is done using degree-preserving contractions, the contributions
from each interaction degree are kept separate throughout the entire process. The final output of the
interaction decomposition (without truncation) is a second-order tensor of the form

F(⃗x;W) =
[⃗
d (0)(⃗x;W), d⃗ (1)(⃗x;W), . . . , d⃗ (m)(⃗x;W)

]
, (23)

where d⃗ (j)(⃗x;W) is the degree-j contribution to the combined regression output f⃗ (⃗x;W). The
computational cost of the procedure described above is best understood in terms of how much additional
complexity it adds on top of a standard contraction of the network. This complexity comes from two sources:
larger intermediate tensors due to the addition of the degree index, and an extra sum over the degree index
that is present in the degree-preserving tensor product from equation (19). The first contribution is easy to
characterize, since adding a degree index simply increases the size of the original tensors by a factor that is on
the order of the maximum interaction degree jmax in the decomposition. The second contribution is more
subtle, since the number of terms in the tensor-product sum depends on the relative sizes of the degree
indices of the two inputs. Consider again the tensor product between A and B from equation (19), and let j̄a
and j̄b be the largest value of the degree index for A and B respectively, with j̄= j̄a + j̄b and j̄a ⩽ j̄b. Then it it
can be shown that the number of terms s needed to generate all j̄+ 1 slices of A ⊗̃ B is given by

s= (j̄a + 1)(j̄b + 1), (24)

which scales asO(j̄ājb). This means that, for a fixed j̄, the value of s can range from a minimum of j̄+ 1 if
j̄a = 0 to a maximum of 1

4 (̄ j)
2 + j̄+ 1 for the fully symmetric case when j̄a = j̄b =

1
2 j̄. Given that the last

contractions in the interaction decomposition will have j̄ on the order of jmax, this means that the most
complex degree-preserving tensor products can either scale asO(j2max) orO(jmax), depending on the amount
of symmetry between the two input tensors. The fact that more symmetric contraction schemes can lead to
worse scaling (quadratic rather than linear in jmax) is an interesting property of this method, although the use
of such schemes may still be desirable due to other computational advantages.

Tabulation of D-degree model performance
The following two tables show the results of the numerical tests described in section 3.4 and plotted in
figure 5, along with the relevant cumulative accuracy values for the full models from figure 4. Table 1 gives
the accuracies for MNIST, while table 2 provides them for Fashion MNIST. Each value represents the average
percent test accuracy across ten different initializations of the given model type, with the standard error of
the last digit shown in parentheses. For the cumulative-j and degree-jmodels the column label denotes the

14

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

Table 1. Table of average accuracy vs degree for the six different model types on MNIST, for figure 5.

1 2 3 4 5 6 7 8 9 10 64

Full TR 27.5(5) 46(1) 62(1) 70.8(8) 76(1) 79(2) 83(3) 86(3) 87(3) 88(3) 98.31(2)
Cumulative
TR

84.6(1) 96.23(3) 97.79(3) 98.03(3) 98.21(2) 98.21(3) 98.30(4) 98.28(3) 98.31(4) 98.31(2) —

Degree TR 84.67(6) 96.22(2) 97.74(3) 98.06(3) 98.11(2) 98.19(3) 98.23(2) 98.22(3) 98.31(3) 98.22(3) —
Full TTN 21.7(6) 42(1) 53(1) 61(1) 68(1) 71(2) 73(2) 72(2) 73(2) 74(3) 98.49(3)
Cumulative
TTN

84.76(7) 96.39(2) 98.03(2) 98.36(2) 98.46(1) 98.51(2) 98.54(3) 98.57(1) 98.54(1) 98.54(1) —

Degree
TTN

84.76(8) 96.44(2) 97.93(2) 98.39(2) 98.44(3) 98.47(2) 98.52(3) 98.53(2) 98.49(2) 98.51(1) —

Table 2. Table of average accuracy vs degree for the six different model types on Fashion MNIST, for figure 5.

1 2 3 4 5 6 7 8 9 10 64

Full TR 20.2(4) 25.3(5) 26(1) 25(1) 25.5(9) 25(1) 25(1) 25(1) 27(1) 28(1) 82.73(9)
Cumulative
TR

71.73(6) 79.64(7) 81.47(5) 82.05(8) 82.42(7) 82.3(1) 82.47(6) 82.51(7) 82.54(9) 82.60(7) —

Degree TR 70.27(8) 78.57(5) 80.33(8) 80.77(7) 80.60(6) 80.3(1) 79.82(7) 79.07(6) 78.7(1) 78.18(9) —
Full TTN 17.8(3) 21.0(3) 23.2(8) 21(1) 22(1) 22(1) 22(1) 22(1) 24(2) 24(2) 83.43(6)
Cumulative
TTN

71.63(7) 80.09(6) 82.26(7) 82.78(6) 83.14(6) 83.18(7) 83.29(7) 83.37(6) 83.17(9) 83.31(4) —

Degree
TTN

70.30(4) 78.69(6) 80.80(5) 81.35(6) 81.51(5) 81.26(8) 80.76(8) 80.33(9) 80.0(1) 79.4(1) —

Table 3. Table of parameter number, seconds of computation per epoch (with batch size of 64), and average classification accuracies on
MNIST and Fashion MNIST for various regression models. The averages were computed across ten different initializations, with the
standard error of the last digit given in parentheses.

Parameters Seconds per epoch MNIST accuracy Fashion MNIST accuracy

Linear 65 2 84.7(1) 71.35(8)
Bilinear 2081 2 96.47(1) 80.20(6)
Trilinear 43 745 3 98.13(2) 82.32(7)
Tetralinear 679 121 11 98.46(1) 82.33(3)
Full TR 51 200 2 98.31(2) 82.73(9)
Full TTN 250 560 3 98.49(3) 83.43(6)
Cumulative-10 TR 51 200 29 98.31(2) 82.60(7)
Cumulative-8 TTN 250 560 18 98.57(1) 83.37(6)
Inception CNN 1196 530 23 99.27(3) 86.64(9)

value of j, while for the full models they denote the cumulative accuracy of the output up to the jth
interaction degree.

Regressionmodel comparisons
In table 3, we compare our TR and TTN models with several low-order multilinear models and a deep
learning model, in terms of their number of trainable parameters, computation time per epoch, and average
accuracies on the 8× 8 image datasets. The linear, bilinear, trilinear, and tetralinear regression models
perform unconstrained regression on feature products of degree less than or equal to 1, 2, 3, and 4
respectively, which are the same regressors used by the cumulative-jmodels for 1⩽ j⩽ 4. By ‘unconstrained’,
we mean that the coefficients for each feature product can be set arbitrarily rather than being generated by a
low-rank tensor network. To offer a comparison with state-of-the-art neural network algorithms, we also
provide the corresponding numbers for a convolutional neural network (CNN) model based on the
Inception [33] architecture, which contains the most parameters and achieves the best performance on both
datasets.

ORCID iDs

Ian Convy https://orcid.org/0000-0003-1818-2677
K Birgitta Whaley https://orcid.org/0000-0002-7164-4757

15

https://orcid.org/0000-0003-1818-2677
https://orcid.org/0000-0003-1818-2677
https://orcid.org/0000-0002-7164-4757
https://orcid.org/0000-0002-7164-4757

Mach. Learn.: Sci. Technol. 3 (2022) 045027 I Convy and K B Whaley

References

[1] Novikov A, Trofimov M and Oseledets I 2016 Exponential machines (arXiv:1605.03795 [cs, stat])
[2] Stoudenmire E and Schwab D J 2016 Supervised learning with tensor networks Advances in Neural Information Processing Systems

vol 29 (Red Hook, NY: Curran Associates, Inc.)
[3] Glasser I, Pancotti N and Cirac J I 2018 Supervised learning with generalized tensor networks (arXiv:1806.05964 [cond-mat,

physics:quant-ph, stat])
[4] Stoudenmire E M 2018 Learning relevant features of data with multi-scale tensor networks Quantum Sci. Technol. 3 034003
[5] Chen Y, Pan Y and Dong D 2021 Residual tensor train: a flexible and efficient approach for learning multiple multilinear

correlations (arXiv:2108.08659 [cs])
[6] Kolda T and Bader B 2009 Tensor decompositions and applications SIAM Rev. 51 455–500
[7] Hackbusch W 2012 Tensor Spaces and Numerical Tensor Calculus (Springer Series in Computational Mathematics) (Heidelberg:

Springer)
[8] Biamonte J and Bergholm V 2017 Tensor networks in a nutshell (arXiv:1708.00006 [cond-mat, physics:gr-qc, physics:hep-th,

physics:math-ph, physics:quant-ph])
[9] Bridgeman J C and Chubb C T 2017 Hand-waving and interpretive dance: an introductory course on tensor networks J. Phys. A:

Math. Theor. 50 223001
[10] Grasedyck L, Kressner D and Tobler C 2013 A literature survey of low-rank tensor approximation techniques GAMM-Mitteilungen

36 53–78
[11] Evenbly G and Vidal G 2011 Tensor network states and geometry J. Stat. Phys. 145 891–918
[12] Penrose R 1971 Applications of negative dimensional tensors Combinatorial Mathematics and its Applications vol 1 (Cambridge:

Academic) pp 221–44
[13] Hastie T, Tibshirani R and Friedman J 2009 The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer

Series in Statistics) 2nd edn (New York: Springer)
[14] Liu Y, Liu J, Long Z and Zhu C 2022 Tensor Computation for Data Analysis (Cham: Springer)
[15] Efthymiou S, Hidary J and Leichenauer S 2019 Tensornetwork for machine learning (arXiv:1906.06329 [cond-mat, physics:physics,

stat])
[16] Meng Y M, Zhang J, Zhang P, Gao C and Ran S J 2021 Residual matrix product state for machine learning (arXiv:2012.11841

[cond-mat, physics:quant-ph])
[17] Zhao Q, Zhou G, Xie S, Zhang L and Cichocki A 2016 Tensor ring decomposition (arXiv:1606.05535 [cs])
[18] Mickelin O and Karaman S 2020 On algorithms for and computing with the tensor ring decomposition Numer. Linear Algebra

Appl. 27 e2289
[19] Shi Y, Duan L and Vidal G 2006 Classical simulation of quantum many-body systems with a tree tensor network Phys. Rev. A

74 022320
[20] Oseledets I V and Tyrtyshnikov E E 2009 Breaking the curse of dimensionality, or how to use SVD in many dimensions SIAM J. Sci.

Comput. 31 3744–59
[21] Wang W, Sun Y, Eriksson B, Wang W and Aggarwal V 2018 Wide compression: tensor ring nets Proc. IEEE Conf. on Computer

Vision and Pattern Recognition pp 9329–38
[22] Pan Y, Xu J, Wang M, Ye J, Wang F, Bai K and Xu Z 2019 Compressing recurrent neural networks with tensor ring for action

recognition Proc. AAAI Conf. on Artificial Intelligence vol 33 pp 4683–90
[23] Yuan L, Li C, Mandic D, Cao J and Zhao Q 2019 Tensor ring decomposition with rank minimization on latent space: an efficient

approach for tensor completion Proc. AAAI Conf. on Artificial Intelligence vol 33 pp 9151–8
[24] Zhao Q, Sugiyama M, Yuan L and Cichocki A 2019 Learning efficient tensor representations with ring-structured networks ICASSP

2019—2019 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) pp 8608–12
[25] He W, Yokoya N, Yuan L and Zhao Q 2019 Remote sensing image reconstruction using tensor ring completion and total variation

IEEE Trans. Geosci. Remote Sens. 57 8998–9009
[26] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys., NY 326 96–192
[27] Oseledets I V 2011 Tensor-train decomposition SIAM J. Sci. Comput. 33 2295–317
[28] Murg V, Verstraete F, Legeza O and Noack R M 2010 Simulating strongly correlated quantum systems with tree tensor networks

Phys. Rev. B 82 205105
[29] Grasedyck L 2010 Hierarchical singular value decomposition of tensors SIAM J. Matrix Anal. Appl. 31 2029–54
[30] Liu D, Ran S-J, Wittek P, Peng C, García R B, Su G and Lewenstein M 2019 Machine learning by unitary tensor network of

hierarchical tree structure New J. Phys. 21 073059
[31] LeCun Y, Cortes C and Burges C 1998 MNIST handwritten digit database (available at: http://yann.lecun.com/exdb/mnist/)
[32] Xiao H, Rasul K and Vollgraf R 2017 Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms

(arXiv:1708.07747 [cs, stat])
[33] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A 2015 Going deeper with

convolutions 2015 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE) pp 1–9
[34] Srinivas S, Subramanya A and Babu R V 2017 Training sparse neural networks 2017 IEEE Conf. on Computer Vision and Pattern

Recognition Workshops (CVPRW) pp 455–62
[35] Liu B, Wang M, Foroosh H, Tappen M and Penksy M 2015 Sparse convolutional neural networks 2015 IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR) pp 806–14

16

http://arxiv.org/abs/1605.03795
http://arxiv.org/abs/1806.05964
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2058-9565/aaba1a
http://arxiv.org/abs/2108.08659
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
http://arxiv.org/abs/1708.00006
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1007/s10955-011-0237-4
https://doi.org/10.1007/s10955-011-0237-4
http://arxiv.org/abs/1906.06329
http://arxiv.org/abs/2012.11841
http://arxiv.org/abs/1606.05535
https://doi.org/10.1002/nla.2289
https://doi.org/10.1002/nla.2289
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1137/090748330
https://doi.org/10.1137/090748330
https://doi.org/10.1109/TGRS.2019.2924017
https://doi.org/10.1109/TGRS.2019.2924017
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevB.82.205105
https://doi.org/10.1103/PhysRevB.82.205105
https://doi.org/10.1137/090764189
https://doi.org/10.1137/090764189
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1088/1367-2630/ab31ef
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1708.07747

	Interaction decompositions for tensor network regression
	1. Introduction
	2. Tensor network regression
	2.1. Background
	2.1.1. Tensor overview
	2.1.2. Tensor networks
	2.1.3. Regression with tensors

	2.2. Regression using tensor rings and tree tensor networks
	2.2.1. Tensor rings
	2.2.2. Tree tensor networks

	3. Interaction decomposition
	3.1. Motivation
	3.2. Interaction subspaces
	3.3. Interaction decompositions of TR and TTN models
	3.4. Interaction decompositions as regression models

	4. Discussion
	Appendix
	Procedure for the interaction decomposition
	Tabulation of D-degree model performance
	Regression model comparisons

	References

