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Abstract
Mechanical exfoliation of graphene and its identification by optical inspection is one of the
milestones in condensed matter physics that sparked the field of two-dimensional materials.
Finding regions of interest from the entire sample space and identification of layer number is a
routine task potentially amenable to automatization. We propose supervised pixel-wise
classification methods showing a high performance even with a small number of training image
datasets that require short computational time without GPU. We introduce four different
tree-based machine learning (ML) algorithms—decision tree, random forest, extreme gradient
boost, and light gradient boosting machine. We train them with five optical microscopy images of
graphene, and evaluate their performances with multiple metrics and indices. We also discuss
combinatorial ML models between the three single classifiers and assess their performances in
identification and reliability. The code developed in this paper is open to the public and will be
released at github.com/gjung-group/Graphene_segmentation.

1. Introduction

The fact that a few layers of graphene sheet can be prepared by simple mechanical exfoliation [1, 2] has
facilitated a rapid growth of graphene and other two-dimensional (2D) van der Waals (vdW) materials
research. In particular, graphene has been studied in a wide range of applications in recent years due to its
unique electrical, mechanical, and optical properties [3–10]. The recent discovery of a robust unconventional
superconductivity in twisted graphene systems [11–15] has reinvigorated research in graphene and other 2D
vdWmaterials [16–21].

After the mechanical exfoliation of 2D materials, the number of layers of graphene or other vdW
materials can be identified by various techniques including atomic force microscopy [22, 23], Raman
spectroscopy [22, 24], or optical microscopy (OM) [25–28]. Among them, the most commonly used method
is based on the optical contrast between single and multilayer graphene layers with different thicknesses in
RGB color space of OM images of materials placed on a substrate of specific thickness [25–28]. However, it is
a time consuming process to process more than∼103 scanned OM images to identify the interesting few
layers exfoliated flakes regions deposited on the substrate. Here we propose a practical machine learning
(ML) image recognition method that can be used to quickly identify specific target few layers graphene
regions.

Traditionally, ML based techniques have been applied successfully in many different fields of industrial
applications or services requiring repetitive human labor. Especially, image classification using deep learning
(DL) has emerged as a game changer technique that has allowed drastic reduction of analysis time from
hours to seconds. For example, the convolutional neural network (CNN) has been used in biomedical fields,
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such as abdominal CT scan, cell, hippocampus, and pancreas segmentations [29–32], and in analyzing big
image data obtained from satellites [33, 34] providing significant aid to error-prone human eyes [35–38].

Recent works have used ML techniques to identify the number of layers in a thin film of materials. These
researches have employed supervised learning such as support vector machines [39, 40], deep neural network
(DNN) [41–43], U-Net which belongs to CNN [44–46], or unsupervised learning such as clustering [41].
The image classifications in the earlier works, however, require too many images for the training dataset that
need to be labeled accordingly with layer number, for example,∼103–105 labeled images for DNN [41–43],
and∼102 [45, 46] or 103 labeled images for U-Net which are augmented from less than 50 labeled
images [44], and more than a dozen GB of GPU memory to process a batch of image data.

In this paper, we suggest a GPU-free classification tool for detecting a specific number of graphene layers
using supervised ML algorithms requiring only a few OM images for both training and testing thanks to its
operation in units of a pixel. We compare the performance of four different tree-based ML algorithms such
as decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting
machine (LightGBM) in terms of accuracy, precision, recall, F1 score, and indices such as receiver operating
characteristic (ROC) curve, area under curve (AUC), intersection over union (IOU). We take account of
several combinations between RF, XGB, and LGBM entailing improvements in multiple metrics compared to
using a single algorithm. Our source code was built with scikit-learn [47] ML library and is provided as
open-source (See [48]).

This paper is organized as follows. In section 2 we first describe the sample preparation for OM images,
feature extraction using several filters to pre-treat the images for ML algorithms. We elaborate on the four
different tree-based ML algorithms that we employed in this work in section 3. In section 4, we evaluate and
discuss the performances of a single tree-based ML algorithm and combinations for fusions of them using
the several metrics. In section 5 we present the conclusions.

2. Data preprocessing

In the following we describe the data preprocessing techniques used for this work that consists in dataset
preparation from the OM images obtained from the experimental system and feature extraction from the
images by using different filters.

2.1. Dataset preparation
Many 2D materials can be produced in a large area∼cm2 using chemical vapor deposition (CVD) that also
show contrasts in color depending on thickness [49–51] but the small area∼µm2 exfoliation method is still
needed to obtain higher-quality 2D materials by avoiding contamination in the process of transferring it
from the growth substrate [52, 53]. The graphene samples in the present work were exfoliated using scotch
tapes and placed on top of 285 nm SiO2/Si substrates as shown in figure 1(a). We use a motorized
microscope as seen in figure 1(b) to scan the 20×magnified images with 1832× 1372 resolution. We scan
the entire sample along the path indicated by the black arrow as shown in figure 1(c). Afterwards, we get
scanned OM images like figure 1(d). When the scan is complete, we can get more than 1500 images per one
substrate. Among these images, we first sorted out the candidates expected to have exfoliated graphene
through optical contrast analysis, and confirmed the thickness of graphene using Raman spectral analysis.

To improve the speed of image preprocessing and classification, images were resized with 458× 343
pixels which are moderately large for finding graphene. We train our model with five OM images pixel by
pixel, leading to 785470 (=458× 343× 5) pixels for the training, and test each pixel of 1 OM image from the
test dataset, which is equivalent to 157094 (=458× 343× 1) pixels. The mask for labeling was made
manually using the APEER platform [54].

2.2. Feature extraction
Feature extraction is one of the most important key elements in ML. Here we use the HSV color space and
several commonly used filters that help us extract relevant features to recognize and classify the monolayer
graphene from the background as we describe in the following. There are several color bases for generating
arbitrary colors that we are familiar with, such as RGB (red, green, blue) and CMYK (cyan, magenta, yellow,
black). However, here we introduce the HSV (hue, saturation, value) color space, which is a familiar way for
humans to perceive color. The HSV color space describes colors with their hue (H) together with saturation
(S), namely, amount of gray, and value (V) of brightness or luminous intensity as illustrated in
figures 2(b)–(d). Each pixel of the graphene images obtained from the motorized microscope which were
originally expressed in RGB color space are transformed to HSV [55, 56].

We use several filters, the Prewitt, Scharr, and Gaussian filters in order to extract the relevant features. We
use the grayscale images for this process as shown in figure 2(e) for the following two reasons. Firstly, the

2



Mach. Learn.: Sci. Technol. 3 (2022) 045029 W H Cho et al

Figure 1. (a) Schematic diagram for exfoliation of graphene from graphite using the scotch tape on top of the substrate SiO2/Si.
(b) Motorized microscope for scanning the sample. (c) Schematic diagram for the entire sample is denoted by the green panel, the
path indicated by the black arrow for scanning the sample to find the graphene, and the camera of the motorized microscope
illustrated by the gray square. (d) Scanned images by the motorized microscope along with the black arrows in (c).

Figure 2. Flowchart for data preprocessing for ML feature extraction. (a) Original images from motorized spectroscopy. (b) Map
for the hue (H) component of the original images. (c) Map for the saturation (S) component of the original images. (d) Map for
the value (V) component of the original images. (e) Images in grayscale. (f) Resultant map of the Prewitt edge filter for the
grayscale images. (g) Resultant map of the Scharr edge filter. (h) Resultant map of the Gaussian filter.

grayscale images preserve the essential information such as edge, shape, and texture information from their
original RGB representation. Secondly, we can reduce complexity and unnecessary computational cost [57].
An edge of any object in images can be defined as a boundary where the value of brightness changes
discontinuously, leading to a very sharp change in the associated intensity gradient. Hence, we can find
abrupt changes in the intensity values for each pixel over the entire image given in HSV space, and find spots
where its derivative is maximum. We utilize the 3× 3 Prewitt, and Scharr operators for the x (vertical) and y
(horizontal) direction as defined below [58, 59]

Prewittx =
1

3

1 0 −1
1 0 −1
1 0 −1

 ,
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Prewitty =
1

3

 1 1 1
0 0 0
−1 −1 −1

 , (1)

and

Scharrx =
1

32

 3 0 −3
10 0 −10
3 0 −3

 ,

Scharry =
1

32

 3 10 3
0 0 0
−3 −10 −3

 . (2)

As an example, we present the resultant map for an image processed through the Prewitt and Scharr filters in
figures 2(f) and (g), respectively. After the convolution of the two operators with our grayscale image, we get
resultant Fx and Fy matrices of the same size as our source image. Hence, the magnitude for each pixel is
given by

Magnitude=
√

F 2
x + F 2

y . (3)

Afterwards, we use the Gaussian smoothing kernel based on the 2D Gaussian function of equation (4).

G(x,y) =
1

2πσ2
e−

x2+y2

2σ2 . (4)

The Gaussian kernel [60] raises the quality of our model by blurring redundant noises as illustrated in
figure 2(h). For example, the 5× 5 Gaussian kernel for σ= 1 is

Gσ=1
5×5 =

1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 . (5)

3. Theoretical frameworks

In the following, we briefly summarize the theoretical footing of the four tree-based ML classification
algorithms employed in the current work. The simplicity and efficiency of these models are at the heart of the
practical applicability our model to reduce the number of training images and shorten the classification time.
This section is devoted mostly to assess the training and validation of the more advanced extreme gradient
boost and LightGBMmodels, and is introduced mainly for the benefit of the readership specialized in
materials science.

3.1. Decision tree
The DT is one of the basic algorithms in ML, that as its name indicates infers the predicted label following a
tree-like decision framework. Firstly, we have a root (a single leaf) to begin with and we assign a label to this
root according to a majority vote among all the labels over the training set. For example, we can imagine that
the label could be the length of the petal in the famous classification problem for Iris flowers. Then, we can
split the root into two groups depending on whether or not the dataset satisfies the label and evaluate the
effect of splitting over the iterations by calculating a measure which is called gain. The gain quantifies the
improvement of the performance of our model due to the splitting. Among the possible splits, we can either
choose the one that maximizes the gain or choose not to split the leaf. The merit of this algorithm is that we
can see the procedures of decision-making. However, the major disadvantage of DT is the high risk of
over-fitting the training set and lack of tolerance to non-representative single-node outliers [61–63].
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Figure 3. Training (blue filled circles) and validation (red solid line) loss in XGB algorithm using the binary cross-entropy loss
function for the learning rates (a) lr= 0.05, (b) 0.1, and (c) 1.0. (d) Validation losses for four different learning rates, lr= 0.05
(black squares), 0.10 (green circles), 0.5 (blue diamonds), and 1.0 (red triangles). XGB is over-fitted with the training dataset
when the learning rate is larger than lr≈ 0.5.

3.2. Random forest
The RF is literally an ensemble of the DTs with randomness such that it generates multiple DTs that chooses a
class by majority vote among the trees and aggregates them by using their average for a regression. Therefore,
RF is less vulnerable to over-fitting than DT. However, the decision-making could slow down as the size of
the dataset increases [64–66].

3.3. XGBoost
The extreme gradient boost (XGB or XGBoost) is a scalable end-to-end ML algorithm which was proposed
by Chen and Guestrin in 2016 [67, 68]. XGB is based on a gradient boosting decision tree (GBDT). GBDT
combines base-learners (e.g. DT) into a single strong learner over the many iterations by fitting the
base-learners using a loss function (e.g. the mean squared error). The aim of gradient boosting is to train the
model to minimize the loss function using the functional gradient descent which leads the next iteration
toward the direction of negative gradient. While GBDT uses only the first-order derivatives of the loss
function, XGB utilizes the Newton–Raphson method for the functional gradient. Namely, the second-order
derivatives of the loss function are used in the fitting procedure. Consequently, XGB proposes a newly
distributed algorithm for tree searching, outperforming RF in general, with the drawback that it is generally
more time consuming [69].

Figure 3 shows the training and validation losses in XGB using the binary cross-entropy loss function

Llog =
1

N

N−1∑
i=0

−(yi log(pi)+ (1− yi) log(1− pi)) (6)

as implemented in scikit-learn [47] as a function of the epochs for the three different learning rates (lr)
where y ∈ {0,1} is the true label and p= Pr(y= 1) is the probability and the i index runs over all sample
points. The training loss decreases and approaches zero for all cases as the epoch increases. For lr= 0.05 and
0.10 the validation loss decreases monotonically, while the validation loss has a local minimum at the
epoch= 16 and grows as the epoch increases for lr= 1.0, implying that the model is over-fitted with the
training dataset. Our model starts over-fitting when lr is larger than≈ 0.5 as shown in figure 3(d). Thus, in
this paper, we use lr= 0.1 for XGB unless stated otherwise.
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Figure 4. Training (blue filled circles) and validation (red solid line) loss in LGBM algorithm using the binary cross-entropy loss
function for the learning rates (a) lr= 0.001, (b) 0.01, and (c) 0.05. (d) Validation losses for four different learning rates, lr=
0.001 (black squares), 0.005 (green circles), 0.01 (blue diamonds), and 0.05 (red triangles). LGBM is over-fitted with the training
dataset as the learning rate increases more than lr≈ 0.05.

3.4. LightGBM
The LightGBM (LGBM or LightGBM) also originates from GBDT and inherits many strengths from XGB.
However, LGBM has two significant technical differences from XGB in structuring trees which are called
gradient-based one side sampling (GOSS) and exclusive feature bundling (EFB) [70].

The GOSS is a sampling tool that keeps the instances with large gradients but randomly drops out some
portion of the ones with small gradients. In EFB two sparse features which are nearly exclusive integrate into
one to reduce the number of instances. In short, GOSS and EFB reduce the number and the size of data
instances remarkably while at the same time keeping high accuracy. Consequently, LGBM is faster and
requires less memory, as its name suggests ‘light’. However, LGBM is prone to over-fitting when the size of
the dataset is small [71].

We show the training and validation losses for different learning rates lr= 0.001, 0.01, and 0.05 in
figures 4(a)–(c) using the binary cross-entropy loss function. One can see that LGBMmodel for our
graphene OM image datasets requires to be stopped early at the epoch= 20 to avoid over-fitting where the
validation loss starts increasing when lr= 0.05. Compared to other learning rates, the loss starts increasing
upon the epochs when lr≳ 0.05 as shown in figure 4(d). Therefore, we choose lr= 0.005 for LGBM
throughout this paper.

4. Results and discussions

4.1. Single classifiers
We train the ML models for each pixel in an OM image with each one of the four classification models and
use the five-fold stratified cross-validation to maintain objectivity [72]. Thus, we obtain the probability of
having a monolayer graphene sheet at each pixel, and round off the probability from the first decimal place
so that we assign 0 to pixels predicted as background, and 1 to the ones predicted as monolayer graphene at
each pixel. In figure 5 we visualize our results for the four tree-based ML algorithms together with the
original OM images and the target images labeled for the monolayer graphene. The graphene monolayers in
the OM images in figure 5(a) are enclosed by the red dashed line. As shown in figure 5(b), the pixels for
monolayers are labeled as 1 (white) and the others are labeled as 0 (black). Figure 5(c) shows the

6
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Figure 5. (a) Source images of the domain of interest. The flakes of monolayer graphene are enclosed by red dashed lines. (b) The
flakes of monolayer graphene are labeled as 1 (white) and the rest is labeled as 0 (black). (c) Resultant images of pixel-wise
classifications for the four algorithms, DT, RF, XGBoost (XGB), and LightGBM (LGBM).

classification results from DT, RF, XGB, and LGBM algorithms, respectively. Each algorithm appears to well
differentiate the monolayer graphene from the OM image. Since background pixels are dominant, it leads to
an highly imbalanced pool of pixels. Therefore we introduce several metrics and indices to evaluate
performance of the model

First, the accuracy as defined in equation (7) is the most basic metric to evaluate the performance of a
classification ML model.

Accuracy=
TP+TN

TP+ FN+TN+ FP
, (7)

where TP (TN) stands for the case where our model correctly predicts a graphene (background) pixel, while
FP (FN) represents the opposite case where our model incorrectly predicts a background (graphene) pixel as
a graphene (background) pixel. The precision which is defined as equation (8) is obtained by evaluating the
ratio of correctly predicted graphene pixels. The higher precision score means that there are more actual
graphene pixels among the pixels predicted as graphene by our model. If the precision is lower, the portion of
background pixels classified as graphene is higher.

Precision=
TP

TP+ FP
. (8)

Similarly, we define the recall in equation (9). If the recall value is high, a graphene pixel is less likely to be
classified as a background pixel.

Recall=
TP

TP+ FN
. (9)

Lastly, the F1 score in the equation (10) is nothing more than the harmonic mean between the precision and
the recall.

F1 score=
2×Precision×Recall

Precision+Recall
. (10)

The evaluation of the four tree-based classification algorithms using the four metrics are shown in
table 1. The accuracies for the four algorithms are more or less the same but DT has the smallest accuracy

7



Mach. Learn.: Sci. Technol. 3 (2022) 045029 W H Cho et al

Table 1. Evaluations of the four different tree-based classification algorithms, DT, RF, XGBoost (XGB), and lightGBM (LGBM) using the
four metrics such as accuracy, precision, recall, and F1 score defined in equations (7)–(10).

metric
Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

DT 99.68 73.70 77.92 75.36
RF 99.79 89.61 76.54 82.09
XGB 99.72 88.01 75.26 80.80
LGBM 99.77 91.23 73.37 80.96

Figure 6. The ROC curves for random classifier (yellow dashed), ideal classifier (red dashed), DT (blue solid), RF (orange solid),
XGB (green solid), and LGBM (pink solid). The inset shows the same ROC curve for the finer range of false positive range (FPR)
in equation (11) near 0.0 and the true positive range (TPR) near 1.0.

compared to others. DT also has far less precision around∼74% in contrast with the other methods which
are above∼88%. LGBM has the highest precision∼91%. Regarding the recall values, on the other hand, DT
scores above∼78% which is superior to others. The RF, XGB, and LGBM record around∼81%–82% in F1
score, while DT is lower by around 6% with respect to the other methods. The color contrast between the
graphene flakes and the background is low because a graphene sheet is nearly transparent. This inherent
limitation can lead to suppressed F1 score by wrongly identifying the background pixels around the edges of
graphene as graphene itself. However, it has been noted that ML models work well for finding graphene
flakes even when the F1 score is less than 80% [46]. In figure 5, our DT model with the lowest F1 score of
75.36% among our ML models also finds the graphene flakes well. The DT model misclassifies some pixels,
but can clearly recognize the presence of monolayer graphene. Other models with an F1 score of 80.8 or
higher have smaller errors and detect the graphene flakes even better.

We further employ several additional performance measures such as the ROC curves, their AUC, and the
IOU. We show the ROC curve in figure 6 as a function of the true positive rate (TPR) which stands for the
recall, and the false positive rate (FPR) which is defined as

False Positive Rate (FPR)=
FP

FP+ FN
. (11)

We get these ROC curves by changing the criteria of rounding off the probability between 0
(background) and 1 (graphene) for each pixel obtained from each ML model, leading to different values of
TPR and FPR. The AUC for the ideal classifier whose ROC is denoted by the red dashed line is 1 using
normalized units, whereas the AUC for the random classifier denoted by the yellow dashed line is 1/2 as
shown in figure 6. The AUCs for the four different classification algorithms which range between 1/2 and 1
are presented in table 2. Their AUCs have an order such that DT≪ RF< LGBM< XGB. One can see in the
inset of figure 6 in details that XGB has a smaller TPR than RF and LGBM at nearly zero FPR but it starts to
surpass the others when FPR≳ 0.05.

To evaluate the performance of the pixel-wise segmentation method we use the IOU index defined as

IOU=
Target Pixel∩Predicted Pixel

Target Pixel∪Predicted Pixel
. (12)

This index indicates how many pixels overlap between the target pixels and the predicted pixels and returns a
value in the range between 0 and 1. The IOU values for the four algorithms are presented in table 3 and they
have an order of DT≪ RF≪ LGBM< XGB which indicates that the XGB is the most suitable algorithm for

8
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Table 2. Area under the curve (AUC) score for the four tree-based ML algorithms such as DT, RF, XGBoost (XGB), and LightGBM
(LGBM).

Algorithm AUC

DT 0.8731
RF 0.9792
XGB 0.9942
LGBM 0.9884

Table 3. Evaluation of the IOU score for the four tree-based ML algorithms such as DT, RF, XGBoost (XGB), and LightGBM (LGBM).

Algorithm IOU Score (%)

DT 54.61
RF 63.86
XGB 71.18
LGBM 70.73

Table 4. The inference time per image for the four tree-based ML algorithms such as DT, RF, XGBoost (XGB), and LightGBM (LGBM).

Algorithm Inference time (s)

DT 0.1185
RF 0.1413
XGB 0.2822
LGBM 0.2006

pixel-wise segmentation of our datasets. When the IOU score exceeds 0.5 an object is regarded as
detected [73]. In this sense all the models we have proposed are able to successfully detect graphene flakes.

The RF classifier has the highest accuracy and F1 score, but its pixel-resolved segmentation shows a
relatively low IOU score that is slightly higher than the DT. On the other hand, the XGB has the highest IOU
score but less accuracy, precision, recall, and F1 score than RF. The LGBM has higher precision and IOU
score than RF. In practice we can choose the classifier depending on which metric or index is more relevant
for the classification task at hand or mix more than one classifier as we will explain in the next section.

Regarding the inference time, as shown in table 4, the DT algorithm is the fastest model with a
computation time of∼0.1 s per image, while the XGB is the slowest one at∼0.3 s per image using Intel(R)
Core(TM) i5-10 400 CPU. In practice, this means that we can analyze a thousand images in a matter of
minutes regardless of the method used.

4.2. Fusions between classifiers
In this section, we combine the different single classifiers RF, XGB, and LGBM in an attempt to improve the
performance of our model as proposed in [74] that calculates different weights for each classifier depending
on metrics accuracy. We will show that it is possible to improve the overall performance of different metrics
of our choice at the expense of slightly reducing the IOU. We exclude the DT as it scores far fewer points
particularly in the precision, F1 score, AUC and IOU. We predict to find a monolayer graphene pixel with the
probability P defined in equation (13) for each pixel in an OM image when we utilize the combined
probability consisting of N single classifiers through

P=
N∑
i

wiPi, (13)

where Pi stands for the probability of finding a monolayer graphene at that pixel using the ith single classifier,
and wi is the ith classifier’s weight which is given as [74]

wi =
metric(i)10∑N
j=1metric( j)10

, (14)

where metric(i) represents the ith single classifier’s metric. In other words, the probability P of a joint
classification model is defined such that the probabilities of finding a monolayer graphene at that pixel using
single classifiers are expressed as a linear combination of each classifier’s probability multiplied by the
respective weight coefficients. Like in the single classifiers, we round off the final probability to either 0
(background) and 1 (graphene). Then we use P at each pixel to calculate the metrics as presented in table 5.

9



Mach. Learn.: Sci. Technol. 3 (2022) 045029 W H Cho et al

Table 5. Algorithm choice versus metric table for five different combinations of the three single classification algorithms RF, XGBoost
(XGB), and lightGBM (LGBM) using the five metrics accuracy, precision, recall, F1 score, and IOU score. In parentheses below each one
of the fused-classifiers, we specify the metrics used to optimize the weights of the classifiers. We listed several metrics when their
performances were the same down to two decimal places.

metric
Algorithm Accuracy (%) Precision (%) Recall (%) F1 score (%) IOU score (%)

RF+ XGB
(precision, recall,
F1 score)

99.77 89.36 72.95 79.96 66.82

RF+ LGBM
(precision)

99.78 91.23 73.37 80.96 66.82

RF+ LGBM
(recall, F1 score)

99.77 89.36 72.95 79.96 66.82

XGB+ LGBM
(precision, F1
score)

99.78 91.23 73.37 80.96 68.22

XGB+ LGBM
(recall)

99.77 88.01 75.26 80.80 67.98

RF+ XGB+
LGBM (precision,
recall, F1 score)

99.78 90.64 73.82 81.03 68.28

We take into account four combinations, RF+ XGB, RF+ LGBM, XGB+ LGBM, RF+ XGB+ LGBM. We
calculate the weights wi for the ith single classifier as defined in equation (14) taking one of the four
metrics—accuracy, precision, recall, and F1 score. We indicated within parentheses the reference metric used
to calculate the weights of the classifiers, and listed more than one when they gave the same results down to
two decimal places. We exclude the accuracy as a weight because the accuracies of RF, XGB, and LGBM are all
on the order of∼99.7%.

The single classifier RF has a higher accuracy of 99.79%, recall of 76.54%, and F1 score of 82.09%, but it
has a smaller IOU score of 63.86% than XGB and LGBM. If we join XGB with RF, regardless of which metric
we use, we get an improved IOU score by∼3%, but sacrificing accuracy by 0.01%, precision by 0.25%, recall
by∼3.6%, and the F1 score by∼2.1% compared to using the single RF classifier. On the other hand, we get
improved accuracy by 0.05%, precision by∼1.4%, sacrificing recall by 2.3%, F1 score by∼0.8%, and the
IOU score by∼4.4% compared to using the single XGB classifier.

If we join LGBM with RF, the results are different depending on the metrics we use for a weight. In the
case of precision as a weight, it has∼1.6% higher precision,∼3% higher IOU score than a single RF
classifier. If we use either recall or F1 score as a metric, it has benefit in IOU score by∼3% compared to the
single RF. On the other hand, combining LGBM with RF has no merit in comparison with the single LGBM.

If we combine XGB and LGBM, in the case where either precision or the F1 score is chosen as a weight,
the accuracy is improved to 99.78%, and the IOU hits 68.22% which is less than both XGB (71.18%) and
LGBM (70.73%) separately. The precision (91.23%), recall (73.37%), and F1 score (80.96%) are the same as
those of a single classifier of LGBM. When we use the recall as a weight, the IOU hits 67.98% which is again
smaller than that of single XGB and LGBM classifiers. The accuracy is the same as that of LGBM (99.77%),
but the precision (88.01%), recall (75.26%), and F1 score (80.80%) have the same value as those of XGB.

Lastly, if we combine all three classifiers, all metrics and indices are overall averaged regardless of the
metrics used for the weights. The accuracy and F1 score are improved in comparison with single XGB and
LGBM classifiers, and the precision becomes higher than single RF and XGB. The recall becomes higher than
a single LGBM, and the IOU is improved compared to a single RF.

The resulting fused-classifier metrics presented in table 5 indicates that we can indeed improve the
overall performance of our models if we target a particular metric to optimize, and at times it is possible to
achieve an overall improvement in several metrics at the expense of a small decrease in the IOU by a few
percents with respect to the XGB and LGBM single classifier scores.

5. Conclusions

The preparation of graphene electronic devices during almost the last two decades has relied on human
inspection during many hours of routine scanning in the entire space of samples to identify the number of
graphene layers deposited on the substrate. Recently several research teams have attempted to introduce ML
in this process to reduce such time-consuming and error-prone human labor. However, the existing
proposals are mostly focused on developing DNN or CNN based models which require quite a large number
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of labeled training dataset, and this threshold makes practical application difficult. In this paper, we have
proposed a pixel-wise tree-based ML classification tool that can be used for samples prepared under
consistent scanning conditions such as illumination or the thickness of the substrate. Our method can
distinguish a specific number of graphene layers from the background and performs precisely even with a
small number of training images, in contrast to existing works utilizing DL tools that require hundreds to
thousands of image data to train a model.

We have trained our ML model with four different tree-based algorithms such as DT, RF, XGB, and
LGBM, and examined their outcomes using several metrics and indices—accuracy, precision, recall, F1 score,
ROC, AUC, and IOU. There is no absolute best model among the single classifiers as they have different
strengths and weaknesses in metrics and indices, and those metrics vary depending on the data that we deal
with. We have shown that it is possible to improve the performance by combine more than one classifier.
Considering overall performance, we propose that the LGBM or XGB are good choices when using a single
classifier, and for the fused classifiers model, the RF+ XGB+ LGBM shows satisfactory performance and
can be chosen in routine applications.

In this work, we have sorted out the monolayer graphene from the OM images, but the same process can
be performed to find any other number of multilayer graphene or for any other 2D vdWmaterials such as
hexagonal boron nitride, transition metal chalcogenides or black phosphorus. We expect our method to be
applicable to distinguish different layer thickness also in CVD grown samples provided that their colors are
distinguishable. Furthermore, our model requires only a few images and costs less computational time than a
few minutes in total to train a ML model even without using a GPU. Therefore, we expect our work will be of
immediate utility for researches on 2D materials, and will greatly ease the repetitive and time-consuming
tasks in experiments.
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Appendix A. Flowchart for data preprocessing in detail

In this appendix, we provide complimentary figures for figure 2 that shows the data preprocessing flow
diagram of our ML model in detail. We unfold the case by case to explicitly show the OM images and their
resulting figures at each step in figure 7.

Appendix B. Image processing for a better segmenation using marching squares
algorithm

In this appendix, we explain how to resample the data in order to reduce the likelihood of false graphene
flakes detection. During pixel-wise segmentation we can detect both large graphene flakes as well as small
graphene fragments. The metrics drop mainly due to predition errors in small graphene fragments in areas
not set as a mask. In order to reduce the errors in graphene flakes detection we created contours using the
marching squares algorithm [75, 76] as shown in figure 8 and have sampled the regions within contours that
exceed a given threshold size for final segmentation. We show in table 6 the improved evaluation metrics
when the threshold sizes in the x- and y-axes are set as 10 µm where all metrics have increased on average as
follows: Accuracy increased∼0.09%, Precision increased∼2.59%, Recall increased∼8.37%, and F1 score
increased∼6.14%.
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Figure 7. Spread flowchart for data preprocessing for ML feature extraction. Here we show five OM images (original), each
component in HSV color space, in grayscale, resultant figures from Prewitt edge, Scharr edge, and Gaussian filters.

Figure 8. Flow chart for better segmentation using marching squares algorithm. After performing a segmentation, we found
contour lines of prediction dots, and we selected the contour lines that are larger than the threshold size.

Table 6. After completing image processing using the marching squares algorithm, we evaluated four different tree-based classification
algorithms using four metrics. All evaluation metrics are better than before performing image processing.

metric
Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

DT 99.79 82.72 85.43 83.84
RF 99.83 90.22 82.44 86.01
XGB 99.83 88.79 84.41 86.46
LGBM 99.85 91.16 84.30 87.46
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