
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Towards a variational Jordan–Lee–Preskill
quantum algorithm
To cite this article: Junyu Liu et al 2022 Mach. Learn.: Sci. Technol. 3 045030

 

View the article online for updates and enhancements.

You may also like
Bayesian learning of parameterised
quantum circuits
Samuel Duffield, Marcello Benedetti and
Matthias Rosenkranz

-

Large gradients via correlation in random
parameterized quantum circuits
Tyler Volkoff and Patrick J Coles

-

Active learning on a programmable
photonic quantum processor
Chen Ding, Xiao-Yue Xu, Yun-Fei Niu et
al.

-

This content was downloaded from IP address 106.213.28.225 on 07/07/2023 at 12:49

https://doi.org/10.1088/2632-2153/aca06b
https://iopscience.iop.org/article/10.1088/2632-2153/acc8b7
https://iopscience.iop.org/article/10.1088/2632-2153/acc8b7
https://iopscience.iop.org/article/10.1088/2058-9565/abd891
https://iopscience.iop.org/article/10.1088/2058-9565/abd891
https://iopscience.iop.org/article/10.1088/2058-9565/acdd92
https://iopscience.iop.org/article/10.1088/2058-9565/acdd92


Mach. Learn.: Sci. Technol. 3 (2022) 045030 https://doi.org/10.1088/2632-2153/aca06b

OPEN ACCESS

RECEIVED

15 August 2022

REVISED

25 October 2022

ACCEPTED FOR PUBLICATION

4 November 2022

PUBLISHED

28 December 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Towards a variational Jordan–Lee–Preskill quantum algorithm
Junyu Liu1,2,3,4,5,∗, Zimu Li6, Han Zheng6,7, Xiao Yuan8,9 and Jinzhao Sun10,∗

1 Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, United States of America
2 Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, United States of America
3 Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, United States of America
4 Chicago Quantum Exchange,Chicago, IL 60637, United States of America
5 Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, IL 60637, United States of America
6 DAMTP, Center for Mathematical Sciences, University of Cambridge, Cambridge CB30WA, United Kingdom
7 Department of Statistics, The University of Chicago, Chicago, IL 60637, United States of America
8 Center on Frontiers of Computing Studies, Peking University, Beijing 100871, People’s Republic of China
9 Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306, United States of America
10 Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
∗ Authors to whom any correspondence should be addressed.

E-mail: junyuliu@uchicago.edu and jinzhao.Sun@physics.ox.ac.uk

Keywords: quantum physics, variational quantum algorithms, high energy physics

Abstract
Rapid developments of quantum information technology show promising opportunities for
simulating quantum field theory in near-term quantum devices. In this work, we formulate the
theory of (time-dependent) variational quantum simulation of the 1+ 1 dimensional λϕ4

quantum field theory including encoding, state preparation, and time evolution, with several
numerical simulation results. These algorithms could be understood as near-term variational
quantum circuit (quantum neural network) analogs of the Jordan–Lee–Preskill algorithm, the
basic algorithm for simulating quantum field theory using universal quantum devices. Besides, we
highlight the advantages of encoding with harmonic oscillator basis based on the
Lehmann—Symanzik—Zimmermann reduction formula and several computational efficiency
such as when implementing a bosonic version of the unitary coupled cluster ansatz to prepare
initial states. We also discuss how to circumvent the ‘spectral crowding’ problem in the quantum
field theory simulation and appraise our algorithm by both state and subspace fidelities.

1. Introduction

Quantum information science is currently an important direction of modern scientific research across several
subjects, including quantum physics, computer science, information technology, and quantum engineering.
The rapid development of quantum technology brings us evidence that quantum computers in the near-term
are able to perform some specifically scientific computations using dozens of qubits, but errors appearing in
the noisy quantum circuits might set certain limits of the computational scale [1, 2]. At the current stage, it
makes sense to assume a reasonable quantum device exists and study potential scientific applications of such
a device. This forms one of the main topics in the modern research of quantum information science.

Among numerous quantum applications, physicists, in particular, might care about how quantum
devices could enlarge the range of computational capacity on certain problems in fundamental physics. In
modern physics, quantum field theory is a general language or paradigm for describing almost all
phenomena existing in the world, from sub-atomic particle physics, string theory and gravity, to
condensed-matter and cold-atomic physics. If we could imagine the existence of powerful quantum
computers, it will be natural, important, and interesting to consider if quantum computation could address
open problems appearing in the study of quantum field theories, where many of them are at strong coupling
and strong correlation. In fact, simulating quantum field theories in quantum devices is one of the earliest
motivations of quantum computation [3], and becomes an important new research direction recently in the
physics community, see the [4–7] as examples.
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When simulating quantum field theories, or more generally, solving some well-defined computational
tasks using quantum computation, theorists will either assume a universal, fault-tolerant quantum
computer, or a noisy, near-term quantum circuit (quantum neural network) without enough quantum error
correction. Both of them are wise choices and important scientific directions. Using fault-tolerant quantum
computing is helpful for theoretical, conceptual problems or development of quantum devices usually
appearing in the long-term, while studying near-term, early quantum computation will allow us to use
existing machines and do experiments. In this paper, we will focus on the second direction, by exploring how
far quantum simulation could go using near-term devices, with the help of specific problems in quantum
field theories. It is helpful to see the usage and limitations of the currently existing, or future possible
quantum hardware to simulate quantum field theories, and benchmark our quantum devices using
interesting problems in fundamental physics [8]. Eventually, we believe that a universal, fault tolerant
quantum device will come true, and we believe that our work might be helpful to speed up the process.

Here, we are specifically looking at the Jordan–Lee–Preskill scattering problem [6, 7] in the 1+ 1
dimensional λϕ4 quantum field theory. The research about scattering problems has a long history in physics,
from the scattering experiment of alpha particles by Rutherford to the modern discovery of the Higgs boson.
Performing scattering experiments and determining scattering matrices are important themes in particle
physics and quantum field theories. In [6, 7], Jordan et al designed a full algorithm running in a universal
quantum computer to perform particle scattering in quantum field theories, containing initial state
preparation, time evolution, and measurement, where the proof of polynomial complexity is presented. In
this work, we will construct closely-related algorithms that are more suitable for near-term quantum
computers.

We will be most interested in the circumstance where we have a machine to perform variational quantum
simulation and hybrid quantum–classical calculations (see, for instance, [9–18]). In those algorithms, we will
imagine that quantum gates or states are parametrized by a few parameters, and we iteratively perform
measurements from quantum states and construct variational algorithms to optimize those parameters. We
believe that those algorithms realized in the laboratory might be able to perform useful computations and
could tell us something unknown about fundamental physics. In this work, we will systematically evaluate
the possibility of variational quantum simulation in the context of λϕ4 quantum field theory. The paper is
organized as following:

• Basis choice. We will make a detailed comparisons between the field basis and the harmonic oscillator basis,
momentum space, and coordinate space in section 2. All those choices have pros and cons. The field basis will
cause the field correlations to be easy tomeasure andmake the Lagrangian density local in coordinate space,
but it will not be directly connected to the Feynmann rules and scattering calculations in the momentum
space. Moreover, finding the eigenstates (for instance, the vacuum and low-lying one-particle states) might
be not easy. It requires non-trivial digital quantum algorithms (with truncation error) for encoding. On the
other hand, the harmonic oscillator basis is easy to formulate, track, and identify the energy levels of states,
butmay not be easy to identify field profiles. TheHamiltonian is non-local but still sparse in themomentum
space. In this paper, wewill work exclusively with harmonic oscillator basis (HObasis for brevity) as opposed
to the field basis used in the original Jordan–Lee–Preskill algorithm. Besides the aforementioned advantages,
free theory eigenstates are defined naturally under the HO basis through LSZ formalism as asymptotically
far away in-states. We summarize the results in proposition 1 and explain more details in section 2.6 and in
appendix.

• Initial state preparation. In order to prepare the interaction wave packets, Jordan–Lee–Preskill algorithm
uses adiabatic state preparation to turn on the coupling from free theory constructed under field basis. In
the variational setup, alternative strategies could be directly used and solve the initial scattering directly. In
section 3, we show how to prepare the state by variational algorithms. We introduce a bosonic version of the
unitary coupled cluster (UCC) ansatz, which can be efficiently implemented on an noisy intermediate-scale
quantum (NISQ) device to test our simulation algorithms, and show the optimization using the imaginary
time evolution [19]. Our initial state preparation strategies admit a simple interpretation according to the
LSZ formalism: the UCC ansätze act on the free far-past particle eigenstate to some wave-packet in the
interaction region at ti. The use of quantum imaginary time evolution further evolves this unknown wave-
packet to low excited states at tf . We then theoretically and numerically investigate the spectral crowding
phenomena in quantum field theories in both weakly-coupled and strongly-coupled theories.

• Real-time evolution and scattering. Besides digital quantum simulation algorithms (see [20–24]), the real-
time evolution algorithms could also be tracked by variational methods, see [12, 13, 25, 26]. During the real
time evolution, variational errors might be hard to control especially for the non-perturbative regime and
violent scattering processes. Nonetheless, we can track the simulation error during the time evolution, and
we can adaptively construct the quantum circuit to achieve the desired accuracy within a polynomial circuit
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depth [16]. A theoretical framework for the dynamics simulation and comments on the challenges of the
scattering process is provided in section 3.6.

• Simulation fidelity. Simulation errors in the variational setting will not only be limited to the digital simu-
lation error (like the Trotter error) but also the variational error from the ansatz, measurement error, and
noise in the devices. In this work, we observe that in the initial scattering state preparation, as long as the total
particle number and type are not changed significantly, the scattering experiment could still be performed,
even starting with imprecise wave packets. Thus, the task of scattering state preparation could tolerate more
noise. It could be qualified by particle subspace fidelity and suitable for NISQ devices. In section 4, we show
the numerical simulation for the ground state and excited states preparation using variational quantum
algorithms, and compare it with adiabatic evolution by fidelities. We also provide a resource analysis of our
method. Finally, in section 5, we highlight a list of future directions.

We summarize error and efficiency analyses in the following proposition.

Proposition 1. Let us consider a discrete λϕ4 theory on a spatial lattice Ω= aZN with total length L, lattice
spacing a and number of site N= L

a . We also define its momentum space dual lattice Γ = 2π
L ZN. Let us put nq

qubits at each site (nq = dlog2(1+ 2ϕmax/δϕ)e for field basis and nq = dlogncute for HO basis with more
explanations on the notation in section 2). Then the following facts hold:

(a) Let ϵ be an acceptable truncation error of truncated wavefunctions of free theory eigenstates under basis
field. Then nq = O(log log 1

ϵ ). While eigenstates under HO basis are simulated by single computational basis
elements without truncating any wavefunction. On the other hand, both simulated field operators
ϕ(x),π(x) (equation (12)) and ladder operators a†k ,ak (equation (13)) do not satisfy the canonical
commutation relation perfectly. Let ϵ ′ denote the corresponding error, then nq = O(log 1

ϵ ′ )) (see section 2.6
and appendix).

(b) The full theory Hamiltonian H is sparse under HO basis with O(N3) nonzero entries for each of its
row/column and can be complied by O(N3 ncut) Pauli operators (section 2.6). The UCC ansatz T̂2

(equation (22)) proposed in section 3.2 can be be compiled by O(Nn2cut) Pauli operators acting on 2nq qubits.
To judge our algorithm, an n-particle subspace fidelity can be measured in O(Nn) times (see section 3.5).

2. Formalism and state encoding

At the starting point, we show how to encode our Hamiltonian from quantum field theory to a quantum
device. In section 2.1, we first give a review of the λϕ4 theory in 1+ 1 dimension, and we point out the use of
harmonic oscillator basis in calculating scattering amplitudes in the scalar field theory by
Lehmann–Symanzik–Zimmermann (LSZ) reduction formula. Then, we provide a detailed comparison on
various versions of bases, including the field basis and the harmonic oscillator basis in the coordinate space
and momentum space, respectively. Some similar discussions can be found in the quantum chemistry
context [27].

2.1.λϕ4 theory and the LSZ reduction formula
In this theory, we have a scalar quantum field ϕ with the Hamiltonian

H=

ˆ
dx

(
1

2
π2 +

1

2
(∂xϕ)

2
+

1

2
m2

0ϕ
2 +

λ0
4!
ϕ4
)
.

Moreover, we discretize it in the lattice,

H=
∑
x∈Ω

a

[
1

2
π2 +

1

2
(∇aϕ)

2
+

1

2
m2

0ϕ
2 +

λ0
4!
ϕ4
]
.

The theory is defined on the spatial lattice Ω with dual lattice Γ (see proposition 1). The field momentum
π(x) is defined as the Fourier conjugate of the field ϕ(x) with the following commutation relation,

lattice: [ϕ(x),π(y)] = ia−1δx,y,

continuum: [ϕ(x),π(y)] = iδ(x− y).

The discretized version of the derivative is given by (∇aϕ)
2
(x) = (ϕ(x+ a)−ϕ(x))2 /a2, wherem0 is the

(bare) mass term in the free theory, and the λ0
4! ϕ(x)

4 term represents the coupling. When λ0 = 0, we call it
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the free theory. In the case of the free theory, we could diagonalize the Hamiltonian by the following mode
decomposition in the continuum,

ϕ(x) =

ˆ
dk

2π

√
1

2ωk

(
ak + a†−k

)
eipx, π(x) =−i

ˆ
dk

2π

√
ωk

2

(
ak − a†−k

)
eikx. (1)

The discrete version can be defined similarly, where the canonical algebra of ϕ and π leads to the
commutation relation as [ak,a

†
l ] = Lδk,l for lattice and [ak,a

†
l ] = 2πδ(k− l) for continuum, respectively. The

energy dispersion is given by

ω(k) =

√
m2

0 +
4

a2
sin2

(
ak

2

)
a→0−−→ ωk ≡

√
m2

0 + k2. (2)

In such a basis, the Hamiltonian is diagonalized as

H0 =
∑
k∈Γ

1

L
ω(k)a†kak + E0

a→0−−→
ˆ

dk

2π
ωka

†
kak + E0, (3)

where

E0 =
∑
k∈Γ

1

2
ω(k)

a→0−−→
ˆ

dk

2π

1

2
ωk × 2πδ(0). (4)

An important physical observable we could measure, is the (Wightman) two-point function as
G(x− y) = 〈Ω|ϕ(x)ϕ(y)|Ω〉, where |Ω〉 is the ground state of the theory. In the free theory case where λ0 = 0,
one can compute the two point function explicitly

G0(x− y) =
∑
k∈Γ

1

L

1

2ω(k)
eik(x−y) a→0−−→

ˆ
dk

2π

1

2ωk
eik(x−y). (5)

The two-point function of the scalar defines the scalar mass of the theory. In the continuum limit, when we
turn on the interaction λ0, in weakly-coupled regime one could compute the correction to the mass through
Feynman diagrams. The theory will experience a second-order phase transition at strong coupling, where the
universal behavior belongs to the 2D Ising universality class and the use of perturbation theory is difficult. In
appendix, we address the relation between lattice models and their field theory description, emphasizing the
importance of simulating quantum field theories. From a non-perturbative perspective, computing
two-point functions will tell us the information about masses of particles through Källén–Lehmann spectral
representation [28, 29]. We also review necessary backgrounds through LSZ reduction formula in appendix
that is particularly suited to the use of HO basis in this paper.

2.2. The field basis in the coordinate space
One of the simplest considerations is the field basis. For a scalar quantum field theory discretized in a lattice
Ω, we could define the state decomposition

|ψ〉=
ˆ ∞

−∞
dϕ1 · · ·

ˆ ∞

−∞
dϕNψ (ϕ1, . . . ,ϕN) |ϕ1, . . . ,ϕN〉. (6)

Here, N is the total number of sites. The state decomposition for an arbitrary state ψ gives the above
wavefunction ψ (ϕ1, . . . ,ϕN), where we abuse the notation ϕi chosen as an arbitrary number in R to denote
an eigenvalue of the local field operator ϕ(xi). The corresponding eigenstates |ϕi〉 form a basis of the local
Hilbert space. This definition is similar to the coordinate basis in quantum mechanics.

Now, since we are using a quantum computer, we need to truncate the local Hilbert space. Moreover, we
want an increment δϕ in discretization of the spectra of each ϕ(xi) such that we do not need to choose
variables in a continuous interval. The states that we are interested in is truncated and discretize as

|ψcut〉=
ϕmax∑

ϕ1=−ϕmax

· · ·
ϕmax∑

ϕN=−ϕmax

δNϕψ(ϕ1, . . . ,ϕN)|ϕ1, . . . ,ϕN〉, (7)

and thus the number of qubits we need to encode at each site xi is nq = dlog2 (1+ 2ϕmax/δϕ)e. There are
bounds on ϕmax, δϕ and nq from the scattering energy E derived in [6, 7] which are useful to prove the
polynomial complexity of the Jordan–Lee–Preskill algorithm. However, the original bound nq = O(log 1

ϵ ) of
qubit number with respect to truncation error is not tight, we compute rigorously by several properties of
Hermit–Gauss functions (eigenfuncations of quantum harmonic oscillator) and show in appendix that this
bound can be refined as nq = O(log log 1

ϵ ).
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2.3. The HO basis in the coordinate space
There is another important basis, the harmonic oscillator basis to define a digital representation of states in
lattice quantum field theories. We firstly consider the following transformation,

ϕ(x) =
1

(2mx)
1/2

(
ax + a†x

)
,

with π(x) being transformed similarly. Heremx is a free parameter we could choose. Then the canonical

algebra of ϕ and π leads to
[
ax,a†y

]
= a−1δx,y. Now, the creation operator a†x and its conjugate could define

the number states |nx〉 at the site x. On the lattice Ω of N sites, let us say that we are mostly interested in the
maximal energy level ncut, so we cut the Hilbert space and define

|ψcut〉=
ncut∑
n1=0

. . .

ncut∑
nN=0

ψ(n1, . . . ,nN) |n1, . . . ,nN〉 . (8)

2.4. The field basis in the momentum space
Now we introduce the dual field basis in the momentum space. Remember that we define the dual lattice Γ
based on the spatial lattice Ω. Thus, one can directly write the Hamiltonian in terms of the momentum
coordinate. To be more specific, consider the free theory mode expansion equation (1) with Fourier
transformation of ϕ(x)

ϕk =
1√
2ωk

(
ak + a†−k

)
, (9)

and the dual field momentum πk being defined similarly. Then we can discretize the interaction piece of the
Hamiltonian in the momentum space by

Hint =
λ0
4!

1

L3

∑
k1,k2,k3 ∈Γ

ϕk1ϕk2ϕk3ϕ−k1−k2−k3 . (10)

We can make a truncation on the field range in the momentum space and discretize a state like equation (7).

2.5. The HO basis in the momentum space
Similarly, we could consider the HO basis in the momentum space. Under this basis, a discretized state
decomposition is written as

|ψcut〉=
∑

nki⩽ncut

ψ(nk1 , . . . ,nkN)|nk1 , . . . ,nkN〉. (11)

The number of qubits needed at each momentum mode ki is thus nq = dlogncute. The number states |nki〉
now are generated by the creation operator from equation (1). The above state has a very clear physical
meaning: the basis directly show the scalar particle numbers in different momenta. This also provides a good
initial guess for the excited states in the interacting theory. In section 4, we discuss the particle excitations in
the momentum space in more details.

2.6. A comparison
Besides a brief comparison mentioned in the Introduction, we discuss more details on discretization of scalar
field under different bases. For each position site xi, a truncated field operator ϕ(xi) is given by Pauli
Z-matrices:

ϕ(xi) =
ϕmax

2nq

nq−1∑
j=1

2jZj (12)

with π(xi) being defined as the discrete Fourier transform of ϕ(xi). The corresponding free theory vacuum is
then the discrete Gaussian prepared by Kitaev-Webb Algorithm. It is shown in [30–32] that they can be
efficiently constructed in a quantum circuit. On the other hand, the creation/annihilation operators on
momentum space are defined as

a†ki =
ncut−1∑
s=0

√
s+ 1|(s+ 1)ki〉〈ski |, aki =

ncut∑
s=1

√
s|(s− 1)ki〉〈ski |, (13)
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where ki ∈ Γ specifies a momentum mode with |s〉 being the computational basis of nq = dlogncute qubits at
each mode. The corresponding free theory vacuum in this case is simply |s= 0〉k1 ⊗ ·· ·⊗ |s= 0〉kN and hence
can be prepared at a constant circuit depth. This is also true for other excited initial state used in our
numerical simulation (e.g. equations (58) and (59)). Easily constructible initial states is the first advantage
when working with HO basis. Besides, these states are taken without truncating any wavefunction and hence
there is no need to consider the truncation error. Even though, we should mention that the aforementioned
discrete commutation relations false for both truncated energy level of HO basis and truncated field strength
of field basis. The corresponding error only decays exponentially with nq. More details can be seen in
appendix.

Furthermore, as the computational basis encodes particle numbers of momentum modes, the free theory
Hamiltonian equation (3) is automatically diagonalized. To check the implementation efficiency of
interaction Hamiltonian equation (10), we first examine the sparsity. By equation (9), each row/column of
the matrix representation of ϕki contains at most 2 nonzero entries. Even Hint is non-local, any of its terms
ϕk1ϕk2ϕk3ϕ−k1−k2−k3 is a four-fold tensor product and hence contains at most 24 nonzero entries in each
row/column. Comparing with the 2nqN-dimensional total Hilbert space, each term is sparse. Because Hint has
N3 terms when summing over the dual lattice Γ with momentum conservation, nonzero matrix elements
scales cubically with the number N of momentum mode. This makes H applicable under most existing
quantum algorithm, especially the imaginary time evolution employed in this work [33]. To count the
number of Pauli operators needed to compile this Harmonization, we first consider how to expand
creation/annihilation operators by the Pauli basis {I,σx,σy,σz}⊗nq at each mode. To calculate the needed
number, we transform the Pauli basis into matrix unit basis {Eij}: consider the nq = 1 (one-qubit) case:

2E11 = I+σz, 2E12 = σx + iσy, 2E22 = I−σz, 2E21 = σx − iσy.

Each matrix unit Eij can be written as a linear combination of two Pauli operators. Hence the corresponding
transformation matrixM has two nonzero entries in each of its columns. Since the creation operator a† on
one-qubit space is colinear with E12, it decomposes into 2 Pauli operators. For two-qubit space, the
transformation matrix simply equalsM⊗2 with 22 nonzero terms. As a† is now a linear combination of
E12,E23,E34 and one can check that E12,E34 are transformed from the same sub-collection of Pauli operators,
a† decomposes into 2 · 22 pieces in total. By induction, the decomposition of a† on nq-qubit space has
nq · 2nq pieces. With respect to the energy cut-off, we need ncut + logncut Pauli operators which scales linearly
with ncut. By the same method, the Hermitian operator a+ a† can be built by 1

2 (ncut + logncut Pauli operators
with the factor 1

2 coming from cancellation of anti-Hermitian terms when we sum a and a† together. As a
simple example to verify this point, let nq = 1, then a+ a† is colinear with a single Pauli operator σx. On the
other hand, by equations (9) and (10), Hint is built by at most 8N3(ncut + logncut) Pauli operators. We will
apply this method to verify gates efficiency of the UCC variational ansatz in sections 3 and 4.

One can check that the above analysis automatically holds for general d+ 1 dimensional theory where N
stands for the number of momentum nodes in d dimension. Except the efficiency of preparing initial states
and implementing the Hamiltonian, the HO basis is also useful to keep track of the simulation results in
real-time, since one could quickly identify the basis overlap and find the particle number and their momenta.
Indeed, the harmonic basis specifies the momentum sectors of the asymptotically far past in-states, where the
fields satisfy the on-shell condition. For the interacting theory, when the interaction is turned on, one could
specify the momentum sectors again by the adiabatic state preparation and we could use this method to
define the wave packets in the given momentum sectors from adiabatically preparing a†F(t), as shown in
appendix. Thus, in this paper, we will mainly work on the HO basis in the variational setup.

3. Variational quantum algorithms

3.1. The variational ansatz
Variational quantum simulation is a useful technique especially for the near-term quantum computer. The
variational algorithm starts by preparing the quantum state by a quantum circuit as

|ψ(θ)〉=
(∏L

ℓ=1
Uℓ (θℓ)

)
|ψ0〉 . (14)

Here Uℓs are some unitary operators that could be realized in the quantum device, for instance,
Uℓ (θℓ) = e−iθℓXℓ , with the variational parameters θ = (θℓ). Xℓs are some Hermitian operators, for instance,
elements in the Pauli group, and |ψ0〉 could be some simple initial states that could be easily prepared. The
target state will, in principle, be approximated by some optimal choices of θ, say θ∗, which could be found
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using the variational principles. For example, a typical problem in quantum simulation is to find the ground
state, then we could minimize the energy with respect to the variational parameters 〈H〉θ ≡ 〈ψ(θ)|H |ψ(θ)〉.

The general strategy for the ground state searching is by updating the parameters as

θµ(t+ 1) = θµ(t)−
∑
ν

ηµ(t)A
−1
µν (θ(t))

∂

∂θν
〈H〉θ(t), (15)

where θµ(t) represents the optimization dynamics with step t, and the learning rate is given by ηµ(t). Here, we
use A(θ(t)) to represent the metric matrix at the parameter θ(t). The metric matrix in the gradient descent
algorithm is simply the identity matrix. In the following section, we will show its explicit form during the
optimization. One can ask if there exists a regime where there is a convergence guarantee and, if so, the rate of
convergence for these variational parameterization. One can study this question from over-parameterization
using quantum neural tangent kernel (QNTK) [34]. Further taking 〈H〉θ(t) ≡ z(θ(t)), equation (15) implies:

z(θ(t+ 1))− z(θ(t))≡ δz=
∑ ∂z

∂θµ
δθ =−

∑
ν

A−1
µν (θ(t))ην(t)

∑
µ

∂z(θ(t))

∂θµ

∂z(θ(t))

∂θν
. (16)

Assuming A is identity matrix and η to be parameterization-independent, the resultant is precisely the
QNTK defined in [35]. Note that we can interpret A−1

µν as the learning rate tensor as part of definition of NTK
in classical neural networks [31]. In particular, for the circuits that form at least approximate two-design that
satisfies certain concentration conditions (see in [34]), the average convergence is of the form

ϵ(θ(t))≈ e−γtϵ(θ(0)), (17)

where ϵ≡ z(θ)− E0, E0 is the ground state energy and

γ ≈ ηL tr(H2)

dim(H)2
, (18)

with L being the total count of variational parameters and H be full Hamiltonian. The dimension of the
Hilbert space in our case is nNcut. The exponential convergence rate is guarantee on average in the
over-parametrization regime where L≈ dim(H)2/ tr(H2). When A fails to be an identity matrix such as in the
case of quantum imaginary time evolution used in the following, no precise analytical convergence guarantee
is known. However, it seems to be reasonable to extrapolate the hypothesis that such methods, due to its
more physical/geometric nature, would have convergence rates lowered-bounded by the naive gradient
descent methods. The dependence of the square of size of Hilbert space would imply the above analysis only
is suitable to small size qubit system (see in appendix for more details).

The next question is how to choose the initial state |ψ0〉 and Uℓs? The precise strategy of choosing |ψ0〉,
Uℓ and the optimization scheme will specify the variational quantum algorithm we use. There are many
variational algorithms (see [14, 15] for a recent review). In this work we will discuss the following bosonic
UCC ansatz and imaginary time evolution where we practically find the best in our physical system. Different
from the quantum computational chemistry literature, where the UCC ansatz consists of the fermionic
excitations in the active space, our algorithm expresses the UCC ansatz directly with the bosonic mode.

3.2. Bosonic UCC ansatz
As is mentioned before, the variational algorithm may not be very sensitive to the locality of the Hamiltonian
and we will focus on the HO basis in the momentum space. Prior work has extensively investigated the
coupled cluster methods to solve the electronic energy spectra and vibrational structure in the chemistry and
materials science, and the quantum version, UCC ansatz, has been suggested and further experimentally
demonstrated to solve the chemistry problems on a quantum computer [36, 37]. Other prior works [38, 39]
discussed the usage of bosonic UCC in studying vibronic properties of molecules.

The general form of UCC is given by

|ψ(θ)〉= exp(iT̂)|ψ0〉, (19)

where T̂ is the sum of symmetry preserved excitation Hermitian operators truncated at finite excitations as
T̂= T̂1 + T̂2 + · · · . The key ingredient of UCC ansatz is to search for the true ground state of the interacting
fermionic theory by considering the particle-conserving excitations above a reference state. Note that this
type of ansatz equation (19) is slightly different from the UCC ansatz in the context of quantum chemistry,
which is constructed as exp(T̂f − T̂†

f ) and T̂f is the fermionic excitation operator. Later in this section we shall

7
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see that this type of ansatz in equation (19) would save more resources when it is decomposed into Pauli
operators.

In our quantum field theory setup, a bosonic version of the UCC ansatz [38, 39] could be natural to
capture types and particle numbers for scalar particles. In the momentum space, the effective action
preserves the momentum reflection symmetry (k→−k= k̃). Therefore, we may express the lth excitation
Hermitian operators of the bosonic UCC ansatz in the momentum space as

T̂ℓ =
∑

k1,...,kℓ

∑
|si−ti|⩽4

θ
s
(k1)
1 ,t

(k1)
1 ,...,s

(kℓ)
ℓ ,t

(kℓ)
ℓ

×
(
|s(k1)1 , . . . , s(kℓ)ℓ 〉〈t(k1)1 , . . . , t(kℓ)ℓ |+ |s(k̃1)1 , . . . , s(k̃ℓ)ℓ 〉〈t(k̃1)1 , . . . , t(k̃ℓ)ℓ |

)
.

(20)

Here, k1, . . . ,kℓ are ℓ distinct momentum modes taken from the lattice Γ. Since the λϕ4 field could lift the
excitation up to four level, we impose the energy constraint |si − ti|⩽ 4 for T̂ℓ at each momentum mode
which makes each term of T̂ℓ spares like the λϕ4 Hamiltonian. To count Pauli operators, we first note that the
concerned local Hilbert space is defined by ℓnq qubits (recall that nq = dlogncute) and then apply the same

from section 2.6 to T̂ℓ. With energy constraint, it can be built by O(nℓcut) Pauli operators and each of which
acts nontrivially on at most ℓnq qubits. The total ansatz is thus compiled by O(Nℓnℓcut) Pauli operators with
the same order of number of parameters. When ℓ= 4, expanding Hint by equations (9), (10) and (13), we
can set parameters of T̂4 being the expansion coefficients. We can even vary these parameters as θ(s), s ∈ [0,1]
such that Hint = T̂4(θ(1)) and hence

H(s) =H0 + sT̂4(θ(t)) (21)

is tantamount to adiabatic turn-on of the interaction. To simulate the adiabatic evolution, we have to divide
the time interval [0,1] intoM pieces withM large enough (depending on the energy gap). We then apply
Trotter formula to approximate the time evolution using O(N4 n4cut) Pauli operators for each product term.

In NISQ devices, however, we wish to further reduce the computational cost. Thus we focus on
variational ansätze and restrict to use single excitation operator T̂1 which can be constructed by at most
4N 1

2 (ncut + logncut) Pauli operators. The second term is obtained like expanding a+ a† in section 2.6. We

also employ a modified double excitation operators T̂2 as

T̂2 =
∑
k

∑
|si−ti|⩽4

θ
s(k)1 ,t(k)1 ,s(̃k)2 ,t(̃k)2

×
(
|s(k)1 s(k̃)2 〉〈t(k)1 t(k̃)2 |+ |s(k̃)1 s(k)2 〉〈t(k̃)1 tk)2 |

)
, (22)

which considers the pairing correlations of the momentum k and k̃. It makes k the only momentum variable
when taking summation. With the requirement to be Hermitian and the energy constraint, this ansatz can be
built by at most 32N 1

2 (ncut + logncut) Pauli operators such that each of which acts nontrivially on at most
2nq qubits and hence reduces a large number of parameters comparing equation (20). We may even discard
the second term in equation (22) to further reduce the gate count in the variational quantum circuits. For
small ncut, the number of used Pauli operators would be even fewer (see figure 9 in section 4). As an
inevitable consequence, these variational ansätze cannot replace adiabatic evolution in searching ground
state. We will remedy this problem by employing the quantum imaginary time evolution in the next section.

3.3. Variational state preparation
We now discuss how to use variational quantum algorithms for finding the ground state and the low-lying
excited states. We first briefly review the variational quantum simulation algorithm of imaginary time
evolution [19]. The normalized imaginary time evolution at imaginary time τ is given by

|ψ(τ)〉= e−Hτ |ψ0⟩√
⟨ψ0|e−2Hτ |ψ0⟩

. The population of the energy eigenstate |ej〉 will decay exponentially with the

energy Ej, and the ground state can be obtained in the long time limit |ψ(0)〉= limτ→∞ |ψ(τ)〉.While the
nonunitary imaginary time evolution cannot be directly implemented on a quantum computer, one could
still simulate imaginary time evolution on a quantum computer by using the hybrid quantum–classical
algorithm. Instead of simulating the imaginary time evolution directly, we assume that the time-evolved state
can be approximated by a parametrized trial state |ψ(θ(τ))〉, with variational parameters θ(τ) = (θµ(τ)). As
mentioned in [19], by minimizing the distance between the ideal evolution and the evolution of the
parametrized trial state, the evolution of the target state |ψ(τ)〉 under the Schrödinger equation can be
mapped to the trial state manifold as the evolution of parameters θ.

Using McLachlan’s variational principle, we have

δ‖(dτ +H− Eτ ) |ψ(θ(τ))〉‖= 0, (23)

8
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and the evolution of the parameters under the imaginary time evolution could be determined by∑
j

Ai,jθ̇j =−Ci, (24)

with the matrix elements of A and C given by

Ai,j = Re
(
∂i〈ψ(θ(τ))|∂j|ψ(θ(τ))〉

)
, Ci = Re(∂i〈ψ(θ(τ))|H|ψ(θ(τ))〉) . (25)

Here, ‖|ψ〉‖=
√
〈ψ|ψ〉 is the norm of the quantum state, we denote ∂i ≡ ∂/∂θi, and we assume the

parameters are real. By tracking the evolution of the variational parameters, we can effectively simulate
imaginary time evolution. This actually serves as an optimizer to update the parameters in equation (15). It
is worth mentioning for the pure state imaginary time evolution, this approach is equivalently to the
quantum natural gradient descent method, and the matrix A is indeed the Fisher matrix [40].

The quantum imaginary time evolution minimizes the energy loss function:

L(θ⃗(τ)) = 1

2

(
〈ψ(θ⃗(τ))|H|ψ(θ⃗(τ))〉− E0

)2
≡ 1

2
ε2, (26)

where its total variation [19]:

dL(θ⃗(τ))
dτ

= εRe

(
〈ψ(θ(τ))|H |θ(τ)〉

dτ

)
=−ε

∑
ij

CiA
−1
ij Cj ⩽ 0, (27)

where the fact that the
∑

ijCiA
−1
ij Cj is nonnegative follows that the fact that A is non-negative definite. The

nonnegativity of ε follows from the variational theorem where E0 is the smallest eigenvalue.
Moreover, having found the ground state |ψ(0)〉, we can construct a modified Hamiltonian

H(1) =H+α|ψ(0)〉〈ψ(0)|, where α is the regularization term that lifts the ground state energy, and is
sufficiently large comparing to the energy scale of the system.

The ground state of the modified Hamiltonian H(1) becomes |ψ(1)〉, the first excited state |ψ(1)〉 of the
original Hamiltonian H. As |ψ(0)〉 is an excited state of the modified Hamiltonian, we can evolve the system
under H(1) in the imaginary time to suppress the spectral weight of |ψ(0)〉 and obtain the first excited state
|ψ(1)〉. This process can be repeated to obtain the higher-order excited states. More specifically, the (n+ 1)th
excited state is the ground state of effective Hamiltonian

H(n+1) =H+α
n∑

j=0

|ψ( j)〉〈ψ( j)|. (28)

Instead of preparing the Hamiltonian directly, we can simulate the imaginary time evolution under H(n+1)

by tracking the evolution of the parameters, which are now modified as

Ci = Re(∂i〈ψ(θ(τ))|H|ψ(θ(τ))〉+α
n∑

j=0

∂i〈ψ(θ(τ))|ψ( j)〉〈ψ( j)|ψ(θ(τ))〉), (29)

while the matrix A keeps the same as in equation (25). These addition terms in Ci can be evaluated using the
low-depth swap test circuit. Other variational excited state preparation techniques can be found in a recent
review paper [14].

We wish to remark that the circuit ansatz for the imaginary time evolution does not have to be fixed.
Instead, the circuit ansatz could be adaptively determined by tracking the distance of the ideal evolved state
and the variational state. In the extreme case, we could construct the circuit by approximating the
normalized state at every single time step, which reduces to the quantum imaginary time evolution, firstly
proposed in [41]. Suppose the Hamiltonian has the decomposition H=

∑L
l=1 ĥl, where the Hamiltonian

contains L local terms and each ĥl acts on at most k neighboring qubits. Using the first-order Trotterization,

the evolved state after applying nonunitary operator e−δτ ĥl within imaginary time δτ by

|Ψ(τ + δτ)〉= c−1/2e−δτ ĥl |Ψ(τ)〉 ≈ e−iδτ Â|Ψ(τ)〉, (30)

where c is the normalization factor and Â is a Hermitian operator that acts on a domain of D qubits around
the support of ĥl. The unitary operator e−iδτ Â can be determined by minimizing the approximation error in
equation (30), which is similar to the derivation in equation (23). For a nearest-neighbor local Hamiltonian

9
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Figure 1. Spectral crowding for λϕ4 theory: blue/left: free theory; red/right: interacting theory. We usem0 = 0.369 and λ0 = 0
(free) or λ0 = 0.481 (interacting), with maximally three excitations ncut = 3, system size N= 4, and the lattice spacing a= 1, for
the HO basis in the momentum space.

on a d-dimensional cubic lattice, the domain size D is bounded byO(Cd), where C is the correlation length.
More details about the algorithm complexity can be found in [41].

This circuit construction strategy can be regarded as a special case in the variational imaginary time
evolution given by equations (23) and (25). If we fix the old circuit ansatz θ(τ) constructed before imaginary
time τ , and determine the new added unitary operator θ(δτ) that approximates the effect of e−iHδτ , this is
exactly the same as equation (30). However, to further reduce the circuit depth, we can jointly optimize the
parameters θ(τ)⊕ θ(δτ),making it more compatible for the near-term quantum devices.

3.4. Spectral crowding
Before we start to apply variational algorithms, we will make a short investigation on the spectrum of the λϕ4

quantum field theory. In the momentum space, HO basis, one might have a large number of degeneracies in
the energy eigenstates (similar problems appear in other bases as well), bringing potential problems for
quantum simulation. We will borrow the terminology ‘spectral crowding’ that has been used in the ion trap
systems [42] referring to this situation.

For excited states, degeneracy might happen even in the free theory in our construction. For instance, say
that in the free theory, it might be the case where∑

i

niω(pi) =
∑
j

n̄jω(p̄j). (31)

Here, we have states represented in the HO basis in the momentum space, with particle numbers and
momenta ni,pi, or n̄j, p̄j, and their energies are precisely identical. A typical example is that considering the
continuum limit, we might have

n |m0|=
√

m2
0 + p2, (32)

where n ∈ Z>0. In those cases, their states are degenerate. Another typical case the role of parity which
anti-commutes with the momentum:

ω(p) = ω(−p), (33)

since we are not able to distinguish the left-moving and right-moving states only by their energies. Figure 1
provides an example for spectral crowding, where we fixm0 = 0.369 and λ0 = 0 (free) or λ0 = 0.481
(interacting), with maximally three excitations ncut = 3, system size N = 4, and the lattice spacing a= 1. The
choice of parameters is aiming on avoiding the situation in the equation (32).
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Figure 2. Adiabatic evolution starting from the free particle momenta p= 2π
L
(1,3) (left/blue, right/red). Those two examples

have the adiabatic errors both around 0.07%.

Spectral crowding might bring us difficulties on identifying states in the output, and defining different
directions of momenta for particles, especially when states are excited. Instead of looking at the general
structure of density of states, we start with the maximally one-particle states in this simple system. In the free
theory, we have the ground state with the energy 2.662. Moreover, the single-particle states have the energies:

p=
2π

L
(0,1,2,3) : E= 2.754,3.027,3.170,3.027. (34)

We know that this degeneracy is made by the boundary condition of the momentum p∼ 2π/L− p, which is
the parity Z2 [43]. In general, for an n-particle state, since we could freely choose the direction of
momentum, the spectral crowding will be enhanced at least O(2n).

Now, we consider to turn on the interaction. In the adiabatic process where we slowly turn on the ϕ4

Hamiltonian as equation (21). Since the interacting Hamiltonian is invariant under the parity
transformation, we could use the adiabatic process to define the direction of the momentum. In figure 2, we
show an example of the adiabatic evolution numerically, with the number of adiabatic steps T= 100 (which
means that we are dividing the interval s ∈ [0,1] to 101 steps). We find all single-particle eigenstates could
agree with the corresponding energy eigenstates with high fidelities (we only show p= 2π

L (1,3) example in
the plot, but all four adiabatic state preparations are also verified). Note that this operation specifies the
direction of momenta in the interacting theory. This is an advantage of our basis, where we could specify the
direction of momenta in this way.

The above algorithm could also be made variationally. Recall that in the variational process, we are
starting from a wave packet state |ψ〉initial, and we slowly turn on the interaction λ from the free theory λ= 0.
Thus, during this process, the Hamiltonian is time-dependent. Instead of considering Lie–Trotter–Suzuki
decomposition in a digital quantum computer, one could perform the above calculation in a quantum
computer with a variational form. We will use the variational approach of time evolution introduced in [13,
19]. Similar to the imaginary time proposal, we will use the McLachlan’s variational principle and take care
of the time-dependent global phase.

Now consider the situation where we adiabatically turn on the coupling of the Hamiltonian. We restrict
our solution inside the variational form similar from before,

|ψ(θ)〉=
(∏L

ℓ=1
Uℓ (θℓ)

)∣∣ψfree theory states

〉
. (35)
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Note that we are starting from the corresponding momentum eigenstates of the free particle. The differential
equation of θ based on the McLachlan’s variational principle is given by

∑
j

Mi,j
dθj
ds

= Vi, (36)

where

Mi,j = ReAi,j + ∂i〈ψ(θ(s))|ψ(θ(s))〉∂j〈ψ(θ(s))|ψ(θ(s))〉,
Vi = ImCi + i∂i〈ψ(θ(s))|ψ(θ(s))〉〈ψ(θ(s))|H(s)|ψ(θ(s))〉,

and A and C are similarly defined in equation (25). One could show that the solution of θs are always real in
our variational form, and the variational answer is consistent with the actual answer up to a time-dependent
global phase. More detailed discussions on the simulation error during the dynamics can be found in
section 3.6.

Similar to the above variational adiabatic state preparation algorithm, the imaginary time evolution
could also start from the corresponding free theory states. Practically, we find in our example, the imaginary
time evolution algorithm performs better (this is intuitively because we are looking for low-lying states with
low energies).

Moreover, these methods can be integrated together. We can turn on the interaction, similarly as in
equation (21), but with much fewer steps. We could then use the variational algorithms to find the ground
state of the intermediate Hamiltonian H(s), using which as the initial state for the next time step until s
reaches 1. Compared to finding the ground state of HI , this method may avoid the local minimum.

Finally, we comment on other methods to snake around the spectral crowding problem. A useful trick to
find the state with both fixed momentum and energy is through measurement in quantum devices. We could
consider measuring the momentum operator

P= a
∑
x∈Ω

π∇aϕ, (37)

during the variational process, making sure that it keeps the sign when the interaction is turning on.
However, the momentum operator only has its meaning in the free theory, so we only expect the above
algorithm to be useful in the sense of weakly-coupled theory.

Another useful trick for keeping the momentum is similar to the idea of the tangent space method in the
language of matrix product state (see a review [44]). Usually, we expect that our momentum−p eigenstate
could have the following form ∣∣Φp

〉
=
∑
x∈Ω

eipxTx |Φ〉. (38)

Here Tx is the translation operator with the vector x. If the state |Φ〉 is already a momentum-p eigenstate,

|Φ〉=
∑
y∈Ω

eipyTy |Ψ〉, (39)

we have ∑
x∈Ω

eipxTx

∑
y∈Ω

eipyTy |Ψ〉=
∑
x,y∈Ω

eip(x+y)Tx+y |Ψ〉=
∑
x,z∈Ω

eipzTz |Ψ〉 ∝
∑
z∈Ω

eipzTz |Ψ〉. (40)

Moreover, if the state |Φ〉 is a linear superposition of the momentum-p state and the momentum-(−p) state
where p 6= 0

∑
x∈Ω

eipxTx

c1
∑
y∈Ω

eipyTy |Ψ〉+ c2
∑
y∈Ω

e−ipyTy |Ψ〉

=#× c1
∑
z∈Ω

eipzTz |Ψ〉+ c2
∑
x,y∈Ω

eip(x−y)Tx+y |Ψ〉

=#× c1
∑
z∈Ω

eipzTz |Ψ〉+ c2
∑
u

eipu
∑
v

Tv |Ψ〉

∼#× c1
∑
z∈Ω

eipzTz |Ψ〉. (41)
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Note that the c2 term is suppressed because it sums over a pure numerical phase. Thus, for the state we
obtained from the variational quantum simulation, we could make a linear superposition weighted by eipx to
obtain a momentum eigenstate with a fixed momentum direction, at least in the case of the single-particle
scattering experiment. However, the above method seems to be mostly useful when we know how to
construct the translation operator. It is manifest in the coordinate space, but not easy in the momentum
space.

3.5. State fidelity, one-particle subspace fidelity and generalizations
Here we discuss some concepts about fidelities that are useful for the variational, scattering-state preparation
setting. Say that we originally have a wave packet centered around a given momentum, and it is a one-particle
state in the free theory. Now we could turn on the interaction slowly. Ideally, as we discussed before, a
one-particle state will still remain a one-particle state in the interacting theory. In fact, if we consider
momentum eigenstates of a single particle, |p〉, we could define the one-particle subspace by

Vone-particle,free = spanp(|p〉). (42)

Now, if we are adiabatically turning on each state |p〉 towards the coupling λ0, the space will become

Vone-particle,λ0 = spanp(adiabatic evolutionλ0 ◦ |p〉). (43)

In fact, if the adiabatic evolution is slow enough, the above expression will define the one-particle space in
the interacting theory. This makes our number eigenstate definition more precise. Counting the one-particle
eigenstates in free theory on the lattice Ω, they span an N-dimensional subspace. The dimension of a
n-particle space is equal to the number of compositions (n1, . . . ,nN) of n. It is mathematically analogous to
calculate the dimension of nth symmetry tensor power of RN and the answer is

(n+N−1
n

)
. It should be noted

that since we also truncate particle numbers by ncut at each momentum mode, an n-particle space with
n> ncut cannot be fully realized and thus has a lower dimension. Even though, low energy subspaces can be
fully defined with dimension being bounded polynomially in N.

Now, say that we are doing the state preparation using the variational algorithm (which is not the ideal
adiabatic process). Due to the limitation induced by the variational ansatz, we will have some systematic
errors (or other errors). However, the resulting state, although suffering from the noise, might still have a
large overlap with the one-particle subspace Vone-particle,λ0 . In fact, we could define the state fidelity

Fstate,adiabatic = |〈ψideal|ψvariational〉| , (44)

which is an overlap between the accurate state from an ideal adiabatic simulation without any error, and the
state obtained from the variational algorithm. We could also define the one-particle subspace fidelity

Fone-particle,adiabatic = |〈ψvariational|Λ|ψvariational〉| . (45)

Here, Λ is the projector of the space Vone-particle,λ0 . By definition, Fone-particle,adiabatic should be no less than
Fstate,adiabatic (e.g. figures 4(b), (c) or (e), (f)). In principle, we wish our fidelities to be always high enough,
which means that we are performing high-quality state preparations. Ideally, we wish the state fidelity to be
high. But in practice, when we do not really care about the form of the wave packet, and we only care about if
the state is still approximately a one-particle state, we could only use the one-particle subspace fidelity. As a
summary, the level of requirements we want about fidelities is closely related to the actual physical
motivation we have in the simulation experiment.

Let us end this subsection by making a final comment on the fidelities. The definition of fidelities is
indeed related to the physical task we want when doing the experiment. The definition of one-particle
subspace fidelity corresponds to the choice when we wish to maintain the one-particle subspace during the
initial state preparation. When we have other requirements, we could demand other versions of fidelities be
high. For instance, we could define the momentum fidelity by measuring the momentum center of the wave
packet. We could also define the wave packet profile fidelity by measuring the wave packet form. Stronger
definitions on fidelities would require higher quality when we are doing the variational state preparation.

In the most general setting, we could define the projector to the subspace Λ as

Λ =

DΛ∑
i=1

|qi〉〈qi|, (46)
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where |qi〉 is the basis and DΛ is the dimension of the subspace. Thus, for a variational state |ψ〉 we have

|ψ〉=
DΛ∑
i=1

ci |qi〉+ ce |e〉= Λ |ψ〉+ ce |e〉= Λ |ψ〉+(1−Λ) |ψ〉 . (47)

Here ci and ce are the expansion coefficients, and |e〉 is the perpendicular component of the subspace
projector Λ. Say that the state is normalized, we have(

DΛ∑
i=1

c∗i ci

)
+ |ce|2 = 1. (48)

FΛ = |〈ψ|Λ |ψ〉|=
DΛ∑
i=1

c∗i ci = 1− |ce|2. (49)

At the same time, the ideal state is given by the expansion coefficients di = ci + εi, |ψideal〉=
∑DΛ

i=1 di |qi〉, and
thus the state fidelity is given by

Fstate = |〈ψideal|ψ〉|=

∣∣∣∣∣
DΛ∑
i=1

d∗i ci

∣∣∣∣∣=
∣∣∣∣∣
DΛ∑
i=1

c∗i ci +
DΛ∑
i=1

ε∗i ci

∣∣∣∣∣=
∣∣∣∣∣1− |ce|2 +

DΛ∑
i=1

ε∗i ci

∣∣∣∣∣=
∣∣∣∣∣FΛ +

DΛ∑
i=1

ε∗i ci

∣∣∣∣∣ . (50)

This equation illustrates the relation between the state fidelity and the subspace fidelity. In the limit where εs
are small, those two fidelities are almost equal [45]. We verify numerically in section 4 a high one-particle
subspace fidelity (figure 4) as well as state fidelity (figures 5–8) for a lower number of clean qubits as a
successful benchmark for our variational algorithm about the adiabatic state preparation before particle
scattering. State fidelities can be easily measured by Hadamard test with the help of adiabatic quantum
computing. For n-particle subspace fidelities, as we analyzed above, the projector Λ defined in equation (46)
can be built by at most

(n+N−1
n

)
eigenstates evolving adiabatically from the free theory. Thus measuring

O(Nn) times like the case of state fidelity, we can compute the subspace fidelity. Especially for n= 1, one
particle subspace fidelity can be obtained by N-time measurements.

3.6. Particle scattering
Similar to the variational state preparation, we could also make the variational version of particle scattering.
Now, when we are considering the variational time evolution, the only difference comparing to the adiabatic
state preparation, is that now the Hamiltonian is static, and the bare coupling λ0 is fixed. The evolution of
the variational parameter is given by ∑

j

Mi,j
dθj
dt

= Vi (51)

whereM and V can be similarly expressed as

Mi,j = ReAi,j + ∂i〈ψ(θ(t))|ψ(θ(t))〉∂j〈ψ(θ(t))||ψ(θ(t))〉,
Vi = ImCi + i∂i〈ψ(θ(t))|ψ(θ(t))〉〈ψ(θ(t))|H|ψ(θ(t))〉.

Here the Hamiltonian H does not depend on the time t.
Now we show how to approximate the ideal evolved state during the dynamics up to given error ε.

Suppose at time t the ideal state Φ(t) is approximated by Φ(t)≈ |Ψ(θ(t))〉. Within time step δt, we evolved
the state |Ψ(θ(t))〉 by updating the parameters θ(t) to θ(t+ δt), which introduces an approximation error at
t+ δt as

δε= ‖|Ψ(θ(t+ δt))〉− e−iHδt|Ψ(θ(t)〉‖. (52)

Minimizing the error will give the similar results as that from the McLachlan’s variational principle in
equation (51). In the extreme case, if we choose the unitary operators in the ansatz Uℓ from all the
Hamiltonian terms (ĥl), for instance the Trotterization, this error could be reduced to zero. This indicates
that for single step, we can guarantee the simulation error at each time t up to certain threshold.

We can also track the accumulated error during the whole scattering process. Starting from an initial state
|Ψ0〉, the accumulated error until time t+ δt can be bounded by

ε= ‖|Ψ(θ(t+ δt))〉− e−iHδt|Φ(t)〉‖⩽
∑
δt

‖|Ψ(θ(t+ δt))〉− e−iHδt|Ψ(θ(t)))〉‖=
∑
δt

δε, (53)
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where we have used triangle inequality and the distance invariance under the unitary transformation in the
second line. The single step error can be bounded by

δε=
√
∆2 δt2 +O(δt3), (54)

where the first-order order error is

∆2 =
〈
H2
〉
+
∑
jj ′

Ajj ′ θ̇jθ̇j ′ − 2
∑
j

Cjθ̇j, (55)

with the matrix A and C defined in equation (25). The total error during the simulation can be bounded by

ε⩽ Tmax∆, (56)

where max∆ is the maximum error during the evolution. In practice, we could add the operators from the
Hamiltonian term (ĥl) into the circuits to decrease the error to a certain threshold ε0 by setting∆cut = ε0/T.
Therefore, by tracking the simulation error at each step, we can ensure the simulation accuracy.

If at time t, the error∆(t) is measured to be above the threshold, i.e.∆(t)>∆cut, we repeat to add new
operators from the Hamiltonian term (ĥl) until∆⩽∆cut The efficiency of the adaptive strategy is
guaranteed by the following theorem.

Theorem 1 (Theorem 1 in [16]).

(a) The first-order error∆ strictly decreases at each iteration until 0;
(b) In each circuit construction process (if∆(t)>∆cut), each Pauli term, ĥl, in the Hamiltonian is only needed

to appear once;
(c) We can achieve an error∆⩽∆cut in at most L iteration for any∆cut ⩾ 0. Here, L is the number of terms in

the Hamiltonian

The key idea of the proof is that in the circuit construction subroutine, there always exists an operation
ĥk ∈ (ĥl), by appending which to the old circuit, the distance strictly decreases if∆ 6= 0. Theorem 1 indicates
that circuit construction process will terminate in a finite number of steps during the total time evolution. In
an extreme case, we can optimize the parameters directly to make∆⩽∆cut, such that no additional gates are
required to be added. This reduces to the conventional variational algorithms in equation (51).

We also remark that∆ is a measurable quantity. The additional measurement cost for the adaptive circuit
construction comes from 〈H2〉, which could be measured efficiently by using the compatibility of the Pauli
operators in the Hamiltonian. For instance, if ĥl and ĥk qubit-wise commute with each other, we can
simultaneously measure them within one Pauli basis, which can significantly reduce the measurement cost.

We conclude this section by making the following comments about the variational realization of the
particle scattering algorithm.

• The bosonic ansatz equation (20) in the momentum space allows the creation of new particles during the
scattering process, and they could capture the particle excitations along time evolution.

• Since we are considering the scattering process of the wave packet states, some challenges might appear
because of the limitation of the variational ansatz: we cannot cover the full space during the variational
simulation. Furthermore, besides the error appearing in the near-term quantum devices, we might have
some other errors in the variational process due to the level crossing phenomena among different excited
states. For a given theory, lots of tests need to be done to obtain some numerically satisfying results, and we
leave those opportunities to future research.

• During the scattering process, wemight wish to read off some explicit results for the Smatrix elements. Thus,
the result should be sensitive to the error, from the adiabatic state preparation to the scattering process. In
this situation, we do not want uncontrolled errors from the quantum noise or some systematic errors from
the assumption of the variational ansatz. However, if we only want some collective, statistical properties of
the output states, for instance, some macroscopic quantities or random averages that could contain some
intrinsic noises (for instance, the jets), we might have fewer constraints on the fidelity of the variational
algorithm.

• Other hybrid-classical quantum simulation methods, such as hybrid tensor networks [46], could be lever-
aged to simulate this scattering process with fewer quantum resources. Moreover, perturbative quantum
simulation methods that do not rely on the circuit ansatz could be applied to this task [47].
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Figure 3. Variational ground state preparation in the momentum space. The initial state is prepared as |0⟩⊗8 in the computational
basis, i.e. the vacuum state of the free Hamiltonian. (a) The error of the ground state energy with an increasing strength of the ϕ4

field λ0. (b) The fidelity error of the ideal ground state and the variational state with an increasing strength of the ϕ4 field λ0.

4. Numerical results

In this section, we demonstrate how the techniques can be used to find the ground state and excited states of
the interacting lattice field. We also discuss the spectrum of the lattice field with different bare mass and
coupling strength.

Similar to the analysis before, we consider a lattice Ω with total length L= 4 and lattice spacing a= 1, and
its dual lattice Γ has 4 sites in the momentum space. We use the HO basis in the momentum space with
ncut = 4 energy levels. To benchmark the performance of the variational algorithms, we consider finding the
ground state using the bosonic UCC ansatz with an increasing coupling of the interacting field. We prepare
the initial state as the ground state, |0〉⊗8, in the free theory. Here, we use the compact mapping for the
creation and annihilation operators in equation (13). We truncate the highest energy level to be 3 in the
double excitation operator in equation (22) to reduce the number of parameters and the quantum circuit
depth. In order to find the variational state, we use the imaginary time evolution to evolve and identify the
low-lying spectra in the interacting theory. The regularization term in the excited state search is fixed as
α= 8. In the numerical simulation, the error of the results is compared with exact diagonalization.

The relative error of the ground state energy and the state associated with different coupling strengths of
the interacting field, λ0, is shown in figure 3. We characterize the relative energy error by
(Evariational − Eideal)/Eideal, where Eideal is the corresponding eigenenergies calculated by the exact
diagonalization. The state fidelity is defined by the overlap between the variational state and the ideal excited
state 〈ψideal|ψvariational〉. We can see that the simulation error increases when the interaction strength λ0
increases, ranging from λ0 = 0.5 ∼ 4!, but even for a large interaction strength λ0 = 4!, we can achieve a
high simulation accuracy below 10−3 both for the energy error and the state fidelity, which indicates a strong
representation capability of the quantum circuit ansatz. In the following, we will choose two coupling
strength λ0 = 1 and λ0 = 10 to test the performance of the variational algorithms in several regimes [48].

Moreover, we extend the discussions to the excited state preparation, which could be more complicated
due to the spectral crowding and degeneracy of the lattice field. We first consider the static massm0 = 1.27,
such that the energy of single-particle excitation is lower than that of multi-particle excitations in both the
free field and interacting field. In this case, we prepare the initial state for the excited states, searching in the
corresponding single-particle excited-state space of the free Hamiltonian λ0 = 0.

We show the relative error of the energy and the fidelity of the ground state and low-lying excited states
towards the iteration, see figures 4(a)–(c) for λ0 = 1, and (d)–(f) for λ0 = 10, respectively. As is noticed
before, the single-particle excitation has a two-fold degeneracy for excitation at momentum p= 2π/L(1,3)
due to the boundary condition of the momentum. For the degenerate states, we compare the state fidelity in
the subspace of the degenerate states. From the simulation results, we can find that the eigenstates obtained
from the variational algorithms can be found with a high state fidelity, verifying the effectiveness of the
variational algorithms.

Figures 4(c) and (f) shows the state fidelity in the one-particle subspace. Here, the one-particle subspace
is obtained by adiabatically evolving the one-particle state in the free theory. In the adiabatic evolution, we
set the time step dt= 0.01 and total time T= 50 to ensure the state fidelity error below 10−4. The results
indicate a high state overlap in this one-particle space in the presence of interaction λ0 = 1 and λ0 = 10,
consistent with our analysis.

We then discuss the simulation in the spectral crowding regime with a relatively small static massm0,
where the many-particle state occupied at zero momentum p= 0 will have lower energies compared to the
single-particle state. In this regime, we should note that the excitations in the interacting field will not be
local and may not have a well-defined particle number as that in the free theory. Therefore, searching for the
excited state could be difficult in general, even when we could have access to adiabatic evolution. In what
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Figure 4. Convergence towards the ground state and excited states of λϕ4 theory in the momentum space using variational
algorithms. The static mass is set to bem0 = 1.27. Figures (a)–(c) corresponds to λ0 = 1 and figures (d)–(f) corresponds to
λ0 = 10, respectively. The initial state for the excited states searching is the corresponding single-particle excited states of the free
Hamiltonian λ0 = 0. The error of the results with exact diagonalization. (a), (d) We show the relative energy error of the ground
state and the low-lying excited states. (b), (e) We show the fidelity error of the ideal eigenstates and the simulated variational
states. (c), (f) The fidelity error of the first four excited states in a one-particle subspace.

Figure 5. The ground state and excited states preparation of λϕ4 theory in the momentum space. The static mass ism0 = 0.5 and
the interacting strength is λ0 = 1. The initial state for the excited states searching is the corresponding low-lying excited states of
the free Hamiltonian λ0 = 0. (a), (b) The convergence towards the ground state and excited states of λϕ4 theory in the
momentum space. (a) The energy error towards iteration. (b) The fidelity error towards iteration. (c), (d) The energy error
(c) and the fidelity error (d) under adiabatic evolution from the initial state.

follows, we will discuss the low-lying excited states for two static massm0 = 0.5 andm0 = 0.37, and show the
search for eigenstates using the variational algorithms.

Here, we represent the state as

|ψ0〉= |n0,n1,n2,n3〉, (57)

where nj denotes the occupation number at the momentum p= 2πj
L .

Let us first considerm0 = 0.5. In this regime, the first five excited states of the free Hamiltonian are

|1,0,0,0〉, |2,0,0,0〉, |0,1,0,0〉, |0,0,0,1〉, |3,0,0,0〉. (58)

Compared to the case ofm0 = 1.27, the two-particle states have lower energies than the single-particle state,
and the state |0,0,1,0〉 is indeed a highly excited state (higher than three-particle states). The excited states of
the interacting Hamiltonian with λ0 = 1 follows the same order as that of the free Hamiltonian. We compare
the simulation results for λ0 = 1 using the variational methods and adiabatic evolution in figure 5.

Figures 5(a)–(d) shows the results using variational methods and adiabatic evolution, respectively.
Overall, the low-lying eigenstates obtained from the variational algorithms can be found with a high state
fidelity.
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Figure 6. The static mass ism0 = 0.5 and the interacting strength is λ0 = 10. The initial state for the excited states searching is the
single-particle excited states of the free Hamiltonian λ0 = 0. (a) The energy error towards iteration. (b) The fidelity error towards
iteration. (c), (d) The energy error (c) and the fidelity error (d) under adiabatic evolution from the initial state.

In the strongly coupling regime, the two-particle excitation |2,0,0,0〉 for the interacting Hamiltonian
with λ0 = 10 has higher energies compared to all the single-particle excitation, and it is even higher than the
three-particle excitation |3,0,0,0〉. Therefore, we choose to prepare the single-particle excited states in the
free theory as the initial states,

|1,0,0,0〉, |0,1,0,0〉, |0,0,0,1〉, |0,0,1,0〉. (59)

Then, we use the variational quantum algorithms to search for the low-lying excited states. We show the
simulation results with variational methods and adiabatic evolution for λ0 = 10 in figure 6. Figure 6 shows
that we could still use the excited state of the free Hamiltonian as the initial guess and obtain the target state
with relatively high fidelity.

In the interacting theory, the single-particle excitation may not be well defined, and the eigenstate of the
free theory may not be adequate for finding the ground state in the interacting theory, especially for the large
interacting field λ0 = 10. Note that the problem for the choice of the initial state exists in the adiabatic
evolution.

Similarly, we could considerm0 = 0.37, with the first five excited states of the free Hamiltonian as

|1,0,0,0〉, |2,0,0,0〉, |3,0,0,0〉, |0,1,0,0〉, |0,0,0,1〉. (60)

We first show the convergence towards iteration in figure 7 for λ0 = 1 for both the variational state
preparation and adiabatic state preparation.

Similar to the case ofm0 = 0.5, the two-particle excitation form0 = 0.37 has a small energy in the free
theory, but it has a much higher energy compared to all the single-particle excitations and even higher than
the three-particle excitation in the strong coupling regime. For instance, for a large interaction strength
λ0 = 10, the energy has the following relation

E(|3,0,0,0〉)< E(|0,0,1,0〉)< E(|2,0,0,0〉) , (61)

which indicates the energy single-particle excitation is between the multi-particle excitation in the
interacting field. However, in the interacting field, we can find that the single-particle state is actually much
close to the excited states in terms of state fidelity. Therefore, we similarly choose the initial states as the
single-particle excited states.

We show the convergence towards iteration in figure 8 for λ0 = 10. As shown in figures 8(b) and (d), we
can find that the state fidelity of the second excited state and the third excited state are relatively lower than
the others. This is because these two states are actually evolved from the two degenerate states due to the
boundary condition in the momentum space. However, the state fidelity in the subspace spanned by the
degenerate states is numerically tested to be over 99%.

Finally, we show a detailed resource analysis of our method. In the simulation, we can reduce the number
of Pauli operators by restrict the higher order transitions. Here, we consider to fix the energy cutoff as
ncut = 4 and we restrict the higher order transition to be less than 3 in T̂1 and the modified T̂2 operator. Then
the energy constraint |si − ti|⩽ 4 is trivially hold and thus we need 6 Pauli operators to construct a single
term from T̂1 (they are σxσx,σyσy,σxσz,σxI,σzσx, Iσx ). A linear combinations of tensor products of all pairs
of these Pauli operators to form a single term from equation (22). In practice, we may only use the second
term in equation (22), which saves half resources. Therefore, the number of Pauli rotation operators required
in T̂2 is upper bounded by 18N. Figure 9 shows the number of Pauli rotation operators in the N-qubit
variational circuit T̂1 + T̂2.
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Figure 7. The static mass ism0 = 0.37 and the interacting strength is λ0 = 1. The initial state for the excited states searching is the
corresponding low-lying excited states of the free Hamiltonian λ0 = 0. (a), (b) The convergence towards the ground state and
excited states. (a) The energy error towards iteration. (b) The fidelity error towards iteration. (c), (d) The energy error (c) and the
fidelity error (d) under adiabatic evolution from the initial state.

Figure 8. The static mass ism0 = 0.37 and the interacting strength is λ0 = 10. The initial state for the excited states searching is
the corresponding single-particle excited states of the free Hamiltonian λ0 = 0. (a) The energy error towards iteration. (b) The
fidelity error towards iteration. (c), (d) The energy error (c) and the fidelity error (d) under adiabatic evolution from the initial
state.

Figure 9. The number of Pauli operators in the variational circuits.

5. Outlooks

In this paper, we discuss constructions of a variational version of the Jordan–Lee–Preskill algorithm in the
near-term quantum computer. We justify the validity of the algorithm by several numerical simulations. We
believe that our hybrid quantum–classical algorithm will eventually benefit possible solutions to open
problems in fundamental physics, and benchmark tasks of near-term quantum devices. Here, we summarize
some potential research directions along our path.

5.1. Relation to the physical observables
In the previous discussions, we demonstrate the numerical simulation with fixed lattice spacing and lattice
sites. To obtain the expectation value of physical observables in the real scalar field, say 〈ϕ〉, we can first

measure the expectation value with a series of increasing number of sites N,
〈
ϕ
(0)
a,N

〉
, and extrapolate to the
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infinite volume limit N→∞,
〈
ϕ
(0)
a,N→∞

〉
. Then, we further extrapolate these results to the continuum limit

a→ 0,
〈
ϕ(0)

〉
≡
〈
ϕ
(0)
a→0,N→∞

〉
. Finally, we renormalize the expectation value as

〈
ϕ(R)

〉
= Z

〈
ϕ(0)

〉
with the

renormalization constant Z. We leave the discussions to future work.

5.2. Simulating quantum field theories in the NISQ era
Our work opens up a new direction of formulating several quantum field theory tasks in the setup of
variational quantum simulation. In the era of NISQ, we expect that hybrid, variational quantum simulation
algorithms might be one of the most accessible ways regarding near-term quantum hardware.

There is a landscape of quantum field theories with a full basket of open problems, who are looking for
the potential computational capacity of quantum devices. Our work about strongly-coupled λϕ4 theory is
one of the simplest examples, whose non-perturbative nature is not fully understood by quantum field
theorists. One could consider generalizing the scattering paradigm and its relevant techniques towards other
quantum field theories. Specifically, lattice gauge theories in the four dimensions are particularly important
for particle physicists, since it is related to quantum chromodynamics and the Standard Model in particle
physics. We refer to [22, 23, 25, 26, 49–52] for recent theoretical and experiment advances in the quantum
simulation of lattice gauge field theories. One could look for other strongly-coupled quantum field theory
problems, for instance, phase transitions in the finite-temperature quantum field theories that are closely
related to nuclear physics [4, 53].

5.3. Identifying possible quantum advantages
Variational algorithms running on near-term devices might have further advantages for fundamental studies
in quantum information science. Specifically, since we could design hybrid quantum–classical algorithms, it
is easy for us to diagnose which classical or quantum steps have advantages practically. Although in this
work, we do not focus on this comparison, we expect that similar comparisons could be performed in future
studies. In the future, people might work out practically, which steps in the whole algorithms might have the
quantum advantage, and if so, how much advantage they will have. Those studies might be helpful to
construct the most useful quantum algorithms using practical experiences, and use those experiences to
benchmark near-term devices. Quantum simulation of quantum field theories is a field that is still young,
but we expect that finally, more techniques and hardcore developments could be formulated (see some
similar analysis in computational quantum chemistry [54]).

5.4. Error mitigation
In part of this paper, we neglected errors from device imperfections and shot noise from finite measurement
samples. Those errors could accumulate and affect the simulation accuracy. However, we extensively discuss
the effect of noises when defining one-particle subspace fidelities. Although some of the algorithms might
include a significant amount of noise, we might still be able to predict particle experiments accurately if we
only care about subspace fidelities. Moreover, fortunately, various error mitigation techniques have been
developed to suppress device errors [14, 15, 55–64]. By properly post-processing measurement results from
different circuit realizations (e.g. with different noise ratios or symmetries), one can suppress the effect of
noise by several orders [57, 65–67]. For instance, the λϕ4 field preserves the reflection symmetry, so one can
project the quantum state in the symmetry-protected subspace (see, e.g. [14, 55, 57]).

Meanwhile, the effect of shot noise could be reduced as well by exploiting more advanced measurement
schemes [68–78]. The basic idea is to either exploit observable compatibility, importance sampling, or
additional quantum circuit to more efficiently measure observables. Combining those error mitigation and
advanced measurement schemes, we might be able to demonstrate our algorithms with current or near-term
quantum hardware.
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Appendix A. LSZ reduction formula

We briefly describe the use of harmonic oscillator basis in calculating scattering amplitudes in the scalar field
theory by LSZ reduction formula. We start from an important observation: consider the two-point function:
〈Ω|ϕ(x)ϕ(y)|Ω〉, where |Ω〉 is the ground state or the physical vacuum. From a non-perturbative perspective,
computing the two-point function will tell us the information about the masses of particles through the
Källén–Lehmann spectral representation [28, 29], from which we can find and compute the field strength
renormalization factor. Let us consider a complete basis describing the spectrum of the interacting ϕ4 theory
by the spectrum |np〉 indexed by the d-momentum p (recall Lorentz invariance so that |np〉 is the
simultaneous eigenstate for both H and d-momentum operator P):

Ĥ
∣∣np〉= ωp(n)

∣∣np〉 , P̂ ∣∣np〉= p ∣∣np〉 , (A.1)

where the spectrum eigenstates can be: (a) single particle state with a renormalized massm and
ωp =

√
m2 + p2, (b) bound states, and (c) multi-particle states forming from single-particle or bound states.

All these states |np〉 are excited from the ground state |Ω〉, which can be evolved from the ground state of the
free theory:

lim
t−→−∞

exp(iHt−)|0〉= lim
t−→−∞

|Ω〉〈Ω|0〉+
∑
np

|np〉〈np||0〉exp−iωpt− = |Ω〉〈Ω|0〉, (A.2)

where the second equation is obtained from the Riemann–Lebesgue lemma. Thus we can compute the
two-point correlator at interaction by:

〈Ω|ϕ(x)Iϕ(y)|Ω〉=
∑
n

ˆ
dd+1p

(2π)d+1

1

2ωp(λ)

〈
Ω|ϕ(x)|np

〉〈
np|ϕ(y)|Ω

〉
, (A.3)

where we normalize the field: ϕ(x) 7→ ϕ(x)−〈Ω|ϕ(x)|Ω〉 and:

I= |Ω〉〈Ω|+
∑
n

|np〉〈np|. (A.4)

The identity operator constructed from the interaction spectrum. Note that we have:

〈Ω|ϕ(x)|np〉= 〈Ω|exp(iP̂x)ϕ(0)exp(−iP̂x)|np〉= 〈Ω|ϕ(0)|np〉exp(−iωp(n)x). (A.5)

To work in the rest frame, we consider the Lorentz boost: |n0〉= U|np〉 so that we can further rewrite the
RHS of equation (A.3):

〈Ω|ϕ(x)|np〉= 〈Ω|U†Uϕ(0)U†U|np〉exp(−ipx) = 〈Ω|ϕ(0)|n0〉exp(−ipx), (A.6)

so that we can express the two-point function with time-ordered a free part and a spectral function ρ(M2):

〈Ω|T ϕ(x)ϕ(y)|Ω〉=
ˆ

dM2

2π
ρ(M2)

ˆ
dd+1p

(2π)d+1

1

2ωp(n)
e−ip(x−y), (A.7)

where now we integrate over d+ 1 energy–momentum and the spectral function defined:

ρ
(
M2
)
=
∑
n

2πδ
(
M2 −m2

n

)
|〈Ω|ϕ(0)|n0〉|2 . (A.8)

The spectrum function leads to isolated peak of Driac Delta functions for the single-particle state whereM2

is less than 4m2 orm2
bound at the rest frame |p0〉:

ρ
(
M2
)
= 2πδ

(
M2 −m2

)
|〈Ω|ϕ(0)|p0〉|2 . (A.9)
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The field-strength renormalization is given by:

Z3 ≡ |〈Ω|ϕ(0)|p0〉|2 = |〈Ω|ϕ(0)|p〉|2 , (A.10)

where the last equality follows the fact that the spectrum function is Lorentz invariant. One can prove that
Z3 ⩽ 1 and equals one if and only if it is in the free theory. As a result, to even write down the two-point
function, we require the field to be renormalized:

ϕ(x)→ 1√
Z3

(ϕ(x)−〈Ω|ϕ(x)|Ω〉). (A.11)

In the latter part, we always assume ϕ(x) is properly renormalized. In simulating scattering amplitude of the
ϕ4 theory in quantum circuits, one should, therefore, always first measure the two-point function in term of
the self-energy to obtain the proper field-strength renormalization factor [82]. This is an important caveat to
measuring the scattering amplitude in quantum circuits using the harmonic oscillator basis. In scattering
theory, the use of harmonic oscillator basis is to prepare in-and-out states (particularly in-states). It is
conventional to assume that the in-states start far past as a wave packet and then evolve in time as free fields
to interaction, as a consequence of the locality of interaction. Therefore, the use of harmonic oscillator in
quantum circuits is to encode the far past in-states, where we now use the Heisenberg picture to denote the
fields ϕHin(t,x) (ϕ

H
out(t,x)). Then we can express the creation and annihilation operators at some arbitrary

time instance t0:

ap(t0) =

ˆ
dd+1xeipx[i∂0ϕ

H +ωpϕ
H]|t=t0 , a

†
p(t0) = i

ˆ
dd+1xe−ipx[−∂0ϕH +ωpϕ

H]|t=t0 . (A.12)

Note that at t0 →−∞, the above equation simply implies the mode expansion of the scalar fields in the free
theory where we can express the scattering amplitudes:

〈q1, . . . ,qm;out|p1,p2, . . . ,pn, in〉= 〈Ω|aq1(tf) · · ·aqm(tf)a†p1(ti) · · ·a
†
pn(ti)|Ω〉. (A.13)

The variational ansätze constructed in this paper can simulate initial states |i〉 specified momentum sector as
well as a wave-packet:

|i; in〉=
ˆ

ddk

(2π)d
1

2wk
F(k)|k〉 →

∑
k∈Γ

1

L

1

2ωk
F(k)|k〉. (A.14)

The specific form of the wave-packets should not concern us here; however, it is an independent issue to
analyze the encoding of F(k) in the quantum circuits if we were to prepare a wave-packets in the harmonic
oscillator basis. We cam analogously define the wave-packet creation operator:

ˆ
ddkF(k)a†k(t)|Ω〉 ≡ a†F(t)|Ω〉. (A.15)

Notice that the wave-packets must preserve the inner products; thus, in a quantum circuits with harmonic
oscillator basis, one can write:

Va†k(t)V
† = a†F(t). (A.16)

For some unitary matrix V also defined on the harmonic oscillator basis. Note that:

a†F(∞)− a†F(−∞) =

ˆ ∞

∞
dt∂0a

†
F(t), (A.17)

where the LHS can be directly applied to equation (A.13) where 〈Ω|a†(∞) = 0 and similarly a(−∞)|Ω〉= 0.
The RHS can be evaluated from the wave-packets equation (A.15) and equation (A.12):

RHS=

ˆ
ddkF(k)

ˆ ∞

−∞
dt∂0α

†
F(t) =

ˆ
ddkF(k)

ˆ
dd+1x∂0e

−ikx[−i∂0 +ωk]ϕ(x)

=

ˆ
ddkF(k)

ˆ
dd+1x

{
(−iωk)e

−ikx[−i∂0 +ωk]ϕ+ e−ikx[−i∂20 +ωk∂0]ϕ
}

= i

ˆ
ddkF(k)

ˆ
dd+1xe−ikx(∂2 +m2)ϕ,

(A.18)
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where we use the convention dtdx= d2x and the integration by parts in:

ˆ
dd+1x(−iωk)e

−ikx(−i∂0ϕ) = i

ˆ
dd+1xe−ikx(∂20ϕ). (A.19)

Note that if we are describing a free (on-shell) theory, (∂2 +m2
0)ϕ= 0 implies there is no quantization, i.e.,

no particles being created or annihilated in the process. In the interaction, the on-shell condition is replaced
by some external source j(x) such that:

(∂2 +m2)ϕ(x) = j(x). (A.20)

Analogously, let assume that the final state is described by some wave-packets:

|f〉 ≡ lim
t→∞

ˆ
ddkG(k)a†k(t)|Ω〉 ≡ lim

t→∞
a†G(t)|ω〉. (A.21)

We would can derive the LSZ formula by putting everything together:

〈 f |i〉= lim
tf→∞
ti→−∞

〈Ω|aG(tf)a†F(t)|Ω〉

= i2
ˆ

ddqddpG(q)F(p)

ˆ
dd+1ydd+1x

(
eiqye−ipx

)
(∂2y +m2)(∂2x +m2)〈Ω|T ϕH(tf,y)ϕH(ti,x)|Ω〉.

(A.22)

Therefore, we can express the more general version of the scattering amplitudes from equation (A.13):

〈q1, . . . ,qm;out|p1,p2, . . . ,pn, in〉= (i)m+n

ˆ
dd+1y1 · · ·dd+1ymd

d+1x1 · · ·dd+1xn
(
eiq1y1 · · ·eiqmyme−ip1x1e−ipnxn

)
× (∂2y1 +m2) · · ·(∂2ym +m2)(∂2x1 +m2) · · ·(∂2xn +m2)

×〈Ω|T ϕ(y1) · · ·ϕ(ym)ϕ(x1) · · ·ϕ(xn)|Ω〉
= (i)m+n(q21 +m2) · · ·(q2m +m2)(p21 +m2) · · ·(p2n +m2)

×〈Ω|T ϕ̃(q1) · · · ϕ̃(qm)ϕ̃(p1) · · · ϕ̃(pn)|Ω〉,
(A.23)

where at the last step we assume the wave-packets to be the planar wave functions localized at
δd(q1) · · ·δd(qm)δD(p1) · · ·δD(pn). Them+ n-point function can be calculated from the partition function
pertubatively from Feynman Diagrams. Combing with that, we can derive rigorously the Feynman rules. In
particular, the LSZ reduction formula implies that it, to obtain the scattering amplitude, is sufficient to apply
using equation (A.2):

lim
t0→−∞

[U(t, t0)ap(t0)U(t0, t)]
†|Ω〉= lim

t0→−∞
U(t, t0)a

†
p(t0)|0〉(〈Ω|0〉)−1

= U(t)/(〈Ω|0〉)−1|p; free〉.
(A.24)

Simulating the above evolution from free states would ensure to prepare the proper in states for the scattering
amplitudes, where the factor (〈Ω|0〉)−1 normalizes the vacuum bubbles.

The UCC ansätze used in this work can be seen to create a wave-packet in interaction region with some
fixed t. Recall equation (A.16), we can always decompose our UCC ansätze into the following form (see in
equations (24)–(26) in main text)

exp(T̂ℓ(θ(t))− T̂†
ℓ(θ(t)) = lim

t0→−∞
VU(t, t0). (A.25)

Note that T̂4(θ(t)) in the adiabatic picture can be used to simulate the full Hamiltonian (equation (21) in the
main text); hence, in which case V is the identity operator. Therefore, equation (A.24) provides a simple
interpretation of the use of variational UCC ansätze: to create a wave-packet at some intermediate time t, for
which we can denote as initial time ti of the optimization process using variational quantum imaginary time
evolution [19] or other optimization method such as [41]. The optimization would produce a final time tf
(or τf ≡ itf), where we further evolve the wave-packet into lowest energy eigenstates where one can utilize
physic prior to recognizing these states and compute corresponding scattering amplitudes.
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Appendix B. Truncation error of field basis

We provide a rigorous analysis on the truncation error of free theory eigenstates under field basis and
compare with the case of harmonic oscillator basis. Let |ψ〉 be any state expanded under field basis as

|ψ〉=
ˆ ∞

−∞
dϕ1 · · ·

ˆ ∞

−∞
dϕNψ (ϕ1, . . . ,ϕN) |ϕ1, . . . ,ϕN〉,

with truncated approximation

|ψcut〉=
ˆ ϕmax

−ϕmax

dϕ1 · · ·
ˆ ϕmax

−ϕmax

dϕNψ (ϕ1, . . . ,ϕN) |ϕ1, . . . ,ϕN〉.

Then the truncation error ε can be defined as

1− ϵ= 〈ψ||ψcut〉=
ˆ ϕmax

−ϕmax

dϕ1 · · ·
ˆ ϕmax

−ϕmax

dϕN|ψ (ϕ1, . . . ,ϕN) |2|ϕ1, . . . ,ϕN〉.

For simplicity, we assume N = 1 which corresponds to the case of a free quantum harmonic oscillator. The
eigenstates are given by Hermit–Gauss functions:

ψn(x) =
1

π
1
4

√
2nn!

e−
x2

2 Hn(x),

where Hn(x) are physicists’ Hermit polynomials defined as

Hn(x) = (−1)nex
2 dn

dxn
e−x2 .

An explicitly evaluated integral of the p.d.f. |ψn(x)|2 of the wavefunction ψn(x) on a truncated domain
can be found in [83]:

ϵ(x,n) = 2

ˆ ∞

x
|ψn(y)|2dy= erfc(x)+

1√
π
e−x2

n∑
j=1

(
n

j

)
H2j−1(x)

2jj!
, (B.1)

where

erfc(x) = 1− 2√
π

ˆ x

0
e−y2dy

is the complementary error function. Our job is finding an upper bound of equation (B.1). First of all,
erfc(x) is bounded by 2√

π
e−x2 for any x ∈ R. To verify this point, let

f(x) =
2√
π
e−x2 − erfc(x) with f ′(x) =

2√
π
(−2x+ 1)e−x2 .

The derivative is nonnegative in [0, 12 ] while negative in ( 12 ,+∞). Accordingly, f is nonnegative in (0,1]. We
only need to make sure that f will not turn into negative later. Note that by L’Hôpital’s rule, f(x)→ 0 when
x→+∞. If f (x) could be negative, it must admit a global minimum at x0 ∈ ( 12 ,+∞) and at which f(x0) = 0.
However, this is impossible and hence the inequality holds on R.

Now the problem is analyzing how would the remaining term containing H2j−1(x) decay with respect to
both x and n. As equation (B.1) converts Hn(x)2 from the integrand into H2j−1(x), it allows us to perform

Cramer inequality [84]: |ψ2j−1(x)|⩽ π− 1
4 for all x ∈ R. With this fact we have

1√
π
e−x2

n∑
j=1

(
n

j

)
H2j−1(x)

2jj!
=

1

π
1
4

e−
x2

2

n∑
j=1

(
n

j

)√
22j−1(2j− 1)!

2jj!
ψ2j−1 ⩽

1√
π
e−

x2

2

n∑
j=1

(
n

j

)√
22j(2j)!

2jj!
.

Explicitly expansion shows that√
(2j)!

j!
⩽
√
2j =⇒

√
22j(2j)!

2jj!
⩽ 2

j
2 =⇒

n∑
j=1

(
n

j

)√
22j(2j)!

2jj!
⩽ 2

3n
2 ≈ en.
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Therefore,

ϵ(x,n)⩽ 2√
π
e−x2 +

1√
π
e−

x2

2 en ≈ Ce−x2+Dn. (B.2)

For fixed energy level n, an exponentially small error can be obtained when x> O(
√
n). In the field context,

this x is though as ϕmax which is given as 2nq (multiplying with a chosen increment δϕ) on a quantum
computer with nq qubits. Thus we can conclude that nq = O(log log 1

ϵ ) of the error for approximating
low-lying excited states of free theory and the number of qubits. As a comparison, the original truncation
error bound of Jordan–Lee–Preskill algorithm is obtained by Chebyshev’s inequality. As they make no
presupposition on the concerned wavefunction, Chebyshev’s inequality only yields a polynomial decay on
the error.

The scalingO(
√
n) coincides with what indicates byWKB approximation: the classically forbidden region

is given by the square root of energy. If one takes x≈ O(
√
n), the above inequality (B.2) should be further

refined and numerical results from [83] indicate that the error only decays polynomially for such cases.
When we change to harmonic oscillator basis, there is no such a truncation error on the number

eigenstates because, as we explained in the main text, each of them is simply a single computational basis
element |s(k)〉 and there is no need to talk about truncating Hermit–Gauss functions in this setting. This is
another advantage to work directly with harmonic oscillator basis. However, the error still stems from
elsewhere. For instance, the creation/annihilation operators do not satisfy the commutation relation
[a†,a] = iI rigorously (this also happens for the field operator ϕ(x) and its conjugate momentum π(x)).
Expanding the Lie bracket explicitly by matrices, one can check that this error ϵ ′ decays exponentially with
the dimension of the local Hilbert space, and hence we have nq = log 1

ϵ ′ where nq is the number of qubits per
site.

Appendix C. The rate of convergence of variational algorithms

It is of interest to determine the rate of convergence of the variational quantum imaginary evolution [19] the
variational UCC bosonic ansätze, as it determines the number of measurements one needs to perform for the
parameter updating until reaching the optimal parameters θ∗. In particular, having an exponential rate of
convergence would give an optimal scaling of both the subspace and state fidelity seen in appendix.
Analyzing the rate of convergence for heuristic optimization algorithms is currently an active research front
[34, 35, 85] and thus beyond the scope of this paper. We here give a only heuristic remark on convergence
rate using QNTK.

The general strategy for the ground state searching is by updating the parameters as

θµ(t+ 1) = θµ(t)−
∑
ν

ηµ(t)A
−1
µν (θ(t))

∂

∂θν
〈H〉θ(t), (C.1)

where θµ(t) represents the optimization dynamics with step t, the learning rate is given by ηµ(t), and
〈H〉θ ≡ 〈ψ(θ)|H |ψ(θ)〉. Here, we use A(θ(t)) to represent the metric matrix at the parameter θ(t). The
metric matrix in the gradient descent algorithm is simply the identity matrix. In the following section, we
will show its explicit form during the optimization. One can ask if there exists a regime where there is a
convergence guarantee and, if so, the rate of convergence for these variational parameterization. One can
study this question from over-parameterization using QNTK [34]. Further taking 〈H〉θ(t) ≡ z(θ(t)),
equation (C.1) implies:

z(θ(t+ 1))− z(θ(t))≡ δz=
∑ ∂z

∂θµ
δθ =−

∑
ν

A−1
µν (θ(t))ην(t)

∑
µ

∂z(θ(t))

∂θµ

∂z(θ(t))

∂θν
. (C.2)

Assuming A is the identity matrix and η to be parameterization-independent, the resultant is precisely the
QNTK defined in [35]. Note that we can interpret A−1

µν as the learning rate tensor as part of the definition of
NTK in classical neural networks [31]. In particular, for the circuits that form at least approximate two-design
that satisfies certain concentration conditions (see in [34]), the average convergence is of the form

ϵ(θ(t))≈ e−γtϵ(θ(0)), (C.3)

where ϵ≡ z(θ)− E0, E0 is the ground state energy and

γ ≈ ηL tr(H2)

dim(H)2
, (C.4)
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With L being the total count of variational parameters and H be full Hamiltonian. The dimension of the
Hilbert space in our case is nNcut. The exponential convergence rate is guarantee on average in the
over-parametrization regime where L≈ dim(H)2/ tr(H2). When A fails to be an identity matrix such as in the
case of quantum imaginary time evolution used in the following, no precise analytical convergence guarantee
is known. However, it seems to be reasonable to extrapolate the hypothesis that such methods, due to its
more physical, geometric nature, would have convergence rates lowered-bounded by the naive gradient
descent methods.

Clarifying the gradient descent dynamics would enable us to determine the query complexity of the
quantum circuits during the optimization phase; that is the number of measurements the variational
quantum circuits needed to perform or simply the number of parameter updates. Let us consider the
k-particle subspace fidelity:

f(k)(τ) = 〈ψ(θ(τ))|Λ(k)|ψ(θ(τ))〉, (C.5)

where the N-dimensional projection operator:

Λ(k) =

D
Λ(k)∑
i

|ni〉〈ni|k-particle, (C.6)

where DΛ(k) is bounded by
(k+N−1

k

)
. As an intuitive example, we consider the projection to Λ(0) = |Ω〉〈Ω|

and f(0)(τ). Suppose we initially at f(0)(τi) and we are aiming at fidelity f(0)(τf) = 1− δ, an important
question to ask is what is the query complexity (τf − τi)/∆τ ? We wish this value to be bounded by
Poly(N logncut). Recall from quantum field theories we know that the overlap between physical vacuum state
and the free vacuum state 〈Ω||0〉 is non-vanishing even in the continuum limit. Therefore, having initializing
the UCC ansätze |ψ(θ(τi))〉= c0|0〉+ | ⊥〉 for some constant c0 would ensure that the variational algorithms
to converge to the physical vacuum state |Ω〉. Note that the physical vacuum state is unique so we expect that
we can approximate |Ω〉 with fidelity f(0)(τf) = 1− δ if ϵ(θ(τf))⩽ δ where we can further write from
equation (C.3):

τf − τi ⩾
1

γ
log

ϵ0
δ

(C.7)

for some error δ and initial error ϵ0. The log of inverse error looks promising but unfortunately as we
computed 1/γ scales as the dimension of Hilbert space so not super ideal. If it 1/γ were to be bounded by
poly(N logncut), it then follows that the query complexity is polynomially bounded.

To obtain the scaling of γ we first assume that the variational ansätze generated by T̂1 and T̂2

(equations (25) and (26) in main text) form an at least approximate two-design and satisfies the
concentration condition [34] in the large ncut and N limit. Then For each T̂ℓ, we have O(Nℓnℓcut) variational
parameters, corresponding to each Pauli operator. As a result, the rate of convergence can be computed:

γℓ ≈ O

(
ηN3+ℓnℓ+1

cut

n2Ncut

)
= O

(
ηN3+ℓnℓ+1

cut

n2Ncut

)
≈ O

(
ηN3+ℓ

n(2N−ℓ−1)
cut

)
. (C.8)

Thus the over-parameterization regime occurs at:

logk+ logη+(3+ ℓ) logN− (2N− ℓ− 1) logncut = 0, (C.9)

where the trace norm of the Hamiltonian is bounded by its number count of Pauli operators O(N3ncut) and k
some constant. Note that this regime fails to hold at large N; so the QNTK could only provide some analytic
guarantee of exponential convergence rate at some small momentum modes where N scales linearly with the
fixed ℓ. In this regime, we set the learning rate logkη ≈ ℓ logncutlogℓ . As a result, in general, it is difficult from
QNTK alone to analyze the rate of convergence in the ansätze for a fixed and lower ℓ as the constant kη has to
be linearly increasing with respect to ncut. For NISQ applications, where the number of qubits is within tens
of qubits, however, it might be possible to achieve an exponential rate of convergence. For instance, if we set
the constant k= 10000 and the learning rate η= 0.01 with N = 4, then we have roughly ncut = 32. Thus T̂4

can achieve an exponential rate of convergence, provided the aforementioned assumptions, up to the
20-qubit system.

It should be noted that we expect that NISQ era to have roughly between a few tens to few hundred
qubits, clearly above the regime where the rudimentary QNTK theory can provide a theoretical guarantee on
logarithms or polynomial query complexity. To this end, to obtain any polynomial query complexity in the
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variational setting is, to our best knowledge, difficult and largely unexplored; as a result, we leave it to as an
open remark. The above analysis could also be understood as a motivation for the significance on researching
the direction of QNTK or similar methods, where it could enable us to obtain a rigorous algorithmic
prediction instead of relying on heuristic arguments.

Appendix D.ϕ4 theory as an effective field theory

In this appendix, we simply review how the effective description of the classical Ising model in the long
distance could be given by field theories, for the convenience of the quantum information science
community. The observation where field theory could serve as an effective description of many-body physics
has an important significance in theoretical physics, sharpening the importance of simulating quantum field
theories.

The ϕ4 field is one of the simplest interacting field theories related to the emergent behavior in the
physical systems. In this section, we will review that the d-dimensional classical Ising model can be described
by the ϕ4 field at the long distance, following the discussions in [86] rather closely.

The classical magnetism can be described by the Hamiltonian

H=
∑
ij

JijSiSj −
∑
i

hiSi, (D.1)

where J ij is a translationally invariant correlation matrix describing the interaction of the spins. The classical
partition function can be written as

Z =
∑
{Si}

e
∑

ij J̃ijSiSj+
∑

i hiSi , (D.2)

where we define J̃≡−βJ and h̃i ≡ βhi.
By introducing a continuous auxiliary field ψi, the partition function is given by

Z =N
ˆ

Dψ
∑
{Si}

e−
1
4

∑
ijψi [̃J

−1]ijψj+
∑

i Si(ψi+hi), (D.3)

where the Gaussian integral has been evaluated as

ˆ
Dv(x)× exp

[
−1

2

ˆ
dxdx′v(x)A(x,x′)v(x′)+

ˆ
dxj(x)v(x)

]
∝ (detA)−1/2 exp

[
1

2

ˆ
dxdx′j(x)A−1 (x,x′) j(x′)

]
.

The equation above is under the saddle point approximation, which we preserves the second order of the
functional

S[x] = S[x̄+ y] = S[x̄] +
1

2

ˆ
dt

ˆ
dt ′y(t ′)A(t, t ′)y(t). (D.4)

The partition function can now be written as [87]

Z =N
ˆ

Dψ
∑
{Si}

e−
1
2

∑
ijψi [̃J

−1]ijψj+
∑

i Si(
√
2ψi+hi). (D.5)

Note that the interaction between spins is decoupled by the continuous auxiliary field. In this case, we
could work with the multi-dimensional integral

´
Dψ instead of the summation over discretized spins

Z =N
ˆ

Dψe−
1
2

∑
ij(ψi−hi )̃J

−1
ij (ψj−hj)+

∑
i ln(cosh

√
2ψi), (D.6)

where we have used Si =±1, and the normalization factor has absorbed the trivial prefactor. Notice that

lncosh(x) =
1

2
x2 − 1

12
x4 + · · · .

So the Ising model could be described by the ϕ4 theory at the long distance.
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To make the fourth-order term more clear, we change the integration variable ψ to the field variable via

ϕi ≡
1√
2

∑
j

J̃−1
ij ψj, (D.7)

and we have

Z =N
ˆ

Dϕe−
∑

ijϕĩJijϕj+
∑

iϕihi+
∑

i ln cosh(2
∑

j J̃ijϕj). (D.8)

We note that the amplitude of the field ϕ indicates a measure of magnetism. If the coupling is transnational
invariant, which indicates a spatially smooth field, we can capture this feature by the Fourier transformation:

ϕi =
1√
N

∑
k

e−ik·riϕ(k). (D.9)

Given the expansion

(̃Jϕ)(k) = J̃(k)ϕ(k) = J̃0ϕ(k)+
1

2
k2 J̃ ′ ′0 ϕ(k)+O

(
k4
)
, (D.10)

the effective action in the momentum space up to the fourth order is given by

S[ϕ] =
∑
k

[
ϕk
(
c1 + c2k

2
)
ϕ−k+ c3ϕkh−k

]
+ c4

∑
k1,...,k4

ϕk1ϕk2ϕk3ϕ−k1−k2−k3
(
k4,h2,ϕ6

)
, (D.11)

where

c1 = J̃0(1− 2̃J0), c2 =
1

2
J̃ ′ ′0 (1− 4̃J0), c3 = 1, (D.12)

which can be determined from the interaction coupling.
In the real space, the effective action admits the form of ϕ4 field as

S[ϕ] =

ˆ
ddxc1ϕ

2 + c2(∂ϕ)
2 + c3ϕh+ c4ϕ

4. (D.13)

When the coupled external field is zero, i.e., h= 0, it becomes the prototypical ϕ4 field discussed in the
main text. Suppose c2 > 0, for c1 > 0, the action has a global minimum at ϕ= 0, and thus the ground state is
in the paramagnetic phase. While for c1 < 0, the action has two degenerate minima. Thus the phase is
spontaneously broken with a ferromagnetic ordering. If the interaction strength Jij < 0, the constant c1 is
positive at sufficiently low temperature, and it becomes zero at the transition temperature. Therefore, the ϕ4

field could capture the critical behavior of the paramagnetic phase to the ferromagnetic phase.
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