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Abstract 
 

This paper compares the empirical power performances of eight tests for multivariate normality classified 

under Baringhaus-Henze-Epps-Pulley (BHEP) class of tests. The tests are compared under eight different 

alternative distributions. The result shows that the eight statistics have good control over type-I-error. Also, 

some tests are more sensitive to distributional differences with respect to their power performances than 

others. Also, some tests are generally more powerful than others. The generally most powerful ones are 

therefore recommended. 
 

 

Keywords: Baringhaus-Henze-Epps-Pulley (BHEP); empirical characteristic function; empirical moment 

generating function; multivariate normality; power performance. 
 

Mathematics Subject Classification: 62E10, 62H25. 

 

1 Introduction 
 

Consider a d-variate non-degenerate random vector, x  which is defined by a distribution function  F x  and 

probability density function  f x , where d  is a positive integer and let  0
F x  be a completely specified 
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distribution function on a d-dimensional Euclidean space, 
dR  of a multivariate normal population having mean 

vector μ  and covariance matrix Σ ,  ,
d

N μ Σ , which upon complete differentiation with respect to 

dRx  gives rise to the probability density function 

   1/2/2 11
0 2

(2 ) exp ( ) ( )
d T

f 
 

   x Σ x μ Σ x μ ; , 1, 2, . . .,
i

X i d    x  and 

0Σ . Suppose a sample of n  independent and identically distributed (i.i.d) observation vectors, 

1 2
, , . . .,

n
x x x  are available from the unknown continuous distribution function  F x , it has been clearly 

stated in the literature that the problem of assessing multivariate normality (MVN) of the random vector x  on 

the basis of the i.i.d. random observation vectors, (Fan [1]; Madukaife [2]), is that of testing the goodness-of-fit 

hypothesis: 

 

   0 0:H F Fx x  against    1 0:H F Fx x                                                                (1) 

 

Development of appropriate statistics for the test in (1) is an ongoing interest, arguably due to the importance of 

the multivariate normal distribution in classical statistical analysis. It is well known that most statistical 

techniques employed in multivariate analysis, and in fact generally in high dimensional data analysis, depend on 

MVN. Also, a number of datasets from other multivariate distributions, especially at large sample sizes, can be 

approximated by the multivariate normal distribution. The appropriate statistics (tests) for MVN are usually 

derived from different unique characterizations of the distribution. Such tests include those from the generating 

functions (Baringhaus & Henze [3]; Henze & Zirkler [4]; Pudelko [5]; Henze & Jimenez-Gamero [6]), quantile 

function (Madukaife & Okafor [7,8]), distribution function (Kim & Park [9]), skewness and kurtosis (Mardia 

[10,11]; Doornik & Hansen [12]; Enomoto, Hanusz, Hara & Seo [13]), spherical harmonics function (Manzott 

& Quiroz [14]) to mention but a few. In fact, Mecklin and Mundfrom [15] have stated that there are more than 

50 different statistics for assessing MVN of d-dimensional datasets, 1d  . Since after their review article on 

this subject, dozens of yet new statistics have been developed, leaving the literature with well over 100 tests for 

MVN. 

 

These scores of tests so far developed for assessing MVN of datasets do not have equal power performance. 

Power performance of a test, which is the ability of the test to reject null hypothesis of multivariate normality 

when the dataset is actually from a non-normal distribution, is a key performance indicator of the test and tests 

with comparatively high power performance are usually preferred to others. 

 

Again, Chen and Genton [16] have stated that apart from power performance of a test, every good statistics 

should have desirable properties of affine invariance and consistency. A statistic is said to be affine invariant if 

it is closed with respect to full rank affine transformation. Algebraically, a statistic 1 2
( , , . . ., )

n n
T x x x  is said 

to be affine invariant if for any non-zero vector of constants 
d

Rb  and any non-singular matrix of constants 

xd d
A R , 1 2

( , , . . ., )
n n

T A A A  x b x b x b  = 1 2
( , , . . ., )

n n
T x x x . This property implies that 

under the null hypothesis of MVN, the statistic 1 2
( , , . . ., )

n n
T x x x  does not depend on the parameters μ  and 

  of the underlying multivariate normal distribution. As a result, the power performance of any statistic which 

attains this property remains the same at all parameter values of μ  and  . On the other hand, a statistic is said 

to be consistent against all fixed alternatives if  0 0
lim Pr rejecting ( ) ( ) 1
n

H F F


 x x  (Szekely & 

Rizzo [17]). 

 

One class of tests for MVN which attains the properties of affine invariance and universal consistency with 

considerably high power performance is the Baringhaus-Henze-Epps-Pulley (BHEP) class. In fact, Ebner and 

Henze [18] have stated that BHEP class of tests is the most thoroughly studied class of tests for MVN. Epps and 

Pulley [19] obtained a statistic for assessing univariate normality of univariate datasets. The statistic is based on 



 

 
 

 

Madukaife; AJPAS, 15(4): 185-195, 2021; Article no.AJPAS.80309 
 

 

 
187 

 

the integral of the weighted difference between theoretical and empirical characteristic functions. The statistic is 

of the form:  

 
2

0
ˆ( ) ( ) ( )

n
T t t g t dt 




                                                                     (2) 

where ( )
n

t  is the empirical characteristic function and  2 21
0 2
ˆ ( ) expt itX t s   ; 

1

1

n

j

j

X n X




  ; 

2 1 2

1

( )
n

j

j

s n X X




   and ( )g t  is an appropriate weight function which is symmetric about the origin. 

Through straightforward integration, they obtained the computational form of (2) as a function of 0  , given 

by: 

 

2 2

2 1 2 1/2

2 2 2 2
1 1 1

2 1/2

( ) ( )
( ) exp 2 (1 ) exp

2 2 (1 )

(1 2 )

n n n
j k j

j k j

X X X X
T n n

s s
 

 



   

  

 

    
       

      

 

 
 

 

and obtained the appropriate statistic for testing the univariate normality of a dataset as 

 *
( ) log ( )T nT   . The test, which rejects normality for small values of 

*
( )T  , was considered to 

have a high power performance. Baringhaus and Henze [3] generalized the statistic to the case of d-dimensional 

dataset, 1d  . Csorgo [20] coined tests for MVN belonging to this class as the BHEP class and proved their 

consistency. Several other works have emanated from this pioneer works either by the use the characteristic 

function, moment generating function or their functions and they are all regarded as members of this class. 

 

Tests for MVN generally are developed independently with the use of several characterizations and as a result 

do not have the same power performance. In fact, some tests in the literature are known to have low power 

performance while others are known to have relatively moderate and high power performances. The importance 

of this has led many researchers to devote attention to comparing different tests for MVN. Such works include 

Henze [21], Thode [22], Mecklin and Mundfrom [15], Joenssen and Vogel [23] Chen and Genton [16] as well as 

Ebner and Henze [18]. None of such comparative works however has discussed only tests of the same class. 

Since it has been established that BHEP tests show interesting properties, the aim of this work is to compare 

their power performances at different sample sizes and different dimensions of the dataset under different 

alternative distributions. The tests that are considered in the study are described in section 2 while the simulation 

study for the power performances is presented in section 3. The paper is concluded in section 4. 

 

2 Description of the BHEP Tests for Multivariate Normality 

 
In this section, a vivid description of each of the tests belonging to the BHEP class of tests for the 

multinormality is presented. 

 

Baringhaus and Henze Test: Baringhaus and Henze [3] generalized the T  statistic of Epps and Pulley [19] 

which is given in (2) to the d-dimensional case, where 1d  . The statistic is the integral of a weighted squared 

difference between the empirical characteristic function of a d-dimensional dataset of size n and the 

characteristic function of a d-dimensional standard multivariate normal distribution. It is given as:  

 

 
2

21
2

( ) exp ( )
dn n

R
T n d    t t t t                                                               (3) 
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where ( )
n

 t  is the empirical characteristic function of the scaled observation vectors, 

1/2
( ); 1, 2, . . .,

j n j n
S j n


  y x x , which is defined by  
1

( ) exp
n

T

n j

j

i


t t y , 

1

1

n

n j

j

n




 x x , 
1

1

( )( )
n

T

n j n j n

j

S n




   x x x x   and  2/2 1
2

( ) (2 ) exp
d  

 t t  is an 

appropriate weight function. Through straightforward integration, they obtained the computational form of (3) 

as an appropriate statistic for assessing MVN of datasets. It is given as: 

 

   1 /2 2 /21 1
2 4

, 1 1

1
exp 2 exp 3

n n
d d

n jk j

j k j

T R R n
n

 

 

     
 

 

where 
1

( ) ( )
T

jk j k n j k
R S


  x x x x , 

2 1
( ) ( )

T

j j n n j n
R S


  x x x x , 

j
x is the jth  vector of 

observations in the dataset, n
x  is the sample mean vector and n

S  is the sample covariance matrix. The test 

rejects MVN of datasets for large values of 
n

T . 

 

Henze and Zirkler Test: In a quest to obtain a test for MVN with an improved power performance, Henze and 

Zirkler [4] introduced a smoothing parameter,  , in the weight function of the Baringhaus and Henze [3] 

statistic to obtain the statistic: 

 

     , ,
4 is singular is nonsingular

n n n n
T n I S D I S                      (4) 

 

where      
2

21
, 2

exp
dn n

R
D d     t t t t ;    

2
2

2

2
2 exp

2

d

 


   
  

  

t
t . In this 

test, 

1
1

4
4

1 2 1
( )

42

d
d

d

d
n n 




 
   

 
 and straight forward integration gives 

,nD   as: 

 

   
 

,

2
22

2 22
2 2

2 2
, 1 1

1 1
1 2 exp 2 1 exp

2 2 1

n

n nd d j

j k

j k j

D

nn




 



 

 



 
   

         
    

 
y

y y

 
 

The test rejects MVN of datasets for large values of the statistic. 

 

Henze and Wagner test: Henze and Wagner [24] obtained a new approach to the class of BHEP tests as given 

by Henze and Zirkler [4]. By utilizing the theory of weak convergence in the Frechet space  dC R  of 

continuous functions on 
dR , they obtained, among other things, a new representation given by: 

 

 2

,
( )

dn n
R

T Z d   t t t                                                                 (5) 
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where  

     21
2

1

1
( ) cos sin exp ;

n
T T d

n j j

j

Z R
n 

     
 t t y t y t t , provided 1n d  . 

 

Henze and Jimenez-Gamero Test: Apart from the original BHEP statistics which employ the empirical and 

theoretical characteristic functions, Zgoul [25] obtained a test for univariate normality by replacing the 

characteristic functions in the Epps and Pulley [19] with their corresponding moment generating functions. 

Henze and Jimenez-Gamero [6] extended the statistic to the d-dimensional multivariate case. They obtained the 

statistic as: 

 

 
2

,
( ) ( ) ( )

dn n
R

T n M m d   t t t t                                                  (6) 

 

where ( );
d

n
M Rt t  is the empirical moment generating function of scaled vectors of observations, 

; 1, 2, . . .,
j

j ny , defined by  1

1

( ) exp
n

T

n j

j

M n




 t t y ,  1
2

( ) exp
T

m t t t  and 

 2
( ) exp ; 1    t t . Straight forward integral gives the computational form of the statistics as: 

 

 

,

2 2

/2/2 /2 1
2/2

, 1 1

1
exp 2 exp ;

4 4 2( 1)

1

n

n n
dj k jd d

d
j k j

T

n

n



  
 





 



                      



 
y y y

 

 

The affine invariant and consistent statistic rejects null distribution of MVN for large values of the 
,n

T 
. 

 

Henze, Jimenez-Gamero and Meintanis Test: Based on certain characterization of the multivariate normal 

distribution concerning the product of the cosine transform and the moment generating function of the 

distribution, Henze, Jimenez-Gamero and Meintanis [26] obtained a test for MVN of datasets. The statistic is 

given by: 

 

2

,
( ) ( )

dn n
R

T U d   t t t                                                    (7) 

 

where  ( ) ( ) ( ) 1 ;
d

n n n
U n R M R  t t t t  and 

1

1

( ) cos( )
n

T

n j

j

R n




 t t y  is the empirical cosine 

transform of scaled vectors of observations, 
1

1

( ) exp( )
n

T

n j

j

M n




 t t y  is the empirical moment generating 

function of scaled  vectors of observations, ; 1, 2, . . .,
j

j ny  and ( ) t  is the appropriate weight function 

with   as the smoothing parameter. The test rejects null hypothesis of MVN for large values of the statistic. 

They gave the computational form of the statistic as: 
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2 2
/2

, , , ,

, 3
, , , 1

2 2 2 2

, , , ,

, 1

1
exp cos

4 22

2
exp cos exp cos

4 2 4 2

d Tn
j k l m j k l m

n

j k l m

T Tn
j k l m j kj k l m j k

j k

T
n

n





  

   

   



   



                       

        
        

       
       





y y y y

y y y yy y y y
;

1








 

 

where ,j k j k


 y y y . 

 

Henze and Visagie Test: Henze and Visagie [27] obtained the unique solution of the partial differential 

equation of a d-dimensional random vector, x , to be  
2

2
( ) exp ;

d
m R 

t
t t  which is the moment 

generating function of the d-dimensional standard multivariate normal distribution. Based on this unique 

property, they obtained a statistic for assessing MVN of datasets with a statistic given by: 

 
2

,
( ) ( ) ( )

dn n n
R

T n M M d 
  t t t t t                                    (8) 

 

where  2
( ) exp  t t  is the weight function and  1

1

( ) exp
n

T

n j

j

M n




 t t y  is the empirical 

moment generating function of the scaled vectors of observations. They stated that rejection of the null 

hypothesis is for large values of the statistic. Putting ,j k j k


 y y y , they obtained the computational form 

of the statistic as: 

 

2 2 2
/2

, , ,

, 2
, 1

1
exp ; 0

4 2 2 4

d
n

j k j k j kT

n j k

j k

d
T

n





    

  



  
             

  


y y y

y y  

 

Dorr, Ebner and Henze Tests: Based on a unique characterization of the standard d-dimensional multivariate 

normal distribution as the unique solution of an initial value problem of a partial differential equation by the 

harmonic operator, Dorr, Ebner and Henze [28] derived a new test for MVN. The statistic is given by: 

 

     
2

, dn a n a
R

T n d     t t t t                                    (9) 

 

     

2
2

2 2

1

1
exp exp

2
d

n
T

j j a
R

j

n i d d
n




  
    

  


t
y t y t t t  

 

With  2
( ) exp ; 0,

d

a
a a R    t t t , they obtained the computationally amenable form of the 

statistic as: 
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 

 

/2
2 22 1

,

, 1

2
/2

2 2

2 /2
1

1
exp (4 )

2(2 )
2 (2 1) exp

2(2 1)(2 1)

d n

n a j k j k

j k

d n
j

j jd
j

T a
a n

ad a
aa












 
   
 

 
   
 
 





y y y y

y
y y

 

/2
2

2 /2

( 2)
( 1)

4( 1)

d

d

n d d
ad a

a




 
   

  
 

 

The affine invariant and consistent test rejects the H0 of MVN for large values of 
,n a

T . 

 

Also, Dorr et al. [29] established as a theorem that the characteristic function of a d-variate normal distribution 

is the only solution of the partial differential equation  2
( ) ( ) ,

d
f d f R   t t t t , subject to the 

condition (0) 1f  . Based on this characterization, Dorr et al. [29] obtained a statistic for assessing MVN of 

datasets. The statistic is given by: 

 

          
2

2

, dn a n n a
R

U n d d      t t t t t                                (10) 

 

They stated that large values of the statistic will lead to rejection of the null hypothesis of MVN and gave a 

straightforward integration (10) to obtain a computationally amenable form as  

 

   

/2

,

2

2 2 22 2

2
, 1

1

1
exp 2 (2 1)

4 4

d

n a

n
j k

j k j k j k

j k

U
a n

ad a
a a





 
  
 

  
      

  


y y

y y y y y y

  
4 2

3 2 2 2

4

1
16 ( 1) 4 ( 2) 8 4 ( 2) ;

16

0

j k j k
a d a a d d a d a d

a

a


          





y y y y

 

The Ebner, Henze and Strieder Test: Ebner, Henze and Strieder [30] proved a theorem that the characteristic 

function, ( ) t , of the d-variate standard normal distribution is the only characteristic function satisfying 

( ) ( )   t t t ,   is the gradient operator. Based on this characterization, they obtained a test for MVN 

of datasets. The statistic is given by: 

 

     
2

, dn a n aCR
T n d     t t t t                                                (11) 

 



 

 
 

 

Madukaife; AJPAS, 15(4): 185-195, 2021; Article no.AJPAS.80309 
 

 

 
192 

 

where  2
( ) exp ; 0

a
a t a   t  and .

C
 is the complex Euclidean vector norm. They stated that 

rejection of the null hypothesis of MVN is for large values of the statistic and went further obtain the 

computational form of the statistic as: 

 

2 2
/2 /2

,

1

2
/2

, 1

2
2 exp

1 2( 1) 2 1 2 1 2(2 1)

1
exp

4

d d n
j j

n a

j

d n
j kT

j k

j k

d
T n

a a a a a

n a a

 







 
    

      
          

   
   

    





y y

y y
y y

 

 

3 Simulation Studies 

 
In this section, empirical power performances of the eight statistics in the class are compared through extensive 

simulation studies. In this comparison, four different classes of distributions are employed. They include the null 

distribution, which is presented as the standard multivariate normal distribution; d-variate distributions with 

symmetric marginals ( (2)
d

t , (0.5, 0.5)
d

beta  and (2) (0.5, 0.5)
q d q

t beta


 ); d-variate distributions 

with both symmetric and non-symmetric marginals ( (2) (5,1)
q d q

t gamma


  and 

2
(2, 2) (10)

q d q
beta  

 ) and d-variate distributions with non-symmetric marginals 

2
(10) (3, 2)

q d q
beta 

  and (5,1) (2,1)
q d q

gamma Weibull


 ) where q < d. A total of 10,000 

data sets were generated via Monte Carlo simulation in each combination of n = 25 and 50 and d = 2 and 5 from 

the resultant eight different multivariate distributions. 

 

The values of each of the eight statistics being compared in this study are evaluated in each of the 10,000 

simulated samples for each n and d from each of the distributions. The statistics are denoted by HZ for Henze 

and Zirkler test, HW for Henze and Wagner test, HJG for Henze and Jimenez-Gamero test, HJM for the Henze, 

Jimenez-Gamero and Meintanis test, HV for Henze and Visagie test, DEHT for the Dorr, Ebner and Henze T 

test, DEHU for the Dorr, Ebner and Henze U test while EHS denotes the Ebner, Henze and Strieder test. The 

empirical power of each test statistic is obtained as the percentage of the 10,000 samples that is rejected by the 

statistic at  of 5%. The power performance is presented in Tables 1 and 2 respectively for n = 25 and 50. All 

the simulations and computations are carried out with the use of the R – statistical package, mnt. Preliminary 

studies carried out on these statistics in this class show that most of them maintain maximum power 

performances in all the distributions considered for the smoothing (tuning) parameter (1,10]  . As a result, 

the power of each statistic was obtained as the maximum value within the interval of the smoothing parameter. 

 

From the powers in Tables 1 and 2, it can be seen that all the statistics have very good control over type-I-error. 

This is because the power performances of the statistics under the null distribution of standard multivariate 

normal distribution in all the sample sizes and variable dimensions are approximately equal to 5%. Also as 

expected, all the statistics show improvement in their powers with increasing sample size from 25 to 50. This 

however is with the exception of the HJG, HV, DEHT and DEHU under the symmetric distribution with 

Beta(0.5, 0.5) marginal. Under this alternative distribution, these statistics showed almost a zero power 

performance. Under the symmetric alternative distributions, the HZ and HW tests generally outperformed all the 

other statistics in the class, except under the symmetric with t(2) marginal where the DEHT, DEHU and EHS 

tests appear to have more power. Under the alternative distributions with mixed symmetric and non-symmetric 

marginal, the DEHU and EHS statistics clearly show themselves to be most powerful at both n = 25 and n = 50. 

Under the asymmetric distributions, the HZ, DEHU and EHS recorded the highest power performances. Very 

importantly, the HJG, HV, DEHT and the DEHU statistics showed themselves to be very sensitive to 
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distributional differences while the HZ, HW and EHS statistics are more robust statistics with respect to 

distributional differences. 

 

Table 1. Empirical power performance (in %) of BHEP class of tests for MVN, n = 25, alpha = 0.05 

 

 d Distributions HZ HW HJG HJM HV DEHT DEHU EHS 

2 

5 

Nd(0, 1) 

Nd(0, 1) 

5.2 

4.8 

4.6 

4.9 

4.7 

5.0 

4.5 

4.6 

5.4 

5.1 

5.0 

5.1 

5.4 

5.0 

4.7 

4.9 

2 

5 

t(2)
2 

t(2)
5 

73.2 

82.3 

71.1 

75.2 

76.4 

88.6 

70.3 

80.9 

77.2 

89.6 

81.7 

94.9 

80.9 

94.9 

77.9 

93.2 

2 

5 

beta(0.5, 0.5)
2
 

beta(0.5, 0.5)
5 

78.1 

45.3 

81.3 

46.9 

0.1 

0.1 

47.7 

40.8 

0.1 

0.2 

0.2 

0.0 

0.7 

0.1 

1.8 

1.8 

2 

5 
t(2) beta(0.5, 0.5) 

t(2)
3beta(0.5, 0.5)

2
 

73.5 

70.9 

74.8 

65.6 

50.4 

70.2 

69.3 

70.1 

50.6 

72.2 

50.1 

73.6 

51.9 

75.1 

59.9 

75.5 

2 

5 
Chisquare(10) beta(3,2) 

Chisquare(10)
3beta(3,2)

2
 

17.1 

15.6 

17.1 

10.5 

12.5 

14.5 

16.9 

14.4 

12.5 

14.3 

16.2 

13.2 

16.9 

15.7 

19.3 

18.6 

2 

5 
Gamma(5,1) Weibull(2,1) 

Gamma(5,1)
3Weibull(2,1)

2 

22.8 

18.8 

20.5 

13.7 

18.6 

18.3 

19.3 

19.0 

17.3 

17.4 

23.6 

20.0 

27.3 

22.8 

26.7 

24.5 

2 

5 
t(2) gamma(5,1) 

t(2)
3gamma(5,1)

2
 

55.3 

63.6 

52.6 

53.3 

55.9 

75.5 

52.3 

70.1 

57.5 

75.6 

62.6 

83.8 

63.6 

83.2 

64.7 

82.6 

2 

5 
beta(2,2) Chisquare(10) 

beta(2,2)
3Chisquare(10)

2 

29.7 

17.2 

26.8 

13.7 

20.7 

16.7 

20.3 

17.0 

18.9 

16.4 

24.7 

13.1 

27.2 

15.6 

30.4 

17.9 

 

Table 2. Empirical power performance (in %) of BHEP class of tests for MVN, n = 50, alpha = 0.05 

 

 d Distributions HZ HW HJG HJM HV DEHT DEHU EHS 

2 

5 

Nd(0, 1) 

Nd(0, 1) 

4.8 

4.8 

5.0 

5.0 

5.1 

5.0 

4.9 

4.8 

4.7 

4.8 

4.7 

5.0 

5.1 

5.0 

5.2 

4.9 

2 

5 

t(2)
2 

t(2)
5 

95.1 

99.1 

96.6 

98.6 

79.8 

99.1 

98.8 

99.9 

89.4 

99.2 

97.7 

100.0 

97.4 

100.0 

96.4 

99.7 

2 

5 

beta(0.5, 0.5)
2
 

beta(0.5, 0.5)
5 

99.6 

97.8 

99.6 

96.5 

0.0 

0.0 

62.8 

70.3 

0.0 

0.0 

47.0 

0.0 

66.9 

3.7 

35.1 

5.6 

2 

5 
t(2) beta(0.5, 0.5) 

t(2)
3beta(0.5, 0.5)

2
 

98.3 

98.2 

98.1 

97.2 

74.6 

93.0 

95.8 

96.5 

75.4 

93.1 

78.1 

96.0 

80.7 

97.1 

89.1 

98.0 

2 

5 
Chisquare(10) beta(3,2) 

Chisquare(10)
3beta(3,2)

2
 

36.4 

31.9 

35.1 

24.9 

20.9 

22.9 

37.8 

35.5 

19.1 

24.4 

35.4 

32.0 

38.6 

36.7 

44.1 

48.3 

2 

5 
Gamma(5,1) Weibull(2,1) 

Gamma(5,1)
3Weibull(2,1)

2 

44.0 

38.0 

40.7 

28.1 

27.6 

28.0 

59.2 

60.8 

25.1 

28.2 

52.8 

46.9 

55.0 

52.1 

56.9 

64.0 

2 

5 
t(2) gamma(5,1) 

t(2)
3gamma(5,1)

2
 

99.3 

94.6 

83.0 

91.8 

80.8 

95.3 

92.8 

98.8 

79.6 

95.1 

89.5 

99.1 

89.8 

99.1 

90.0 

98.8 

2 

5 
beta(2,2) Chisquare(10) 

beta(2,2)
3Chisquare(10)

2 

58.8 

40.9 

57.2 

33.3 

31.6 

29.4 

61.3 

40.2 

29.8 

29.1 

56.8 

32.6 

63.9 

35.7 

69.3 

53.7 

 

4 Conclusion 

 
In this study, eight different statistics in the BHEP class of tests for assessing MVN of multivariate datasets are 

compared via empirical power performances. The results show that the statistics are good tools for testing for 

MVN. Both at small sample sizes and large sample sizes as well as low and high variable dimensions, the HZ, 

HW, DEHU and EHS statistics distinguished themselves with generally superior power performances in relation 

to the rest of the statistics. As a result, they are recommended for testing the MVN of datasets. 
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