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ABSTRACT 
 

The co-occurrence of Human Immunodeficiency Virus (HIV) and Tuberculosis (TB) poses a 
significant global health challenge, affecting an estimated 1.4 million individuals worldwide. The 
synergistic progression of these diseases contributes to elevated morbidity and mortality rates. 
Recognizing the substantial public health burden they impose, this study introduces fifteen (15) 
compartmental models to discern optimal control strategies for treating HIV-TB co-infection. Initial 
consideration is given to sub-models for HIV and TB individually, followed by the comprehensive 
HIV-TB co-infection model. The research quantitatively analyzes the existence and uniqueness of 
HIV and TB models, examining the stability of equilibrium points for disease-free and endemic 
states. The Basic Reproduction Number (𝑅0) is computed using the Next Generation Matrix method. 
Optimal control strategies are evaluated to determine the preferred sequence for treating co-
infection. Employing MAPLE software with the differential transformation method, numerical 
simulations underscore the importance of epidemiological features in the dynamic spread of HIV-TB 
co-infection. The results emphasize the efficacy of simultaneous treatment for both diseases, 
coupled with immune system support, compared to sequential treatment of one disease. 
 

 
Keywords: HIV; TB; reproduction number; equilibrium points; stability; optimal. 
 

1. INTRODUCTION 
 
HIV remains a substantial health challenge, 
causing both loss of lives and considerable 
economic burdens on governments and 
individuals. The disease has claimed over 39 
million lives, and despite ongoing intervention 
efforts, its impact continues to affect numerous 
individuals. ([3], [7], [23], [36]). HIV is a virus that 
can be transmitted through specific body fluids, 
and it primarily targets the body's immune 
system, particularly the CD4 cells. These cells 
are crucial for maintaining immune function, and 
their levels are commonly used to measure the 
health of the immune system. As HIV 
progressively damages CD4 cells, the body's 
ability to defend itself against infections and 
diseases weakens, leading to an increased 
vulnerability to various opportunistic infections 
and illnesses ([22], [32]). Indeed, tuberculosis 
(TB) is one of the opportunistic diseases that can 
affect individuals with weakened immune 
systems, such as those living with HIV ([1], [35]). 
TB is caused by the bacterium Mycobacterium 
tuberculosis, and it is highly contagious. The 
bacteria primarily target the lungs, leading to 
pulmonary TB, but they can also spread to other 
organs and tissues in the body, causing 
extrapulmonary TB ([13], [27], [38]). Tuberculosis 
(TB) ranks second as a global killer caused by a 
single infectious agent, with a considerable 
number of infections and deaths ([15], [16]). The 
burden of TB disproportionately falls on low- and 
middle-income countries, where over 95% of TB-
related deaths occur ([7], [37]). To effectively 
implement existing intervention strategies, an 
estimated $2 billion is needed to bridge the 

resource gap [8]. HIV and TB have a well-
established synergistic relationship, where each 
disease increases the susceptibility to 
contracting the other. This co-infection can lead 
to more severe health consequences and 
challenges in treatment, making it crucial to 
address both diseases comprehensively in 
healthcare strategies ([8], [14], [20], [28]). 
Individuals living with HIV have a significantly 
higher risk of developing tuberculosis (TB) 
compared to those who are HIV-negative. 
Studies have shown that people with HIV are 
approximately 12 to 20 times more likely to 
contract TB, highlighting the increased 
vulnerability of this population to the disease ([8], 
[12]). In the case of HIV and TB co-infection, 
both diseases interact in a way that worsens their 
effects on the immune system and overall health, 
making it more challenging to manage and 
increasing the risk of severe health outcomes. 
Addressing these diseases as a syndemic 
requires comprehensive and integrated 
approaches to effectively control their spread and 
improve patient outcomes ([7], [18], [19], [29], 
[31]). 
 
Indeed, mathematical modeling has been 
extensively utilized in researching HIV-TB co-
infection. These models help in studying the 
complex dynamics between HIV and TB, and 
how the co-infection affects disease progression 
and transmission. [35] Developed a 
comprehensive mathematical model to analyze 
the transmission of HIV and curable TB co-
infection in a population of varying size. Their 
model considers essential factors such as 
population size, transmission rates, treatment 
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effectiveness, and other relevant variables, 
making it a valuable tool for understanding the 
dynamics of these diseases and devising 
effective strategies for control.  
 
The co-infection of Human Immunodeficiency 
Virus (HIV) and Tuberculosis (TB) stands as one 
of the deadliest diseases globally. Despite 
significant efforts through public health 
campaigns, seminars, drug administration, and 
the isolation of infected individuals, there remains 
a need for alternative strategies. The focus of 
this research is to explore optimal control 
strategies to address the longstanding debate on 
whether HIV or TB should be treated first, a 
dilemma that has impeded the effectiveness of 
co-infection control measures. The study aims to 
investigate and propose appropriate control 
measures for this complex health challenge. 
The paper is structured as follows: 
 
Section 2 outlines the formulation of the model. 
In Section 3, the complete model is divided into 
two fundamental sub-models, namely the HIV-
only model and the TB only sub-model. The 
qualitative analysis of each sub-model is 
presented in this section. Then, in Section 4, the 
main model is extended to an optimal control 
problem, and its qualitative analysis using 
Pontryagin's maximum principle is discussed. In 
Section 5, numerical experimentation of the 
resulting optimal control is conducted, and the 
outcomes are analyzed. Finally, in Section 6, the 
main discussion and conclusions of the research 
are presented. 
 

2. MATHEMATICAL MODEL FORMULA-
TION 

 
In modeling the dynamics of HIV- TB co-
infection, the total homogeneously  mixing 
population at time t, denoted by N(t), is divided 
into  fifteen (15) compartments of Susceptible 

(S(t)) individuals, Latently HIV 
))(( tLH  

individuals, HIV Undetected 
))(( tHU  

individuals, HIV Detected 
))(( tH D  individuals, 

Treated HIV
))(( tHW  individuals, Latently TB 

and HIV 
))(( tLTH  individuals, Active TB and HIV 

))(( tATH  individuals, Latently HIV and TB 

))(( tLHT individuals, Active HIV and TB 

))(( tAHT  individuals, Latent TB ))(( tLT  

individuals, TB Undetected 
))(( tTU  individuals, 

TB Detected 
))(( tTD  individuals, Failed 

Treatment TB 
))(( tFT  individuals, Recovered 

TB 
))(( tRT  individuals, Recovered TB and HIV 

))(( tRTH  individuals. Table 1 gives a 
description of these. So that: 
 
𝑁(𝑡) = 𝑆 + 𝐿𝐻 + 𝐻𝑈 +𝐻𝐷 + 𝐻𝑊 + 𝐿𝑇𝐻 + 𝐴𝑇𝐻 +
𝐿𝐻𝑇 + 𝐴𝐻𝑇 + 𝐿𝑇 + 𝑇𝑈 + 𝑇𝐷 + 𝐹𝑇 + 𝑅𝑇 + 𝑅𝑇𝐻 (1.1) 
 
The susceptible population expands through the 

recruitment of individuals at a rate  , while 
natural death 𝜇   and transmission from both 
singly and dually-infected individuals contribute 
to its decrease. Singly and dually-infected 
individuals play distinct roles in transmitting 
either HIV or TB infection, a concept elaborated 
in the subsequent sections. This separation 
facilitates a clearer formulation of the disease 
transmission process. 
 
Susceptible individuals acquire HIV infection, 
following effective contact with people infected 
with HIV only (i.e. those in the 

(𝐿𝐻 , 𝜂𝑈𝐻𝑈, 𝜂𝑑𝐻𝐻𝐷𝑎𝑛𝑑𝜂𝑊𝐻𝑊)classes at a rate H , 
given by: 
 

𝜆𝐻 = 𝛽𝐻
(𝐿𝐻+𝜂𝑈𝐻𝑈+𝜂𝑑𝐻𝐻𝐷+𝜂𝑊𝐻𝑊)

𝑁
(1.2) 

 

Where, H  is the effective contact rate for HIV 
transmission. 
 
Similarly, susceptible individuals acquire TB 
infection from individuals with TB only i.e. 
(𝐿𝑇 , 𝜂𝑈𝑇𝑈, 𝜂𝑑𝑇𝑇𝐷 , 𝜂𝑅𝑇𝑅𝑇𝑎𝑛𝑑𝐹𝑇)  classes at a rate

T , given by 
 

𝜆𝑇 = 𝛽𝑇
(𝐿𝑇+𝜂𝑈𝑇𝑈+𝜂𝑑𝑇𝑇𝐷+𝜂𝑅𝑇𝑅𝑇+𝐹𝑇)

𝑁
(1.3) 

 
Where, 𝛽𝑇 is the effective contact rate for the TB 
infection. 
 
Dually-infected individuals are assumed capable 
of transmitting either HIV or TB, but not the 
mixed infection. 
 
The Transmission rate of HIV and TB is given as: 
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𝜆𝐻𝑇 = 𝛽𝐻𝑇
(𝐿𝐻𝑇+𝜂𝐻𝐴𝐻𝑇)

𝑁
       (1.4) 

 

Also, the Transmission rate of TB and HIV is 
given as: 

𝜆𝑇𝐻 = 𝛽𝑇𝐻
(𝐿𝑇𝐻+𝜂𝑇𝐴𝑇𝐻+𝜂𝑅𝑇𝑅𝑇𝐻)

𝑁
       (1.5) 

 

Then: 
 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝐻𝑆 − 𝜆𝑇𝑆 − 𝜇𝑆 − 𝜆𝑇𝐻𝑆 − 𝜆𝐻𝑇𝑆 

(1.6) 
 

A fraction 1  of the newly infected individuals are 
assumed to show no disease symptoms initially. 
These individuals (known as “slow progressors”) 
are moved to the latently HIV class(𝐿𝐻).  The 
remaining fraction, (1 − 휀1) of the newly infected 
individuals are assumed to immediately display 
disease symptoms (fast progressors) and are 
moved to the undetected infectious class 𝐻𝑈 .  

The population of latent class is decreased by 
the progression of latent HIV individual to active 
undetected HIV 𝐻𝑈  (at a rate 𝜅𝐻 ) and also 

reduced by natural death rate ( 𝜇 ) and finally 
increased by the fraction of Treated HIV at the 
rate (𝜑) that moves from treated class to latently 
HIV compartment. Thus: 
 

𝑑𝐿𝐻

𝑑𝑡
= 휀1𝜆𝐻𝑆 − (𝜅𝐻 + 𝜇)𝐿𝐻 + 𝜑𝐻𝑊(1.7) 

 

The population of undetected infected individuals 
is increased by the infection of fast progressors 
at the rate (1 − 휀1)𝜆  and the development of 

symptoms by latently individual at the rate, (1 −
𝜔1)𝜅𝐻  where 𝜔1  is the endogenous reactivation 
rate.  This population is decreased by natural 

death rate () and disease induced death (at a 
rate𝛿𝑈𝐻) and further decreased by detection rate 

( 𝛾𝑈𝐻 ) of HIV undetected infected individuals. 
Hence: 

 
𝑑𝐻𝑈

𝑑𝑡
= (1 − 휀1)𝜆𝐻𝑆 + (1 − 𝜔1)𝜅𝐻𝐿𝐻 − (𝛾𝑈𝐻 + 𝜇 + 𝛿𝑈𝐻)𝐻𝑈    (1.8) 

 
The population of detected infected HIV individual increases by the fraction of latently HIV individuals 
who develop disease symptoms (at the rate𝜔1𝜅𝐻), where 𝜔1is the endogenous reactivation rate and 

the detection of undetected individual at the rate𝛾𝑈𝐻.  The population is later decreased by treatment 

rate (𝜏1) for HIV detected individual and finally reduced by the natural death rate, induced mortality 
death rate at 𝜇 and 𝛿𝑈𝐻 respectively.  Hence: 
 

𝑑𝐻𝐷

𝑑𝑡
= 𝜔1𝜅𝐻𝐿𝐻 + 𝛾𝑈𝐻𝐻𝑈 − (𝜏1 + 𝜇 + 𝛿𝑈𝐻)𝐻𝐷     (1.9) 

 
The population of treated HIV individuals is increased by those that have received treatment from HIV 
detected infected individual at the rate ( 𝜏1 ), this population reduces by the fraction of treated 

individuals that moved back to latently HIV individuals at the rate, () since treatment does not 

completely clears the virus and finally reduced by natural death rate ().  
Hence, 
 

𝑑𝐻𝑊

𝑑𝑡
= 𝜏1𝐻𝐷 − (𝜑 + 𝜇)𝐻𝑊         (2.0)     

 
The population of latent TB and HIV is increased by infection, which can be acquired following 
effective contact with infectious individuals in the latent TB and HIV (LTH), Active TB induced HIV 

(𝜂𝑇𝐴𝑇𝐻) or Recovered TB induced HIV (𝜂𝑅𝑇𝑅𝑇𝐻)  categories at a rate  given by  
 

𝜆𝑇𝐻 = 𝛽𝑇𝐻
(𝐿𝑇𝐻+𝜂𝑇𝐴𝑇𝐻+𝜂𝑅𝑇𝑅𝑇𝐻)

𝑁
       (2.1) 

 

Where𝛽𝑇𝐻 represents the effective contact rate.  
 

The population is reduced by progression from latent stage to active stage at the rate (𝜅𝑇𝐻), and by 
natural death at the rate (𝜇).  The population later is increased by the fraction of those that have been 

treated that moved from treated compartment at the rate (𝛼𝑇). Then the rate of change of latent TB 
induced HIV population is given by: 
 

𝑑𝐿𝑇𝐻

𝑑𝑡
= 𝜆𝑇𝐻𝑆 − (𝜅𝑇𝐻 + 𝜇)𝐿𝑇𝐻 + 𝛼𝑇𝑅𝑇𝐻      (2.2) 
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The population of active TB and HIV is increased by the progression from latent stage to active stage 
at the rate (𝜅𝑇𝐻), the population is decreased by natural death, induced mortality due to disease at the 

rate () and () respectively, individuals who recovered also moved to recovered TB induced HIV at 
the rate (𝜎1). 
 

Hence, 
 
𝑑𝐴𝑇𝐻

𝑑𝑡
= 𝜅𝑇𝐻𝐿𝑇𝐻 − (𝜇 + 𝜎1 + 𝛿𝐴𝑇𝐻)𝐴𝑇𝐻 (2.3) 

 
The population of latent HIV and TB is increased 
by infection, which can be acquired following 
effective contact with infectious individuals in the 
latent HIV and TB (LHT), or active HIV induced 

TB ( HTH A
) categories at a rate  given by:  

 

𝜆𝐻𝑇 = 𝛽𝐻𝑇
(𝐿𝐻𝑇+𝜂𝐻𝐴𝐻𝑇)

𝑁
   (2.4) 

 
Where 𝛽𝐻𝑇 represents the effective contact rate. 
The population is reduced by progression from 
latent stage to active stage at the rate (𝜅𝐻𝑇) and 
by natural death rate.  Hence, latent HIV and TB 
population is given by: 
 

𝑑𝐿𝐻𝑇

𝑑𝑡
= 𝜆𝐻𝑇𝑆 − (𝜅𝐻𝑇 + 𝜇)𝐿𝐻𝑇  (2.5) 

 
Active HIV and TB (AHT) population is increased 
by the progression from latent stage to active 

stage at the rate ( HT
).  The population 

decreased by natural death rate () and disease 

induced mortality at the rate ().  Hence the 
system of equation of Active HIV induced TB is 
given by: 
 

𝑑𝐴𝐻𝑇

𝑑𝑡
= 𝜅𝐻𝑇 − (𝜇 + 𝛿𝐴𝐻𝑇)𝐴𝐻𝑇  (2.6) 

 
A fraction 휀2 of the newly–infected individuals are 
assumed to show no disease symptoms initially. 
These individuals (known as slow progressors for 
TB) moved to the latently TB class (LT). The 
remaining fraction (1 − 휀2) of the newly infected 
individuals are assumed to immediately display 
disease symptoms (fast progressor for TB) and 
are moved to the undetected infected 
compartment (TU).  The population is decreased 
by progression rate (𝜅𝑇) from latent TB class to 

infected undetected class, natural death rate () 
and exogenous re-infective (at a rate𝜙𝜆𝑇), where 

𝜙 < 1  accounts for the assumption that latent 
individuals have reduced infection rate, this is to 
account for the fact that individuals with latent TB 
infection have partial immunity against 
exogenous re-infection.  The population is 

increased by natural recovery at the rate ( ), 
number of unsuccessful treated individuals who 
move to the latent TB individuals at the rate 

(𝜃1𝜌)and rate ( r ) respectively at which treated 
TB individuals wane the treatment.  Then the 
population is given by: 

 
𝑑𝐿𝑇

𝑑𝑡
= 휀 𝜆2

 
𝑇𝑆 − (𝜅𝑇 + 𝜙𝜆𝑇 + 𝜇)𝐿𝑇 + 𝜐𝑇𝑈 + 𝜃1𝜌𝐹𝑇 + 𝑟𝛼𝑅𝑇       (2.7) 

 
The population of undetected infectious individuals is increased by the infection of fast progressors at 
the rate (1 − 휀2)𝜆𝑇  and the development of symptoms by latent individuals at the rate, (1 − 𝜔2)𝜅𝑇, 

where 𝜔2 is the fraction of exposed individuals who develop symptoms and are detected.  It is further 

increased by the exogenous re-infection of expressed individuals at the rate, (1 − 𝜔3)𝜙𝜆𝑇, where 𝜔3is 
the fraction of re-infected exposed individuals who are detected, and fraction of unsuccessful treated 
individuals that move from detected individuals to undetected individuals at the rate, (𝜃2𝜌).  The 

population is decreased by natural recovery at a rate, (), detection of undetected individuals at a 
rate, (𝛾𝑈𝐻), natural death at the rate (µ) and disease induced death at a rate (𝛿𝑈𝑇). Hence: 
 

𝑑𝑇𝑈

𝑑𝑡
= (1 − 휀2)𝜆𝐻𝑆 + (1 − 𝜔2)𝜅𝑇𝐿𝑇 + (1 + 𝜔3)𝜙𝜆𝑇𝐿𝑇 + 𝜃2𝜌𝐹𝑇 − (𝜐 + 𝛾𝑈𝑇 + 𝜇 + 𝛿𝑈𝑇)𝑇𝑈(2.8) 

 
The population of detected infectious individuals increases by the fraction of latent individuals who 
develop diseases symptoms at a rate 𝜔2𝜅𝑇, exogenous re-infection of latent individuals, detection rate 

for undetected individuals at the rates 𝜔3𝜙, 𝛾𝑈𝑇  respectively and numbers of unsuccessful treated 

individuals who move to latent and undetected individuals at the rates 1 and2 respectively.  The 
population is decreased by those that are treated and recovered who later moved to recovered 
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compartment at the rate (2 ), treatment  rate (2), natural death rate () and disease induced death at 
a rate (𝛿𝑑𝑇)This gives:  
 

𝑑𝑇𝐷

𝑑𝑡
= 𝜔2𝜅𝑇𝐿𝑇 + 𝜔3𝜙𝐿𝑇 + 𝛾𝑈𝑇𝑇𝑈 + [1 − (𝜃1 + 𝜃2)]𝜌𝐹𝑇 − (𝜎2 + 𝜏2 + 𝜇 + 𝛿𝑑𝑇)𝑇𝐷  (2.9) 

 

The population of failed treatment compartment is generated by the failure of treated infected 
detected individuals at the rate, (1 − 𝑞1)𝜏2 . The treatment failure could be due to a number of 
reasons, such as incomplete compliance to the specified treatment or drug resistance among others.  
The population is decreased by the fraction of treated individuals who lose their treatment; the 
population is decreased by the rate at which TB individuals who fail treatment move to other classes, 
natural death and induced death at the rate (ℓ + 𝜇 + 𝛿𝐹). Thus: 
 

𝑑𝐹𝑇

𝑑𝑡
= (1 − 𝑞1)𝜏2𝑇𝐷 + (1 − 𝑟)𝛼𝑅𝑇 − (𝜌 + 𝜇 + 𝛿𝐹)𝐹𝑇     (3.0) 

 

The population of TB recovered individuals is increased by the treatment of detected individuals at the 

rate q12 and treated detected individuals at the rate 2, successfully– recovered individuals eventually 

move to the latent class at the rate, .  This population is further decreased by natural death and 

disease induced death at the rate  and RT respectively.   
 

Hence: 
 

𝑑𝑅𝑇

𝑑𝑡
= 𝑞1𝜏2𝑇𝐷 − (𝛼 + 𝜇 + 𝛿𝑅𝑇)𝑅𝑇 + 𝜎2𝑇𝐷      (3.1) 

 

The population of TB and HIV recovered individual is increased by the treatment of active TB at the 𝜎1 
and later reduced by natural death rate 𝜇 and the rate (𝛼𝑇), at which treated individuals lose their 
treatment induced immunity.  Thus we have: 
 

𝑑𝑅𝑇𝐻

𝑑𝑡
= 𝜎1𝐴𝑇𝐻 − (𝛼𝑇 + 𝜇)𝑅𝑇𝐻        (3.2) 

 

Mathematical Model of HIV-TB: 
 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝐻𝑆 − 𝜆𝑇𝑆 − 𝜇𝑆 − 𝜆𝑇𝐻𝑆 − 𝜆𝐻𝑇𝑆

𝑑𝐿𝐻

𝑑𝑡
= 휀1𝜆𝐻𝑆 − 𝐾1𝐿𝐻 + 𝜑𝐻𝑊

𝑑𝐻𝑈

𝑑𝑡
= (1 − 휀1)𝜆𝐻𝑆 + (1 − 𝜔1)𝜅𝐻𝐿𝐻 − 𝐾2𝐻𝑈

𝑑𝐻𝐷

𝑑𝑡
= 𝜔1𝜅𝐻𝐿𝐻 + 𝛾𝑈𝐻𝐻𝑈 − 𝐾3𝐻𝐷

𝑑𝐻𝑊

𝑑𝑡
= 𝜏1𝐻𝐷 − 𝐾4𝐻𝑊

𝑑𝐿𝑇𝐻

𝑑𝑡
= 𝜆𝑇𝐻𝑆 − 𝐾5𝐿𝑇𝐻 + 𝛼𝑇𝑅𝑇𝐻

𝑑𝐴𝑇𝐻

𝑑𝑡
= 𝜅𝑇𝐻𝐿𝑇𝐻 − 𝐾6𝐴𝑇𝐻

𝑑𝐿𝐻𝑇

𝑑𝑡
= 𝜆𝐻𝑇𝑆 − 𝐾7𝐿𝐻𝑇

𝑑𝐴𝐻𝑇

𝑑𝑡
= 𝜅𝐻𝑇𝐿𝐻𝑇 − 𝐾8𝐴𝐻𝑇

𝑑𝐿𝑇

𝑑𝑡
= 휀 𝜆2 𝑇𝑆 − 𝐾9𝐿𝑇 + 𝜐𝑇𝑈 + 𝜃1𝜌𝐹𝑇 + 𝑟𝛼𝑅𝑇

𝑑𝑇𝑈

𝑑𝑡
= (1 − 휀2)𝜆𝐻𝑆 + (1 − 𝜔2)𝜅𝑇𝐿𝑇 + (1 + 𝜔3)𝜙𝐿𝑇 + 𝜃2𝜌𝐹𝑇 − 𝐾10𝑇𝑈

𝑑𝑇𝐷

𝑑𝑡
= 𝜔2𝜅𝑇𝐿𝑇 + 𝜔3𝜙𝐿𝑇 + 𝛾𝑈𝑇𝑇𝑈 + [1 − (𝜃1 + 𝜃2)]𝜌𝐹𝑇 − 𝐾11𝑇𝐷

𝑑𝐹𝑇

𝑑𝑡
= (1 − 𝑞1)𝜏2𝑇𝐷 + (1 − 𝑟)𝛼𝑅𝑇 − 𝐾12𝐹𝑇

𝑑𝑅𝑇

𝑑𝑡
= 𝑞1𝜏2𝑇𝐷 − 𝐾13𝑅𝑇 + 𝜎2𝑇𝐷

𝑑𝑅𝑇𝐻

𝑑𝑡
= 𝜎1𝐴𝑇𝐻 − 𝐾14𝑅𝑇𝐻 }

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  (3.3) 
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Where 
 

𝐾1 = (𝜅𝐻 + 𝜇), 𝐾2 = (𝛾𝑈𝐻 + 𝜇 + 𝛿𝑈𝐻), 𝐾3 = (𝜏1 + 𝜇 + 𝛿𝑑𝐻), 𝐾4 = (𝜑 + 𝜇), 𝐾5 = (𝜅𝑇𝐻 + 𝜇), 
𝐾6 = (𝜇 + 𝜎1 + 𝛿𝑇𝐻), 𝐾7 = (𝜅𝐻𝑇 + 𝜇), 𝐾8 = (𝜇 + 𝛿𝑇𝐻), 𝐾9 = (𝜅𝑇 + 𝜇), 𝐾10 = (𝜐 + 𝛾𝑈𝑇 + 𝜇 + 𝛿𝑈𝑇), 
𝐾11 = (𝜎2 + 𝜏2 + 𝜇 + 𝛿𝑑𝑇), 𝐾12 = (𝜌 + 𝜇 + 𝛿𝐹𝑇), 𝐾13 = (𝛼 + 𝜇 + 𝛿𝑅𝑇), 𝐾14 = −(𝛼𝑇 + 𝜇) 

 

 
 

Fig. 1. Schematic diagram of the HIV-TB model 
 

3. POSITIVITY OF SOLUTIONS 
 
For the model of Human Immunodeficiency Virus co-infection with tuberculosis to be epidemiologically 
meaningful and mathematically well posed, it is necessary to prove that all state variables are non-
negative for all 𝑡 > 0. 
 
Theorem 1. 
 
Let: 

{𝑆(0) ≥ 0, 𝐿𝐻(0) ≥ 0, 𝐻𝑈(0) ≥ 0, 𝐻𝐷(0) ≥ 0, 𝐻𝑊(0) ≥ 0𝐻𝑊(0) ≥ 0, 𝐿𝑇𝐻(0) ≥ 0, 𝐴𝑇𝐻(0) ≥ 0, 
𝐿𝐻𝑇(0) ≥ 0, 𝐴𝐻𝑇(0) ≥ 0, 𝐿𝑇(0) ≥ 0, 𝑇𝑈(0) ≥ 0, 𝑇𝐷(0) ≥ 0, 𝐹𝑇(0) ≥ 0, 𝑅𝑇(0) ≥ 0, 𝑅𝑇𝐻(0) ≥ 0} ∈ 𝛤 

 
Then, the solution: 
 

{𝑆(𝑡), 𝐿𝐻(𝑡), 𝐻𝑈(𝑡), 𝐻𝐷(𝑡), 𝐻𝑊(𝑡)𝐿𝑇𝐻(𝑡), 𝐴𝑇𝐻(𝑡), 𝐿𝐻𝑇(𝑡), 𝐴𝐻𝑇(𝑡), 𝐿𝑇(𝑡), 𝑇𝑈(𝑡), 𝑇𝐷(𝑡), 𝐹𝑇(𝑡), 
𝑅𝑇(𝑡), 𝑅𝑇𝐻(𝑡)} Of the model system equation (3.3) are positive ∀𝑡 ≥ 0. 
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Proof: 
 
In order to prove the theorem (1.1), the equations of the system (3.1) were used. From the first 
equation of the model (3.3): 
 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝐻𝑆 − 𝜇𝑆     (3.4) 

 
From which it follows that: 
 
 

𝑑𝑆

𝑑𝑡
=≥ −𝜇𝑆      (3.5) 

 
Consequently: 
 
𝑑𝑆

𝑑𝑡
+ 𝜇𝑆 ≥ 0  is the first order homogeneous 

differential equation. 
 

I.F.=     ℓ∫
𝜇𝑑𝑡 = ℓ

𝜇𝑡
 

     (3.6) 
 
Multiplying by the Integrating factor on both sides 
will give: 
 

ℓ
𝜇𝑡 𝑑𝑆

𝑑𝑡
+ 𝜇𝑆ℓ𝜇𝑡 ≥ 0      (3.7) 

 
It then follows that: 
 

𝑑(𝑆ℓ𝜇𝑡) ≥ 0𝑑𝑡 
 
Integrating on both sides gives:  
 

𝑆ℓ𝜇𝑡 ≥ 𝐶 where C is a constant of the integration, 
it follows that: 
 

𝑆(𝑡) ≥ 𝐶ℓ−𝜇𝑡       (3.8) 

Applying the initial condition that, when 𝑡 =
0, 𝑆(𝑡) = 𝑆(0),we have: 
 
𝑆(0) ≥ 𝐶 
 
Hence: 
 

𝑆(𝑡) ≥ 𝑆(0)ℓ−𝜇𝑡 
 
Since 𝜇 > 0𝑎𝑛𝑑𝑆(0) ≥ 0,then: 
 
𝑆(𝑡) ≥ 0, if 𝑡 = 0𝑎𝑛𝑑𝑡 → ∞ 
 
Therefore: 
 
𝑆(𝑡) ≥ 0∀𝑡 ≥ 0. 
 
Similarly, it can be shown that 𝐿𝐻 ≥ 0,𝐻𝑈 ≥
0,𝐻𝐷 ≥ 0,𝐻𝑊 ≥ 0, 𝐿𝑇𝐻 ≥ 0,𝐴𝑇𝐻 ≥ 0, 𝐿𝐻𝑇 ≥
0, 𝐴𝐻𝑇 ≥ 0, 𝐿𝑇 ≥ 0, 𝑇𝑈 ≥ 0, 𝑇𝐷 ≥ 0, 𝐹𝑇 ≥ 0, 𝑅𝑇 ≥

0, 𝑅𝑇𝐻 ≥ 0
0 t

.  
 
Therefore, HIV-TB model formulated is 
mathematically and epidemiologically well posed. 
 

3.1Analysis of Sub Models 
 
Before analyzing the full model (3.3), it is 
instructive to gain insights into the dynamics of 
the models for HIV only and TB only. 

 
3.1.1HIV model only 
 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝐻𝑆 − 𝜇𝑆

𝑑𝐿𝐻

𝑑𝑡
= 휀1𝜆𝐻𝑆 − 𝐾1𝐿𝐻 + 𝜑𝐻𝑊

𝑑𝐻𝑈

𝑑𝑡
= (1 − 휀1)𝜆𝐻𝑆 + (1 − 𝜔1)𝜅𝐻𝐿𝐻 − 𝐾2𝐻𝑈

𝑑𝐻𝐷

𝑑𝑡
= 𝜔1𝜅𝐻𝐿𝐻 + 𝛾𝑈𝐻𝐻𝑈 − 𝐾3𝐻𝐷

𝑑𝐻𝑊

𝑑𝑡
= 𝜏1𝐻𝐷 − 𝐾4𝐻𝑊 }

 
 
 

 
 
 

      (3.9) 

 
For critical points, we set: 
 

𝑑𝑆

𝑑𝑡
=
𝑑𝐿𝐻

𝑑𝑡
=
𝑑𝐻𝑈

𝑑𝑡
=
𝑑𝐻𝐷

𝑑𝑡
=
𝑑𝐻𝑊

𝑑𝑡
=0        (4.0) 

 

At this free equilibrium, it is assumed that there is no infection, then we set H =0 
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Disease free equilibrium is: 
 

휀0 = {
𝜋

𝜇
, 0,0,0,0} 

Existence of Endemic Equilibrium (EE) 
 
Where 휀0

∗ = (𝑆∗, 𝐿𝐻
∗ , 𝐻𝑈

∗ , 𝐻𝐷
∗ , 𝐻𝑊

∗ )are the endemic equilibrium points.     
 

𝑆∗∗ =
𝜋

(𝜆𝐻+𝜇)
   

(4.1a) 

 

𝐿𝐻∗∗ =
𝜀1𝜆𝐻𝑆

∗∗+𝜑𝐻𝑊∗∗

𝐾1
  

(4.1b) 
 

𝐻𝑈∗∗ =
(1−𝜀1)𝜆𝐻𝑆

∗∗+(1−𝜔1)𝜅𝐻𝐿𝐻

𝐾2
   

(4.1c) 
 

𝐻𝐷∗∗ =
𝜔1𝐾𝐻𝐿𝐻

∗∗+𝛾𝑈𝐻𝐻𝑈∗∗

𝐾3
   

(4.1d) 
 

4

1 **

**

K

H
H D

W


=

  
(4.1e) 

 
After the substitution, we have the results (4.1b*-4.1e*) in terms of𝑆∗∗; 
 

𝐿𝐻∗∗ =
𝜀1𝜆𝐻∗∗𝑆

∗∗

𝐾1𝐴
+

𝜑𝜏1𝛾𝑈𝐻(1−𝜀1)𝜆𝐻
∗∗𝑆∗∗

𝐾1𝐾3𝐾4𝐾2𝐴

****

1** SL HH
=

   

(4.1b*) 
 

𝐻𝑈∗∗ =
(1−𝜀1)𝜆𝐻

∗∗𝑆∗∗

𝐾2
+

𝐾2𝜅𝐻𝑃1𝜆𝐻
∗∗𝑆∗∗

𝐾2
= 𝑃2𝜆𝐻

∗∗𝑆∗∗  

(4.1c*) 
 

𝐻𝐷∗∗ =
𝜔1𝜅𝐻𝑃1𝜆𝐻

∗∗𝑆∗∗

𝐾3
+

𝛾𝑈𝐻𝑃2𝜆𝐻
∗∗𝑆∗∗

𝐾3
= 𝑃3𝜆𝐻

∗∗𝑆∗∗  

(4.1d*) 
 

𝐻𝑊 =
𝜏1𝑃3𝜆𝐻

∗∗𝑆∗∗

𝐾4
= 𝑃4𝜆𝐻

∗∗𝑆∗∗     

(4.1e*) 
 
Where: 
 

𝐴 = (1 −
𝜑𝜏1𝜔1𝜅𝐻
𝐾1𝐾3𝐾4

−
𝜑𝜏1𝛾𝑈𝐻(1 − 𝜔1)𝜅𝐻

𝐾1𝐾3𝐾4𝐾2
) 

 

𝑃1 =
휀1
𝐾1𝐴

+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾1𝐾3𝐾4𝐾2𝐴
 

 

𝑃2 =
(1 − 휀1)

𝐾2
+
(1 − 𝜔1)𝜅𝐻

𝐾2
[
휀1
𝐾1𝐴

+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾1𝐾3𝐾4𝐾2𝐴
] 
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𝑃3 =
𝜔1𝐾𝐻
𝐾4

[
휀1
𝐾1𝐴

+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾1𝐾3𝐾4𝐾2𝐴
] +

𝛾𝑈𝐻
𝐾3

[
(1 − 휀1)

(1 − 𝜔1)
+
(1 − 𝜔1)𝜅𝐻

𝐾2
[
휀1
𝐾1𝐴

+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾1𝐾3𝐾4𝐾2𝐴
]] 

 

𝑃4 =
𝜏1
𝐾4
.
𝜔1𝜅𝐻
𝐾3

[
휀1
𝐾1𝐴

+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾1𝐾3𝐾4𝐾2𝐴
] +

𝛾𝑈𝐻
𝐾3

[
(1 − 휀1)

(1 − 𝜔1)
+
(1 − 𝜔1)𝜅𝐻

𝐾2
[
휀1
𝐾1𝐴

+
𝜑𝜏1𝛾𝑢𝐻(1 − 휀1)

𝐾1𝐾3𝐾4𝐾2𝐴
]] 

 
Where: 
 

𝜆𝐻
∗∗ =

𝛽𝐻[𝐿𝐻
∗∗+𝜂𝑈𝐻𝑈

∗∗+𝜂𝑑𝐻𝐻𝐷
∗∗+𝜂𝑊𝐻𝑊

∗∗]

𝑁
        

(4.2) 
 
Substituting the expressions in (4.1b*-4.1e*) into (4.2) we have 
 
𝜆𝐻
∗∗[𝑆∗∗ + 𝑃1𝜆𝐻

∗∗𝑆∗∗ + 𝑃2𝜆𝐻
∗∗𝑆∗∗ + 𝑃3𝜆𝐻

∗∗𝑆∗∗ + 𝑃4𝜆𝐻
∗∗𝑆∗∗] = 𝛽𝜆𝐻

∗∗𝑆∗∗[𝑃1 + 𝜂𝑈𝑃2 + 𝜂𝑑𝐻𝑃3 + 𝜂𝑊𝑃4]             (4.3) 

Divide each term in (4.3) by 𝜆𝐻
∗∗𝑆∗∗ 

 
1 + 𝑃5𝜆

∗∗ = 𝛽[𝑃1 + 𝜂𝑈𝑃2 + 𝜂𝑑𝐻𝑃3 + 𝜂𝑊𝑃4] 
 
Where 𝑃5 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 ≥ 0 
 
So that: 
 

1 + 𝑃5𝜆𝐻
∗∗ =

𝛽

𝐾1𝐾2𝐾3𝐾4
[
휀1(𝐾2𝐾3𝐾4)

𝐾1𝐴
+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

(𝐴)
+ (1 − 휀1)𝐾1𝐾3𝐾4 

+
𝐾2𝜅𝐻휀1𝐾3𝐾4

𝐴
+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐴
+
𝜔1𝜅𝐻휀1𝐾2𝐾4

𝐴
+
𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐴
+ 𝛾𝑈𝐻(1 − 휀1)𝐾1𝐾4 

+
𝛾𝑈𝐻𝐾2휀1𝜅𝐻𝐾4

𝐴
+
𝛾𝑈𝐻𝐾2𝜅𝐻𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾3𝐾2𝐴
+
𝜏1𝜔1𝜅𝐻휀1𝐾2

𝐴
+
𝜏1𝜔1𝜅𝐻𝜑𝜏1𝛾𝑈𝐻(1 − 휀1)

𝐾4𝐾1 + 𝐴
+ 𝛾𝑈𝐻(1 − 휀1)𝐾1𝐾4 

+
𝛾𝑈𝐻𝐾2𝜅𝐻𝜀1𝐾4

𝐴
+

𝛾𝑈𝐻𝐾2𝜅𝐻𝜑𝜏1𝛾𝑈𝐻(1−𝜀1)

𝐾3𝐾2𝐴
= 𝑅𝐻 + 𝑄  𝑤ℎ𝑒𝑟𝑒 

𝑄 =
𝛽

𝐾1𝐾2𝐾3𝐾4
[
휀1𝐾2𝐾5
𝐴

(𝐾5 +𝜔1𝜅𝐻) +
휀1𝐾2𝐾4𝜅𝐻

𝐴
(𝐾3 + 2𝛾𝑈𝐻) +

휀1𝜏1𝜔1𝜅𝐻𝐾2
𝐴

 

+3
𝜑𝜏1𝛾𝑈𝐻(1 − 휀)

𝐴
+
(1 − 휀1)2𝛾𝑈𝐻𝜅𝐻

𝐴𝐾3𝐾2
(𝐾2𝜑𝜏1 + 𝐾2𝜑𝜏1) + (1 − 휀1)𝛾𝑈𝐻 (

2𝜏1𝜔1𝜅𝐻𝜑

𝐾4𝐾3𝐴
+ 2𝐾1𝐾4 + 𝐾1𝐾3𝐾4)] 

 
Therefore: 1 + 𝑃5𝜆

∗∗ = 𝑅𝐻 + 𝑄 
 

𝜆∗∗ =
𝑅𝐻+𝑄−1

𝑃5
> 0Whenever, 

1HR
 

 

3.1.2 Stability of the HIV model  
 

The basic reproduction number of the model (3.3)is calculated by using the next generation matrix 
([2], [6], [24], [25], [26]). Using this approach, we have:  
 

𝐹 = (

휀1𝛽𝐻            휀1𝛽𝐻𝜂𝑈                 휀1𝛽𝐻𝜂𝑑𝐻               휀1𝛽𝐻𝜂𝑊
(1 − 휀1)𝛽𝐻(1 − 휀1)𝛽𝐻𝜂𝑈(1 − 휀1)𝛽𝐻𝜂𝑑𝐻(1 − 휀1)𝛽𝐻𝜂𝑊
0                      0                           0                          0
0                      0                           0                          0

)   

(4.4)  
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𝑉 = (

𝐾1                                 0               0       − 𝜑

−(1 − 𝜔1)𝜅𝐻   𝐾2                  0           0
−𝜔1𝐾𝐻              − 𝛾𝑈𝐻           𝐾3             0
0                        0           − 𝜏1           𝐾4

)     

(4.5) 
The reproduction number is the dominant eigenvalue of 𝐹 × 𝑉−1. Thus, 
 

𝑅𝐻 =

{
  
 

  
 (

1

𝜑𝜏1(1−𝜔1)𝜅𝐻𝛾𝑈𝐻+𝜑𝜏1𝜔1𝐾𝐻𝐾2−𝐾3𝐾4𝐾1𝐾2
)

(

 
 

𝛽𝐻(−(1 − 휀1)𝛾𝑈𝐻𝜑𝜏1 + (1 − 휀1)𝜂𝑈𝜑𝜏1𝜔1𝜅𝐻
−(1 − 휀1)𝜂𝑈𝐾4𝐾3𝐾1 − (1 − 휀1)𝛾𝑈𝐻𝜂𝑑𝐻𝐾4𝐾1
−(1 − 휀1)𝛾𝑈𝐻𝜂𝑊𝜏1𝐾1 − 휀1𝐾3𝐾4𝐾2 − 휀1𝐾3𝐾4(1 − 𝜔1)𝜅𝐻𝜂𝑈
−𝜂𝑑𝐻𝜔1𝜅𝐻휀1𝐾4𝐾2 − 𝜂𝑑𝐻𝛾𝑈𝐻휀1𝐾4(1 − 𝜔1)𝐾𝐻 − 𝜏1𝜔1𝜅𝐻휀1𝜂𝑊𝐾2
−𝜂𝑊𝛾𝑈𝐻휀1𝜏1(1 − 𝜔1)𝜅𝐻 )

 
 

}
  
 

  
 

             (4.6) 

 

“The threshold quantity HR
 is the basic 

reproduction number of the normalized model 
system (3.3) for HIV infection in a population. It 
measures the average number of new secondary 
infections generated by a single infected 
individual in his or her infectious period in a 
susceptible population” [5].  
 
3.1.3 Global stability of disease-free 

equilibrium (HIV) 
 
We study the global stability of equilibrium 
without disease and we implement the approach 
of [5], then the equations of 
the model may be rewritten in the form; 
 
𝑑𝑀

𝑑𝑡
= 𝐹(𝑀, 𝐼) 

 
𝑑𝐼

𝑑𝑡
= 𝐺(𝑀, 𝐼)                                                           (4.7) 

 
With 𝐺(𝑃, 0) = 0 , where 𝑃 ∈ 𝑅1 represents the 
uninfected classes(𝑆)and 𝐼 ∈ 𝑅4  represents the 

infected classes(𝐿𝐻 , 𝐼𝑈, 𝐼𝐷 , 𝐻𝑊). Also, 𝐸𝑜 = (𝑀∗, 0) 

denotes the disease-free equilibrium of the 
model. 
 
The two conditions (H1) and (H2) stated below 
must be satisfied for the model to be globally 
stable 
 

(H1): For 
𝑑𝑀

𝑑𝑡
= 𝐹(𝑀, 0),𝑀∗  is globally 

asymptotically stable 
 

(H2): 𝐺(𝑀, 𝐼) = 𝐴𝐼 − 𝐺
∧

(𝑀, 𝐼), 𝐺
∧

(𝑀, 𝐼) ≥ 0  for 

(𝑀, 𝐼) ∈ 𝐷 
 
Where 𝐴 = 𝐷𝐼𝐺(𝑀

∗, 0) is an M-matrix (the off-
diagonal elements of A are non-negative) and D 
is the region is the feasible region where the 
model is biologically meaningful. If (H1) and (H2) 
are satisfied, then the following theorem holds; 
 
Theorem 2:  The disease-free equilibrium 𝐸𝑜 =
(𝑀∗, 0)  is a globally asymptotically stable 

equilibrium of the model if 𝑅0 < 1  and that the 
conditions (H1) and (H2) are satisfied 

 
Proof: 
 
Now 𝑀 = (𝑆, 𝐻𝑊) and 𝐼 = (𝐿𝐻 , 𝐻𝑈 , 𝐻𝐷) 
 
𝐹(𝑀, 0) = (𝜋 − 𝜇𝑆)      

(4.8) 
And   
 

𝐴 = (

휀1𝛽𝐻                           − 𝐾1휀1𝛽𝐻𝜂𝑈                          휀1𝛽𝐻𝜂𝑑𝐻                 휀1𝛽𝐻𝜂𝑊 − 𝜑
(1 − 휀1)𝛽𝐻 − (1 − 𝜔1)𝜅𝐻(1 − 휀1)𝛽𝐻𝜂𝑈 − 𝐾2(1 − 휀1)𝛽𝐻𝜂𝑑𝐻(1 − 휀1)𝛽𝐻𝜂𝑊
𝜔1                                  𝜅𝐻𝛾𝑈𝐻                                − 𝐾3                            0
0                                     0                                        𝜏1                              − 𝐾4

) 

(4.9) 
Then  
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𝐺
∧
(𝑀, 𝐼) =

(

 
 

휀1𝛽𝐻 (1 −
𝑆

𝑁
)

(1 − 휀1)𝛽𝐻 (1 −
𝑆

𝑁
)

0
0 )

 
 

         

(5.0) 

Since 0 ≤ 휀 ≤ 1, clearly𝐺
∧

(𝑀, 𝐼) ≥ 0, 𝐸𝑜 = (
𝜋

𝜇
) is a globally asymptotic stable equilibrium of the model 

equations. Hence, the two conditions above are satisfied. Therefore, the disease-free equilibrium is 
globally asymptotically stable. This implies biologically that the prevention of HIV leads to AIDS is 
independent of the initial sizes of the sub-populations whenever the basic production number is less 
than one. 
 
3.1.4TB model only 
 
𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝑇𝑆 − 𝜇

𝑑𝐿𝑇

𝑑𝑡
= 휀 𝜆2

 
𝑇𝑆 − 𝐾9𝐿𝑇 + 𝜐𝑇𝑈 + 𝜃1𝜌𝐹𝑇 + 𝑟𝛼𝑅𝑇

𝑑𝑇𝑈

𝑑𝑡
= (1 − 휀2)𝜆𝐻𝑆 + (1 − 𝜔2)𝜅𝑇𝐿𝑇 + (1 + 𝜔3)𝜙𝜆𝑇𝐿𝑇 + 𝜃2𝜌𝐹𝑇 − 𝐾10𝑇𝑈

𝑑𝑇𝐷

𝑑𝑡
= 𝜔2𝜅𝑇𝐿𝑇 + 𝜔3𝜙𝜆𝑇𝐿𝑇 + 𝛾𝑈𝑇𝑇𝑈 + [1 − (𝜃1 + 𝜃2)]𝜌𝐹𝑇 − 𝐾11𝑇𝐷

𝑑𝐹𝑇

𝑑𝑡
= (1 − 𝑞1)𝜏2𝑇𝐷 + (1 − 𝑟)𝛼𝑅𝑇 − 𝐾12𝐹𝑇

𝑑𝑅𝑇

𝑑𝑡
= 𝑞1𝜏2𝑇𝐷 − 𝐾13𝑅𝑇 + 𝜎2𝑇𝐷 }

 
 
 
 

 
 
 
 

             (5.1) 

 
Where 
 

𝜆𝑇 = 𝛽𝑇
(𝐿𝑇+𝜂𝑈𝑇𝑈+𝜂𝑑𝑇𝑇𝐷+𝜂𝑅𝑇𝑅𝑇+𝐹𝑇)

𝑁
       

(5.2) 
 
Disease-free equilibrium is: 
 

 
 
Existence of Endemic Equilibrium for TB Model Only 
 

Where are the endemic equilibrium points. 
 

For a special case of TB-only model, when  𝑞1 = 1  and  are very small 
(negligible). 
 

Therefore, equations (5.1) become: 
 
𝑑𝑆

𝑑𝑡
= 𝜋 − 𝜆𝑇𝑆 − 𝜇𝑆

𝑑𝐿𝑇

𝑑𝑡
= 휀2𝜆𝑇𝑆 − 𝐾9𝐿𝑇

𝑑𝑇𝑈

𝑑𝑡
= (1 − 휀2)𝜆𝑇𝑆 + (1 − 𝜔2)𝜅𝑇𝐿𝑇 − 𝐾10𝑇𝑈

𝑑𝑇𝐷

𝑑𝑡
= 𝜔2𝜅𝑇𝐿𝑇 + 𝛾𝑈𝑇𝑇𝑈 − 𝐾11𝑇𝐷

𝑑𝑅𝑇

𝑑𝑡
= 𝜏2𝑇𝐷 − 𝜇𝑅𝑇 + 𝜎2𝑇𝐷 }

 
 
 

 
 
 

       

(5.2) 









= 0,0,0,0,0,0






),,,,,( *******

0 TTDUT RFTTLS=

 and211 ,,
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𝑆∗∗ =
𝜋

(𝜆𝑇+𝜇)
     

                   (5.2a) 

𝐿𝑇∗∗ =
𝜀2𝜆𝑇𝑆

∗∗

𝐾9
     

                               (5.2b) 

𝑇𝑈∗∗ =
(1−𝜀2)𝜆𝑇𝑆

∗∗+(1−𝜔2)𝜅𝑇𝐿𝐻

𝐾10
                 (5.2c) 

 

𝑇𝐷∗∗ =
𝜔2𝐾𝑇𝐿𝑇

∗∗+𝛾𝑈𝑇𝑇𝑈∗∗

𝐾11
                      (5.2d) 

 

𝑅𝑇∗∗ =
(𝜎2+𝜏2)𝑇𝐷∗∗

𝜇
                  (5.2e) 

 

The expression for  at the endemic steady-state, denoted by  is given by  
 

𝜆𝑇
∗∗ = 𝛽𝑇

(𝐿𝑇
∗∗+𝜂𝑈𝑇𝑈

∗∗+𝜂𝑑𝑇𝑇𝐷
∗∗+𝜂𝑅𝑇𝑅𝑇

∗∗+𝜂𝐹𝑇𝐹𝑇)

𝑁∗∗
                 (5.3) 

𝐿𝑇∗∗ =
𝜀2𝜆𝑇𝑆

∗∗

𝐾9
                   (5.2b*) 

𝑇𝑈∗∗ =
(1−𝜀2)𝜆𝑇𝑆

∗∗

𝐾10
+

(1−𝜔2)𝜅𝑇𝜀2𝜆𝑇𝑆
∗∗

𝐾10𝐾9
= 𝑃1𝜆𝑇

∗∗𝑆∗∗               (5.2c*)

       

𝑇𝐷∗∗ =
𝜔2𝜅𝑇𝜀2𝜆𝑇𝑆

∗∗

𝐾11𝐾9
+

𝛾𝑈𝑇𝑃1𝜆𝑇𝑆
∗∗

𝐾11
= 𝑃2𝜆𝑇

∗∗𝑆∗∗                (5.2d*) 

𝑅𝑇∗∗ =
(𝜎2+𝜏2)

𝜇
[
𝜔2𝜅𝑇𝜀2𝜆𝑇

∗∗𝑆∗∗

𝐾11𝐾9
+

𝛾𝑈𝑇𝑃1𝜆𝑇
∗∗𝑆∗∗

𝐾11
] = 𝑃3𝜆𝑇

∗∗𝑆∗∗               (5.2e*) 

 
Substituting the expression in (5.2b*)-(5.2e*) into (5.3) 
 

𝜆𝑇
∗∗ [𝑆∗∗ +

𝜀2𝜆𝑇𝑆
∗∗

𝐾9
+ 𝑃1𝜆𝑇

∗∗𝑆∗∗ + 𝑃2𝜆𝑇
∗∗𝑆∗∗𝑃3𝜆𝑇

∗∗𝑆∗∗] = 𝛽𝑇𝜆𝑇
∗∗𝑆∗∗[𝜂𝑈𝑃1 + 𝜂𝑑𝑇𝑃2 + 𝜂𝑅𝑇𝑃3]           (5.3) 

 

Divide each term in (5.3) by  
 
1 + 𝑃4𝜆𝑇

∗∗ = 𝛽𝑇[𝜂𝑈𝑃1 + 𝜂𝑑𝑇𝑃2 + 𝜂𝑅𝑇𝑃3] 
 
Where 

𝑃4 = 𝛽𝑇 [
휀2
𝐾9
+ 𝑃1 + 𝑃2 + 𝑃3] ≥ 0 

So that: 
 

 

T
**

****
ST

 

  

  Q R K 

K K 

K K K K 
K K K 

 

P 

T T 

UT RT T RT T UT dT 

T dT T U U 
T 

+ = − + − 

+ 
+ 

+ 
+ − + − + 

+ − + − = + 

2 2 9 2 

2 2 
10 2 2 

2 2 
2 2 9 2 

10 2 2 10 2 2 9 11 2 
11 10 9 

* * 
4 

) 1 ( ) 1 ( 

) ( ) ( 
) 1 ( ) 1 ( 

) 1 ( ) 1 ( 1 
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Therefore 1 + 𝑃4𝜆𝑇

∗∗ = 𝑅𝑇 + 𝑄 

   

whenever  
 

3.15 Derivation of Basic Reproduction Number (Ro) for TB Only  
 

The basic reproduction number of the model (5.1)  is calculated by using the next generation 
matrix( [17], [27]). Using this approach we have: 
 

𝐹 =

(

 
 

휀2𝛽𝑇                휀2𝛽𝑇𝜂𝑈             휀2𝛽𝑇𝜂𝑑𝑇             휀2𝛽𝑇𝜂𝑅𝑇                휀2𝛽𝑇𝜂𝐹𝑇
(1 − 휀2)𝛽𝑇(1 − 휀2)𝛽𝑇𝜂𝑈(1 − 휀2)𝛽𝑇𝜂𝑑𝑇(1 − 휀2)𝛽𝑇𝜂𝑅𝑇(1 − 휀2)𝛽𝑇𝜂𝐹𝑇
0                        0                          0                            0                           0
0                        0                          0                            0                           0
0                        0                          0                            0                           0 )

 
 
                                                       (5.4) 

𝑉 =

(

 
 

𝐾9              − 𝜐               0         − 𝜃1𝜌        − 𝑟𝛼
−𝑎              𝐾10              0          − 𝜃2𝜌              0
−𝜔2        𝜅𝑇 − 𝛾𝑈𝑇       𝐾11            𝑏                  0
0                      0            − 𝑐            𝐾12                        𝑑
0                      0            − 𝑒            0                𝐾13 )

 
 

                    (5.5) 

 

Hence; 
 

𝑅𝑇 =
𝐵1+𝐵2+𝐵3

𝑀
                  (5.6) 

 

Where:𝑀 = [

𝜐𝐾13𝐾12𝐾11𝑎 + 𝛾𝑈𝑇𝛼𝑟𝑒𝑎𝐾12 − 𝛾𝑈𝑇𝜃1𝜌𝑒𝑑𝑎 + 𝛾𝑈𝑇𝜃1𝜌𝑐𝐾13𝐾9 − 𝜐𝑎𝑏𝑑𝑒
+𝛾𝑈𝑇𝜃2𝜌𝐾9𝑑𝑒 + 𝜐𝜔2𝜃2𝜅𝑇𝜌𝐾9𝑑𝑒 + 𝐾13𝐾10𝐾9𝑏𝑐 − 𝐾10𝐾9𝐾11𝐾12𝐾13
+𝜔2𝜃1𝜅𝑇𝜌𝑑𝑒𝐾10 − 𝛾𝑈𝑇𝜃2𝜌𝑐𝐾13𝐾9 + 𝜐𝑎𝑏𝑐𝐾13 − 𝜔2𝜅𝑇𝑟𝛼𝑒𝐾10𝐾12
−𝜐𝜔2𝜃2𝜅𝑇𝜌𝑐𝐾13 − 𝜔2𝜃1𝜅𝑇𝜌𝑐𝐾10𝐾13 − 𝐾9𝐾10𝑏𝑑𝑒

] 

 
𝐵1 = (𝛽𝑇(𝑟𝛼𝑒𝐾12𝛾𝑈𝑇 + 𝐾13𝐾12𝐾11𝜐 + 𝐾13𝑏𝑐𝜐 − 𝑏𝑑𝑒𝜐 + 𝛾𝑈𝑇𝜃1𝜌𝑑𝑒 − 𝛾𝑈𝑇𝜃1𝜌𝑐𝐾13 
−휀2𝜂𝑈𝑎𝑏𝑑𝑒 + 휀2𝜂𝑑𝑇𝐾12𝐾13𝛾𝑈𝑇 + 휀2𝜂𝑅𝑇𝑎𝑐𝐾13𝛾𝑈𝑇 − 휀2𝜂𝑅𝑇𝑎𝑑𝑒𝛾𝑈𝑇 + 휀2𝜂𝐹𝑇𝑎𝑒𝐾12𝛾𝑈𝑇 
−휀2𝑟𝛼𝑒𝐾12𝛾𝑈𝑇 − 휀2𝜂𝑈𝑏𝑐𝐾9𝐾13 + 휀2𝜂𝑈𝑏𝑑𝑒𝐾9 − 휀2𝜂𝑈𝑒𝐾9𝐾11𝐾13 − 휀2𝜂𝑑𝑇𝐾9𝐾12𝐾13𝛾𝑈𝑇)) 

 
𝐵2 = (𝛽𝑇(휀2𝜂𝑅𝑇𝑑𝑒𝐾9𝛾𝑈𝑇 − 휀2𝜂𝑅𝑇𝑐𝐾9𝐾13𝛾𝑈𝑇 − 휀2𝜌𝑐𝐾13𝜃2𝛾𝑈𝑇 + 휀2𝜌𝑑𝑒𝜃2𝛾𝑈𝑇 + 휀2𝜂𝑈𝑎𝐾11𝐾12𝐾13 
+휀2𝜂𝑈𝑎𝑏𝑐𝐾13 + 𝜔2𝜂𝑈𝜅𝑇𝜃1𝑐𝐾13 − 𝜔2𝜂𝑈𝜅𝑇𝜃1𝑑𝑒 + 𝜔2𝜂𝑅𝑇𝜅𝑇𝜐𝑐𝐾13 − 𝜔2𝜂𝑅𝑇𝜅𝑇𝜐𝑑𝑒 
+𝜔2𝜂𝑑𝑇𝜅𝑇𝜐𝐾12𝐾13 + 𝜔2𝜂𝐹𝑇𝜅𝑇𝜐𝑒𝐾12 − 휀2𝜔2𝜂𝑈𝜅𝑇𝜃1𝑐𝐾13 + 휀2𝜔2𝜂𝑈𝜅𝑇𝜃1𝑑𝑒 − 휀2𝜔2𝜂𝑑𝑇𝜅𝑇𝜐𝐾12𝐾13 
−휀2𝜔2𝜂𝑅𝑇𝜅𝑇𝜐𝑐𝐾13 + 휀2𝜔2𝜂𝑅𝑇𝜅𝑇𝜐𝑑𝑒 − 휀2𝜔2𝜂𝐹𝑇𝜅𝑇𝜐𝑒𝐾12 + 휀2𝜔2𝜂𝑑𝑇𝜅𝑇𝐾13𝐾12𝐾10)) 

 
𝐵3 = (𝛽𝑇(휀2𝜔2𝜂𝑅𝑇𝜅𝑇𝑐𝐾13𝐾10 − 휀2𝜔2𝜂𝑅𝑇𝜅𝑇𝑐𝑒𝐾10 + 휀2𝜔2𝜂𝐹𝑇𝜅𝑇𝑒𝐾10𝐾12 − 𝑟𝛼𝜔2𝜂𝑈𝜅𝑇𝑒𝐾12 − 휀2𝜐𝐾11𝐾12𝐾13 
−휀2𝜐𝑏𝑐𝐾13 + 휀2𝜐𝑏𝑑𝑒 + 휀2𝐾13𝑐𝜃1𝛾𝑈𝑇 − 휀2𝑑𝑒𝜃1𝛾𝑈𝑇 + 휀2𝑏𝑐𝐾10𝐾13 − 휀2𝑏𝑑𝑒𝐾10 
+휀2𝐾10𝐾11𝐾12𝐾13 + 𝜂𝑈𝑏𝑐𝐾9𝐾13 − 𝜂𝑈𝑏𝑐𝑒𝐾9 + 𝜂𝑈𝐾9𝐾11𝐾12𝐾13 + 𝜂𝑅𝑇𝑐𝐾9𝐾13𝛾𝑈𝑇 − 𝜂𝑅𝑇𝑑𝑒𝐾9𝛾𝑈𝑇  
+𝜂𝑑𝑇𝐾9𝐾12𝐾13𝛾𝑈𝑇 + 𝜂𝐹𝑇𝑒𝐾12𝐾9𝛾𝑈𝑇 + 휀2𝑟𝛼𝜔2𝜂𝑈𝜅𝑇𝑒𝐾12 + 𝜂𝑈휀2𝜌𝑐𝐾13𝜃2𝜔2𝜅𝑇 − 𝜂𝑈휀2𝜌𝑑𝑒𝜃2𝜔2𝜅𝑇))

  ( )22121212 ,)1(,)1(,)(1,)1(  +=−=−=+−=−= qerdqcba T  
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4
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−+

=
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“The threshold quantity TR
 is the basic reproduction number of the normalized model system (5.1) for 

TB infection in a population. It measures the average number of new secondary infections generated 
by a single infected individual in his or her infectious period in a susceptible population” [13].  
 

3.1.6 Global stability of disease free equilibrium (TB) 
 

We study the global stability of equilibrium without disease for a special case For a special case of 

TB-only model, when 𝑞1 = 1 and  are very small (negligible)and we implement the 
approach of [5], then the equations of the model may be rewritten in the form; 
𝑑𝑀

𝑑𝑡
= 𝐹(𝑀, 𝐼) 

 
𝑑𝐼

𝑑𝑡
= 𝐺(𝑀, 𝐼)                   (5.7) 

 

With𝐺(𝑃, 0) = 0 , where 𝑃 ∈ 𝑅2 represents the uninfected classes (𝑆, 𝑅𝑇)and 𝐼 ∈ 𝑅3  represents the 
infected classes(𝐿𝑇 , 𝑇𝑈, 𝑇𝐷). Also, 𝐸𝑜 = (𝑀

∗, 0) denotes the disease-free equilibrium of the model. 
 
 
The two conditions (H1) and (H2) stated below must be satisfied for the model to be globally stable 
 

(H1): For 
𝑑𝑀

𝑑𝑡
= 𝐹(𝑀, 0),𝑀∗ is globally asymptotically stable 

(H2): 𝐺(𝑀, 𝐼) = 𝐴𝐼 − 𝐺
∧

(𝑀, 𝐼), 𝐺
∧

(𝑀, 𝐼) ≥ 0 for (𝑀, 𝐼) ∈ 𝐷 
 
Where 𝐴 = 𝐷𝐼𝐺(𝑀

∗, 0)is an M-matrix (the off-diagonal elements of A are non-negative) and D is the 
region is the feasible region where the model is biologically meaningful. If (H1) and (H2) are satisfied, 
then the following theorem holds; 
 
Theorem 2:  The disease-free equilibrium 𝐸𝑜 = (𝑀

∗, 0) is a globally asymptotically stable equilibrium 

of the model if 𝑅0 < 1 and that the conditions (H1) and (H2) are satisfied: 
 
Proof: 
 
Now 𝑀 = (𝑆, 𝑅𝑇) and 𝐼 = (𝐿𝑇 , 𝑇𝑈 , 𝑇𝐷) 
 

𝐹(𝑀, 0) = (
𝜋 − 𝜇𝑆
0

)                              (5.8) 

And   

𝐴 = (

휀2𝛽𝑇                      − 𝐾9                                                            휀2𝛽𝑇𝜂𝑈                    휀2𝛽𝑇𝜂𝑑𝑇
(1 − 휀2)𝛽𝑇   − (1 − 𝜔2)𝜅𝑇(1 − 휀2)𝛽𝑇𝜂𝑈 − 𝐾10                 (1 − 휀2)𝛽𝑇𝜂𝑑𝑇
𝜔2                                  𝜅𝑇                                                𝛾𝑈𝑇                  − 𝐾11

)           (5.9) 

 

𝐺
∧

(𝑀, 𝐼) = (

휀2𝛽𝑇 (1 −
𝑆

𝑁
)

(1 − 휀2)𝛽𝑇 (1 −
𝑆

𝑁
)

0

)                (6.0) 

Since 
,10  
 clearly

( ) 0, 


IMG
, 









=




oE

 is a globally asymptotic stable equilibrium of the 
model equations. Hence, the two conditions above are satisfied. Therefore, the disease-free 
equilibrium is globally asymptotically stable. This implies biologically that the prevention of TB is 
independent of the initial sizes of the sub-populations whenever the basic production number is less 
than one. 
 

 and211 ,,
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4. MATHEMATICAL ANALYSIS OF OPTIMALITY OF THE FULL MODEL 
 
In this section, we analyze the mathematical analysis of the possible control strategy that will be 
useful to the public health practitioners achieve the best control strategy in the spread of HIV-TB co-
infection in the environment. In order to derive the necessary conditions for these optimal control 
variables, we introduce Boosting immune system (𝑢1) , campaign/education (𝑢2) , HIV treatment 

(𝑢3)and TB treatment(𝑢4) as control strategy for the spread of HIV-TB co-infection. So the model 
equation (3.3) becomes: 
 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 − ((1 − 𝑢1) + (1 − 𝑢2))(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇)𝑆(𝑡) − 𝜇𝑆(𝑡) 

 
𝑑𝐿𝐻(𝑡)

𝑑𝑡
= ((1 − 𝑢1) + (1 − 𝑢2))휀1𝜆𝐻𝑆(𝑡) − (𝜅𝐻 + 𝜇)𝐿𝐻 + (1 − 𝑢3)𝜑𝐻𝑊(𝑡) 

 
𝑑𝐻𝑈(𝑡)

𝑑𝑡
= ((1 − 𝑢1) + (1 − 𝑢2))(1 − 휀1)𝜆𝐻𝑆(𝑡) + (1 − 𝜔1)𝜅𝐻𝐿𝐻(𝑡) − (𝛾𝑈𝐻(1 − 𝑢2) + 𝜇 + 𝛿𝑈𝐻)𝐻𝑈(𝑡) 

 
𝑑𝐻𝐷(𝑡)

𝑑𝑡
= 𝜔1𝜅𝐻𝐿𝐻(𝑡) + (1 − 𝑢2)𝛾𝑈𝐻𝐻𝑈(𝑡) − (𝜏1(1 − 𝑢3) + 𝜇 + 𝛿𝑑𝐻)𝐻𝐷(𝑡) 

 
𝑑𝐻𝑊(𝑡)

𝑑𝑡
= 𝜏1(1 − 𝑢3)𝐻𝐷(𝑡) − ((1 − 𝑢3)𝜑 + 𝜇)𝐻𝑊(𝑡) 

 
𝑑𝐿𝑇𝐻(𝑡)

𝑑𝑡
= ((1 − 𝑢1) + (1 − 𝑢2))𝜆𝑇𝐻𝑆(𝑡) − (((1 − 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻 + 𝜇)𝐿𝑇𝐻(𝑡) + 𝛼𝑇𝑅𝑇𝐻(𝑡)   (6.1) 

 
𝑑𝐴𝑇𝐻(𝑡)

𝑑𝑡
= ((1 − 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻𝐿𝑇𝐻(𝑡) − (𝜇 + 𝜎1 + 𝛿𝐴𝑇𝐻)𝐴𝑇𝐻(𝑡) 

 
𝑑𝐿𝐻𝑇(𝑡)

𝑑𝑡
= ((1 − 𝑢1) + (1 − 𝑢2))𝜆𝐻𝑇𝑆(𝑡) − (((1 − 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇 + 𝜇)𝐿𝐻𝑇(𝑡) 

 
𝑑𝐴𝐻𝑇(𝑡)

𝑑𝑡
= ((1 − 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇𝐿𝐻𝑇(𝑡) − (𝜇 + 𝛿𝐴𝐻𝑇)𝐴𝐻𝑇(𝑡) 

 
𝑑𝐿𝑇(𝑡)

𝑑𝑡
= ((1 − 𝑢1) + (1 − 𝑢2))휀 𝜆2 𝑇𝑆(𝑡) − (𝜅𝑇 + 𝜇)𝐿𝑇(𝑡) + 𝜐𝑇𝑈(𝑡) + 𝜃1𝜌𝐹𝑇(𝑡) + 𝑟𝛼𝑅𝑇(𝑡) 

 
𝑑𝑇𝑈(𝑡)

𝑑𝑡
= ((1 − 𝑢1) + (1 − 𝑢2))(1 − 휀2)𝜆𝐻𝑆(𝑡) + (1 − 𝜔2)𝜅𝑇𝐿𝑇(𝑡) + 𝜃2𝜌𝐹𝑇(𝑡) − (𝜐 + (1 − 𝑢2)𝛾𝑈𝑇 + 𝜇 + 𝛿𝑈𝑇)𝑇𝑈(𝑡) 

 
𝑑𝑇𝐷(𝑡)

𝑑𝑡
= 𝜔2𝜅𝑇𝐿𝑇(𝑡) + (1 − 𝑢2)𝛾𝑈𝑇𝑇𝑈(𝑡) + [1 − (𝜃1 + 𝜃2)]𝜌𝐹𝑇(𝑡) − (𝜎2 + (1 − 𝑢4)𝜏2 + 𝜇 + 𝛿𝑑𝑇)𝑇𝐷(𝑡) 

 
𝑑𝐹𝑇(𝑡)

𝑑𝑡
= (1 − 𝑢4)(1 − 𝑞1)𝜏2𝑇𝐷(𝑡) + (1 − 𝑟)𝛼𝑅𝑇(𝑡) − (𝜌 + 𝜇 + 𝛿𝐹)𝐹𝑇(𝑡) 

 
𝑑𝑅𝑇(𝑡)

𝑑𝑡
= (1 − 𝑢4)𝑞1𝜏2𝑇𝐷(𝑡) − (𝛼 + 𝜇 + 𝛿𝑅𝑇)𝑅𝑇(𝑡) + 𝜎2𝑇𝐷(𝑡) 

𝑑𝑅𝑇𝐻
𝑑𝑡

= 𝜎1𝐴𝑇𝐻(𝑡) − (𝛼𝑇 + 𝜇)𝑅𝑇𝐻(𝑡) 

 
Let the function 0 ≤ 𝑢1 ≤ 1  denote the boosting effect immune system of HIV-TB susceptible 

individuals, while 0 ≤ 𝑢2 ≤ 1  represents the effectiveness of educating the society of the menace of 

HIV-TB. Again, let0 ≤ 𝑢3 ≤ 𝑔1 , (0 ≤ 𝑔1 ≤ 1)and0 ≤ 𝑢4 ≤ 𝑔2  , (0 ≤ 𝑔2 ≤ 1)represent the controls on 
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treatment of HIV and TB respectively, where 1g  and 2g is the drug efficacy used for the treatment. 
Since treatments cannot be continued infinitely, because of the negative side which is known as 
poison, so for our control classes we choose measurable functions which is defined on a fixed interval 
that satisfy 0 ≤ 𝑎𝑖 ≤ 𝑢𝑖(𝑡) ≤ 𝑏𝑖 < 1 for i=1,2,3,4.  
 

4.1Existence of an Optimal Control Pair. 
 
Following the results of [22], the existence of an optimal control pair for the model (6.1) is obtained. 
 
 
Optimality System: 
 
The Objective functional to be minimized is given as: 
 

𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) = ∫ (𝑎𝐻𝑈 + 𝑏𝐻𝐷 + 𝑐𝐴𝑇𝐻 + 𝑑𝐴𝐻𝑇 + 𝑒𝑇𝑈 + 𝑓𝑇𝐷 + 𝐴1𝑢1
2 + 𝐴2𝑢2

2 + 𝐴3𝑢3
2 + 𝐴4𝑢4

2𝑡𝑓
0

)𝑑 (6.2) 

Here the constants 𝑎, 𝑏,⥂ 𝑐, 𝑑, 𝑒, 𝑓, 𝐴1, 𝐴2, 𝐴3, ⥂⥂⥂ 𝐴4 are all positive weights to balance the size of 

the terms. 𝑡𝑓is the final time of interest while zero is the initial time. The objective here is to minimize 

the number of infectious individuals𝐻𝑈 , 𝐻𝐷 , 𝐴𝑇𝐻 , 𝐴𝐻𝑇 , 𝑇𝑈𝑎𝑛𝑑𝑇𝐷 , while minimizing the cost of control 

𝑢1(𝑡), 𝑢2𝑡), 𝑢3(𝑡), 𝑢4(𝑡). therefore, the optimal control pair 𝑢1
∗, 𝑢2

∗, 𝑢3
∗, 𝑢4

∗ is sought such that: 

𝐽(𝑢1
∗, 𝑢2

∗, 𝑢3
∗, 𝑢4

∗) = 𝑀𝑖𝑛
𝑢1

∗,𝑢2
∗,𝑢3

∗,⥂𝑢4
∗
{𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4)/(𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈ 𝑈}                                    (6.3) 

 
Where𝑈 = {(𝑢1, 𝑢2, 𝑢3, 𝑢4) 
 
Such that𝑢1, 𝑢2, 𝑢3, 𝑢4are measurable with: 

0 ≤ 𝑢1 ≤ 1,0 ≤ 𝑢2 ≤ 1,0 ≤ 𝑢3 ≤ 𝑔1,0 ≤ 𝑢4 ≤ 𝑔2for 𝑡 ∈ [0, 𝑡𝑓] → [0,1]is the control set. 

 
The terms 𝑎𝐻𝐷 + 𝑏𝑇𝐷 + 𝑐𝐻𝑈 + 𝑑𝑇𝑈 + 𝑒𝐴𝐻𝑇 + 𝑓𝐴𝑇𝐻  are the cost of infection while 

𝐴1𝑢1
2, 𝐴2𝑢2

2, 𝐴3𝑢3
2, 𝐴4𝑢4   are the costs of Boosting immune system, campaign/education, HIV 

treatment and TB treatment efforts respectively. Now, we obtained the optimal control pair using 
Pontryagin’s maximum principle. This principle converts equations (6.2) and (6.3) into a problem of 
minimizing point-wise a Hamiltonian, H with respect to𝑢1, 𝑢2, 𝑢3and𝑢4. Then 
 

𝐻 = 𝑎𝐻𝑈 + 𝑏𝐻𝐷 + 𝑐𝐴𝑇𝐻 + 𝑑𝐴𝐻𝑇 + 𝑒𝑇𝑈 + 𝑓𝑇𝐷 + 𝐴1𝑢1
2 + 𝐴2𝑢2

2 + 𝐴3𝑢3
2 + 𝐴4𝑢4

2 
+𝑀𝑆[𝜋 − ((1 − 𝑢1) + (1 − 𝑢2))(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇)𝑆(𝑡) − 𝜇𝑆(𝑡)] 
+𝑀𝐿𝐻

[((1 − 𝑢1) + (1 − 𝑢2))휀1𝜆𝐻𝑆(𝑡) − (𝜅𝐻 + 𝜇)𝐿𝐻(𝑡) + (1 − 𝑢3)𝜑𝐻𝑊(𝑡)] 

+𝑀𝐻𝑈
[((1 − 𝑢1) + (1 − 𝑢2))(1 − 휀1)𝜆𝐻𝑆(𝑡) + (1 − 𝜔1)𝜅𝐻𝐿𝐻(𝑡) − (𝛾𝑈𝐻(1 − 𝑢2) + 𝜇 + 𝛿𝑈𝐻)𝐻𝑈(𝑡)] 

+𝑀𝐻𝐷[𝜔1𝜅𝐻𝐿𝐻(𝑡) + (1 − 𝑢2)𝛾𝑈𝐻𝐻𝑈(𝑡) − (𝜏1(1 − 𝑢3) + 𝜇 + 𝛿𝑑𝐻)𝐻𝐷(𝑡)] 

+𝑀𝐻𝑊[𝜏1(1 − 𝑢3)𝐻𝐷(𝑡) − ((1 − 𝑢3)𝜑 + 𝜇)𝐻𝑊(𝑡)] 

+𝑀𝐿𝑇𝐻 [((1 − 𝑢1) + (1 − 𝑢2))𝜆𝑇𝐻𝑆(𝑡) − (((1 − 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻 + 𝜇) 𝐿𝑇𝐻(𝑡) + 𝛼𝑇𝑅𝑇𝐻(𝑡)]      (6.4) 

+𝑀𝐴𝑇𝐻[((1 − 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻𝐿𝑇𝐻(𝑡) − (𝜇 + 𝜎1 + 𝛿𝐴𝑇𝐻)𝐴𝑇𝐻(𝑡)] 

+𝑀𝐿𝐻𝑇[(1 − 𝑢1) + (1 − 𝑢2)]𝜆𝐻𝑇𝑆(𝑡) − (((1 − 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇 + 𝜇)𝐿𝐻𝑇(𝑡)] 

+𝑀𝐴𝐻𝑇[((1 − 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇𝐿𝐻𝑇(𝑡) − (𝜇 + 𝛿𝐴𝐻𝑇)𝐴𝐻𝑇(𝑡)] 

+𝑀𝐿𝑇[((1 − 𝑢1) + (1 − 𝑢2))휀 𝜆2 𝑇𝑆(𝑡) − (𝜅𝑇 + 𝜇)𝐿𝑇(𝑡) + 𝜐𝑇𝑈(𝑡) + 𝜃1𝜌𝐹𝑇(𝑡) + 𝑟𝛼𝑅𝑇(𝑡)] 

+𝑀𝑇𝑈[((1 − 𝑢1) + (1 − 𝑢2))(1 − 휀2)𝜆𝑇𝑆(𝑡) + (1 − 𝜔2)𝜅𝑇𝐿𝑇(𝑡) + 𝜃2𝜌𝐹𝑇(𝑡) − (𝜐 + (1 − 𝑢2)𝛾𝑈𝑇 + 𝜇

+ 𝛿𝑈𝑇)𝑇𝑈(𝑡)] 
+𝑀𝑇𝐷[𝜔2𝜅𝑇𝐿𝑇(𝑡) + (1 − 𝑢2)𝛾𝑈𝑇𝑇𝑈(𝑡) + [1 − (𝜃1 + 𝜃2)]𝜌𝐹𝑇(𝑡) − (𝜎2 + (1 − 𝑢4)𝜏2 + 𝜇 + 𝛿𝑑𝑇)𝑇𝐷(𝑡)] 

+𝑀𝐹𝑇
[(1 − 𝑢4)(1 − 𝑞1)𝜏2𝑇𝐷(𝑡) + (1 − 𝑟)𝛼𝑅𝑇(𝑡) − (𝜌 + 𝜇 + 𝛿𝐹)𝐹𝑇(𝑡)] 

+𝑀𝑅𝑇
[(1 − 𝑢4)𝑞1𝜏2𝑇𝐷(𝑡) − (𝛼 + 𝜇 + 𝛿𝑅𝑇)𝑅𝑇(𝑡) + 𝜎2𝑇𝐷(𝑡)] 

+𝑀𝑅𝑇𝐻
[𝜎1𝐴𝑇𝐻(𝑡) − (𝛼𝑇 + 𝜇)𝑅𝑇𝐻(𝑡)] 

 
Theorem 3: Given an optimal control 𝑢1

∗, 𝑢2
∗, 𝑢3

∗, 𝑢4
∗ and solutions 
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𝑆∗, 𝐿𝐻

∗, 𝐻𝑈
∗, 𝐻𝐷

∗, 𝐻𝑊
∗, 𝐿𝑇𝐻

∗, 𝐴𝑇𝐻
∗, 𝐿𝐻𝑇

∗, 𝐴𝐻𝑇
∗, 𝐿𝑇

∗, 𝑇𝑈
∗, 𝑇𝐷

∗, 𝐹∗, 𝑅𝑇
∗, 𝑅𝑇𝐻

∗ of the corresponding state system 

(6.1) that minimizes the objective functional 𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4)over U, there exist  
 
Adjoint variables 
 
𝑀𝑆, 𝑀𝐿𝐻 , 𝑀𝐻𝑈 , 𝑀𝐻𝐷 , 𝑀𝐻𝑊 , 𝑀𝐿𝑇𝐻 , 𝑀𝐴𝑇𝐻 , 𝑀𝐿𝐻𝑇 , 𝑀𝐴𝐻𝑇 , 𝑀𝐿𝑇 , 𝑀𝑇𝑈 , 𝑀𝑇𝐷 , 𝑀𝐹𝑇 , 𝑀𝑅𝑇 , 𝑀𝑅𝑇𝐻 satisfying: 

−
𝑑𝑀𝑆

𝑑𝑡
= −𝑀𝑆[((1 − 𝑢1) + (1 − 𝑢2))(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + 𝜇] + 𝑀𝐿𝐻

((1 − 𝑢1) + (1 − 𝑢2))휀1𝜆𝐻 

+𝑀𝐻𝑈((1 − 𝑢1) + (1 − 𝑢2))(1 − 휀1)𝜆𝐻 +𝑀𝐿𝑇𝐻((1 − 𝑢1) + (1 − 𝑢2))𝜆𝑇𝐻 +𝑀𝐿𝐻𝑇((1 − 𝑢1) + (1 − 𝑢2))𝜆𝐻𝑇 

−
𝑑𝑀𝐿𝐻

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻 − (𝜅𝐻 + 𝜇)𝑀𝐿𝐻 +𝑀𝐻𝑈(1 − 𝜔1)𝜅𝐻 +𝑀𝐻𝐷𝜔1𝜅𝐻 

−
𝑑𝑀𝐻𝑈

𝑑𝑡
= 𝑎 −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝑈 −𝑀𝐻𝑈

(𝛾𝑈𝐻(1 − 𝑢2) + 𝜇 + 𝛿𝑈𝐻) + 𝑀𝐻𝐷
(1 − 𝑢3)𝛾𝑈𝐻 

−
𝑑𝑀𝐻𝐷

𝑑𝑡
= 𝑏 − 𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝑑𝐻 −𝑀𝐻𝐷(𝜏1(1 − 𝑢3) + 𝜇 + 𝛿𝑑𝐻) + 𝑀𝐻𝑊𝜏1(1 − 𝑢3) 

−
𝑑𝑀𝐻𝑊

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝑊 −𝑀𝐻𝑊

((1 − 𝑢3)𝜑 + 𝜇) +𝑀𝐿𝐻
(1 − 𝑢3)𝜑(6.5) 

−
𝑑𝑀𝐿𝑇𝐻

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇 −𝑀𝐿𝑇𝐻(((1 − 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻 + 𝜇) + 𝑀𝐴𝑇𝐻((1 − 𝑢3)

+ (1 − 𝑢4))𝜅𝑇𝐻 

−
𝑑𝑀𝐴𝑇𝐻
𝑑𝑡

= 𝑐 − 𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑇 −𝑀𝐴𝑇𝐻(𝜇 + 𝜎1 + 𝛿𝐴𝑇𝐻) + 𝑀𝑅𝑇𝐻𝜎1 

−
𝑑𝑀𝐿𝐻𝑇

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻 −𝑀𝐿𝐻𝑇

(((1 − 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇 + 𝜇) + 𝑀𝐴𝐻𝑇((1 − 𝑢3)

+ (1 − 𝑢4))𝜅𝐻𝑇 

−
𝑑𝑀𝐴𝐻𝑇
𝑑𝑡

= 𝑑 − 𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝐻 −𝑀𝐴𝐻𝑇(𝜇 + 𝛿𝐴𝐻𝑇) 

−
𝑑𝑀𝐿𝑇

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇 −𝑀𝐿𝑇(𝜅𝑇 + 𝜇) +𝑀𝑇𝑈(1 − 𝜔2)𝜅𝑇 +𝑀𝑇𝐷𝜔2𝜅𝑇 

−
𝑑𝑀𝑇𝑈

𝑑𝑡
= 𝑒 − 𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑈 −𝑀𝑇𝑈(𝜐 + (1 − 𝑢2)𝛾𝑈𝑇 + 𝜇 + 𝛿𝑈𝑇) + 𝑀𝑇𝐷(1 − 𝑢2)𝛾𝑈𝑇 

−
𝑑𝑀𝑇𝐷

𝑑𝑡
= 𝑓 − 𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑑𝑇 −𝑀𝑇𝐷(𝜎2 + (1 − 𝑢4)𝜏2 + 𝜇 + 𝛿𝑑𝑇) + 𝑀𝐹𝑇((1 − 𝑢4)(1

− 𝑞1)𝜏2) 
+𝑀𝑅𝑇(1 − 𝑢4)𝑞1𝜏2 

−
𝑑𝑀𝐹𝑇

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇 −𝑀𝐹𝑇(𝜌 + 𝜇 + 𝛿𝐹) + 𝑀𝑇𝐷

[1 − (𝜃1 + 𝜃2)]𝜌 + 𝑀𝑇𝑈𝜃2𝜌

+ 𝑀𝐿𝑇𝜃1𝜌 

−
𝑑𝑀𝑅𝑇

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑅𝑇 −𝑀𝑅𝑇

(𝛼 + 𝜇 + 𝛿𝑅𝑇) + 𝑟𝛼𝑀𝐿𝑇
 

−
𝑑𝑀𝑅𝑇𝐻

𝑑𝑡
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑅𝑇 −𝑀𝑅𝑇𝐻(𝛼𝑇 + 𝜇) + 𝑀𝑙𝑇𝐻𝛼𝑇

0)()()()()()()(

)()()()()()()()(

=======

========

fRfRfFfTfTfLfA

fLfAfLfHfHfHfLfS
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tranversality conditions with the controls 

*

4

*

3

*

2

*

1 ,, uanduuu
 satisfying the optimality condition; 
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𝑢1
∗ = 𝑚𝑎𝑥

{
 
 

 
 

0,𝑚𝑖𝑛

(

 
 
1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻
+ (1 − 휀1)𝑀𝐻𝑈

)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1

)

 
 

}
 
 

 
 

 

𝑢2
∗ = 𝑚𝑎𝑥

{
  
 

  
 

0,𝑚𝑖𝑛

(

 
 
 
 

1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻

+ 𝜆𝐻𝑇𝑀𝐿𝐻𝑇
+ (휀2𝑀𝐿𝑇

+ (1 − 휀2)𝑀𝑇𝑈
)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2

)

 
 
 
 

}
  
 

  
 

               (6.6) 

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

𝜑𝐻𝑊
∗(𝑡)[𝑀𝐿𝐻 −𝑀𝐻𝑊] + 𝜅𝑇𝐻𝐿𝑇𝐻

∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻] + 𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇]

2𝐴3
)} 

𝑢4
∗ = 𝑚𝑎𝑥

{
 
 

 
 

0,𝑚𝑖𝑛

(

 
 
1,

𝜏2𝑇𝐷
∗(𝑡)[𝑀𝑇𝐷−𝑀𝐹𝑇(1−𝑞1)+𝑞1𝑀𝑅𝑇]+𝜅𝑇𝐻𝐿𝑇𝐻

∗(𝑡)[𝑀𝐴𝑇𝐻−𝑀𝐿𝑇𝐻]

+𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇−𝑀𝐿𝐻𝑇]

2𝐴4

)

 
 

}
 
 

 
 

Proof: 

 
 Following Pontryagin’s maximum principle, we obtained the standard form of the adjoint equations 
and tranversality conditions by differentiating the Hamiltonian function with respect to state 
𝑀𝑆, 𝑀𝐿𝐻 , 𝑀𝐻𝑈 , 𝑀𝐻𝐷 , 𝑀𝐻𝑊 , 𝑀𝐿𝑇𝐻 , 𝑀𝐴𝑇𝐻 , 𝑀𝐿𝐻𝑇 , 𝑀𝐴𝐻𝑇 , 𝑀𝐿𝑇 , 𝑀𝑇𝑈 , 𝑀𝑇𝐷 , 𝑀𝐹𝑇 , 𝑀𝑅𝑇𝑎𝑛𝑑𝑀𝑅𝑇𝐻  respectively which is 

evaluated at the optimal control function 𝑢1, 𝑢2, 𝑢3, 𝑢4 
 
So we re-write the adjoint system as follows: 
 

−
𝑑𝑀𝑆

𝑑𝑡
=
𝜕𝐻

𝜕𝑆
= −𝑀𝑆[((1 − 𝑢1) + (1 − 𝑢2))(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + 𝜇] + 𝑀𝐿𝐻((1 − 𝑢1) + (1 − 𝑢2))휀1𝜆𝐻 

+𝑀𝐻𝑈((1 − 𝑢1) + (1 − 𝑢2))(1 − 휀1)𝜆𝐻 +𝑀𝐿𝑇𝐻((1 − 𝑢1) + (1 − 𝑢2))𝜆𝑇𝐻 +𝑀𝐿𝐻𝑇((1 − 𝑢1) + (1 − 𝑢2))𝜆𝐻𝑇 

−
𝑑𝑀𝐿𝐻

𝑑𝑡
=
𝜕𝐻

𝜕𝐿𝐻
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻 − (𝜅𝐻 + 𝜇)𝑀𝐿𝐻 +𝑀𝐻𝑈(1 − 𝜔1)𝜅𝐻 +𝑀𝐻𝐷𝜔1𝜅𝐻 

−
𝑑𝑀𝐻𝑈

𝑑𝑡
=
𝜕𝐻

𝜕𝐻𝑈
= 𝑎 −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝑈 −𝑀𝐻𝑈(𝛾𝑈𝐻(1 − 𝑢2) + 𝜇 + 𝛿𝑈𝐻) + 𝑀𝐻𝐷(1

− 𝑢3)𝛾𝑈𝐻 

−
𝑑𝑀𝐻𝐷

𝑑𝑡
=
𝜕𝐻

𝜕𝐻𝐷
= 𝑏 −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝑑𝐻 −𝑀𝐻𝐷

(𝜏1(1 − 𝑢3) + 𝜇 + 𝛿𝑑𝐻) + 𝑀𝐻𝑊
𝜏1(1 − 𝑢3) 

−
𝑑𝑀𝐻𝑊

𝑑𝑡
=
𝜕𝐻

𝜕𝐻𝑊
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝑊 −𝑀𝐻𝑊((1 − 𝑢3)𝜑 + 𝜇) + 𝑀𝐿𝐻(1 − 𝑢3)𝜑 

−
𝑑𝑀𝐿𝑇𝐻

𝑑𝑡
=

𝜕𝐻

𝜕𝐿𝑇𝐻
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇 −𝑀𝐿𝑇𝐻(((1 − 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻 + 𝜇) + 𝑀𝐴𝑇𝐻((1

− 𝑢3) + (1 − 𝑢4))𝜅𝑇𝐻 

−
𝑑𝑀𝐴𝑇𝐻
𝑑𝑡

=
𝜕𝐻

𝜕𝐴𝑇𝐻
= 𝑐 − 𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑇 −𝑀𝐴𝑇𝐻(𝜇 + 𝜎1 + 𝛿𝐴𝑇𝐻) + 𝑀𝑅𝑇𝐻𝜎1 

−
𝑑𝑀𝐿𝐻𝑇

𝑑𝑡
=

𝜕𝐻

𝜕𝐿𝐻𝑇
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻 −𝑀𝐿𝐻𝑇(((1 − 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇 + 𝜇) + 𝑀𝐴𝐻𝑇((1

− 𝑢3) + (1 − 𝑢4))𝜅𝐻𝑇 

−
𝑑𝑀𝐴𝐻𝑇
𝑑𝑡

=
𝜕𝐻

𝜕𝐴𝐻𝑇
= 𝑑 −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝐻𝜂𝐻 −𝑀𝐴𝐻𝑇(𝜇 + 𝛿𝐴𝐻𝑇)(6.7) 

−
𝑑𝑀𝐿𝑇

𝑑𝑡
=
𝜕𝐻

𝜕𝐿𝑇
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇 −𝑀𝐿𝑇

(𝜅𝑇 + 𝜇) + 𝑀𝑇𝑈
(1 − 𝜔2)𝜅𝑇 +𝑀𝑇𝐷

𝜔2𝜅𝑇 
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−
𝑑𝑀𝑇𝑈

𝑑𝑡
=
𝜕𝐻

𝜕𝑇𝑈
= 𝑒 −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑈 −𝑀𝑇𝑈

(𝜐 + (1 − 𝑢2)𝛾𝑈𝑇 + 𝜇 + 𝛿𝑈𝑇) + 𝑀𝑇𝐷
(1

− 𝑢2)𝛾𝑈𝑇  

−
𝑑𝑀𝑇𝐷

𝑑𝑡
=
𝜕𝐻

𝜕𝑇𝐷
= 𝑓 −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑑𝑇 −𝑀𝑇𝐷(𝜎2 + (1 − 𝑢4)𝜏2 + 𝜇 + 𝛿𝑑𝑇) + 𝑀𝐹𝑇((1

− 𝑢4)(1 − 𝑞1)𝜏2) 
+𝑀𝑅𝑇(1 − 𝑢4)𝑞1𝜏2 

−
𝑑𝑀𝐹𝑇

𝑑𝑡
=
𝜕𝐻

𝜕𝐹𝑇
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇 −𝑀𝐹𝑇

(𝜌 + 𝜇 + 𝛿𝐹) + 𝑀𝑇𝐷
[1 − (𝜃1 + 𝜃2)]𝜌 + 𝑀𝑇𝑈

𝜃2𝜌

+ 𝑀𝐿𝑇
𝜃1𝜌 

−
𝑑𝑀𝑅𝑇

𝑑𝑡
=
𝜕𝐻

𝜕𝑅𝑇
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑅𝑇 −𝑀𝑅𝑇(𝛼 + 𝜇 + 𝛿𝑅𝑇) + 𝑟𝛼𝑀𝐿𝑇 

−
𝑑𝑀𝑅𝑇𝐻

𝑑𝑡
=

𝜕𝐻

𝜕𝑅𝑇𝐻
= −𝑀𝑆((1 − 𝑢1) + (1 − 𝑢2))𝑆(𝑡)𝛽𝑇𝜂𝑅𝑇 −𝑀𝑅𝑇𝐻(𝛼𝑇 + 𝜇) + 𝑀𝑙𝑇𝐻𝛼𝑇 With transverlity 

conditions 

0)()()()()()()()(

(6.8))()()()()()()(

========

=======

fRfRfFfTfTfLfAfL

fAfLfHfHfHfLfS

tMtMtMtMtMtMtMtM

tMtMtMtMtMtMtM

THTTDUTHTHT
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Solving 

,00,0,0
4321

====
du

dH
and

du

dH

du

dH

du

dH

 and evaluating at the optimal control on the 

interior of the control set, where 
10  iu

 for 
4,3,2,1=i

 we obtain; 

0 =
𝜕𝐻

𝜕𝑢1
= (

2𝐴1𝑢1 + [(𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) − (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
−𝜆𝑇𝐻𝑀𝐿𝑇𝐻 − 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 − (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)
) 

⇒ 2𝐴1𝑢1 = (
[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)
) 

0 =
𝜕𝐻

𝜕𝑢2
= (

2𝐴2𝑢2 + [(𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) − (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
−𝜆𝑇𝐻𝑀𝐿𝑇𝐻 − 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 − (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

−𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) − 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

)                               (6.9) 

⇒ 2𝐴2𝑢2 = (

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

) 

0 =
𝜕𝐻

𝜕𝑢3
= (

2𝐴3𝑢3 − 𝜑𝐻𝑊
∗(𝑡)[𝑀𝐿𝐻 −𝑀𝐻𝑊] − 𝜅𝑇𝐻𝐿𝑇𝐻

∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻]

−𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]
) 

⇒ 2𝐴3𝑢3 = (
𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻 −𝑀𝐻𝑊] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻]

+𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]
) 

0 =
𝜕𝐻

𝜕𝑢4
= (

2𝐴4𝑢4 − 𝜏2𝑇𝐷
∗(𝑡)[𝑀𝑇𝐷 −𝑀𝐹𝑇(1 − 𝑞1) + 𝑞1𝑀𝑅𝑇] − 𝜅𝑇𝐻𝐿𝑇𝐻

∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻]

−𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]
) 

⇒ 2𝐴4𝑢4 = (
𝜏2𝑇𝐷

∗(𝑡)[𝑀𝑇𝐷 −𝑀𝐹𝑇(1 − 𝑞1) + 𝑞1𝑀𝑅𝑇] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻]

+𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]
) 

 
Therefore:  
 

𝑢1
∗ = 𝑚𝑎𝑥

{
 
 

 
 

0,𝑚𝑖𝑛

(

 
 
1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻
+ (1 − 휀1)𝑀𝐻𝑈

)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻

+ 𝜆𝐻𝑇𝑀𝐿𝐻𝑇
+ (휀2𝑀𝐿𝑇

+ (1 − 휀2)𝑀𝑇𝑈
)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1

)

 
 

}
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𝑢2
∗ = 𝑚𝑎𝑥

{
 
 

 
 

0,𝑚𝑖𝑛

(

 
 
1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻
+ (1 − 휀1)𝑀𝐻𝑈

)𝜆𝐻 + 𝜆𝑇𝐻𝑀𝐿𝑇𝐻
+ 𝜆𝐻𝑇𝑀𝐿𝐻𝑇

+(휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆
∗(𝑡) + 𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)

∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)
∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)

∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)
∗)

2𝐴2

)

 
 

}
 
 

 
 

𝑢3
∗

= 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,
𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻
−𝑀𝐻𝑊

] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻

] + 𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]

2𝐴3
)} 

𝑢4
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

𝜏2𝑇𝐷
∗(𝑡)[𝑀𝑇𝐷−𝑀𝐹𝑇(1−𝑞1)+𝑞1𝑀𝑅𝑇]+𝜅𝑇𝐻𝐿𝑇𝐻

∗(𝑡)[𝑀𝐴𝑇𝐻−𝑀𝐿𝑇𝐻]+𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇−𝑀𝐿𝐻𝑇]

2𝐴4
)}            

By standard control arguments involving the bounds on the control variables, we have 
 
 

𝑢1
∗ =

{
  
 

  
 
[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻

+ (1 − 휀1)𝑀𝐻𝑈
)𝜆𝐻

+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆
∗(𝑡)

2𝐴1
, 𝑖𝑓

0 <

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻

+ 𝜆𝐻𝑇𝑀𝐿𝐻𝑇
+ (휀2𝑀𝐿𝑇

+ (1 − 휀2)𝑀𝑇𝑈
)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1
< 1,

 

0𝑖𝑓

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1
≤ 0 

1𝑖𝑓

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1
≥ 1 

Similarly: 
 

𝑢2
∗ =

{
 
 
 
 

 
 
 
 
[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2
, 𝑖𝑓

0 <

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2
< 1,

 

0𝑖𝑓

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2
≤ 0 

1𝑖𝑓

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻
+ (1 − 휀1)𝑀𝐻𝑈

)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2
≥ 1 

 

𝑢3
∗ =

{
 
 

 
 𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻 −𝑀𝐻𝑊] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻] + 𝜅𝐻𝑇𝐿𝐻𝑇

∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇]

2𝐴3
, 𝑖𝑓

0 <
𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻
−𝑀𝐻𝑊

] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻

] + 𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]

2𝐴3
< 1,

 

0𝑖𝑓
𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻 −𝑀𝐻𝑊] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻] + 𝜅𝐻𝑇𝐿𝐻𝑇

∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇]

2𝐴3
≤ 0 

1𝑖𝑓
𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻 −𝑀𝐻𝑊] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻] + 𝜅𝐻𝑇𝐿𝐻𝑇

∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇]

2𝐴3
≥ 1 
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Also: 
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−+

−++−−


−+

−++−−


















−+

−++−−



−+

−++−−

=

A

MMtL

MMtLMqqMMtT

if

A

MMtL

MMtLMqqMMtT

if

A

MMtL

MMtLMqqMMtT

if
A

MMtL

MMtLMqqMMtT

u

HTHT

THTHTTD

HTHT

THTHTTD

HTHT

THTHTTD

HTHT

THTHTTD

LAHTHT

LATHTHRFTD

LAHTHT

LATHTHRFTD

LAHTHT

LATHTHRFTD

LAHTHT

LATHTHRFTD

















 
 
This completes the proof.  
The optimality system consists of the state system coupled with the adjoint system with the initial and 
tranversality conditions together with the characterization of the optimal control pair. 
 
Substituting (6.6) into (6.1) we obtained the following optimality system; 
 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 − (

(

 
 
1 −𝑚𝑎𝑥

{
 
 

 
 

0,𝑚𝑖𝑛

(

 
 
1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1
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}
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{
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[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2

)

 
 
 
 

}
  
 

  
 

)

 
 
 
 

)(𝜆𝐻 − 𝜆𝑇

− 𝜆𝑇𝐻 − 𝜆𝐻𝑇)𝑆(𝑡) 
−𝜇𝑆(𝑡) 
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𝑑𝑡
= (
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{
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1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻
+ (1 − 휀1)𝑀𝐻𝑈

)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻

+ 𝜆𝐻𝑇𝑀𝐿𝐻𝑇
+ (휀2𝑀𝐿𝑇

+ (1 − 휀2)𝑀𝑇𝑈
)𝜆𝑇]𝑆

∗(𝑡)

2𝐴1

)

 
 

}
 
 

 
 

)

 
 

 

+

(

 
 
 
 

1 −𝑚𝑎𝑥

{
  
 

  
 

0,𝑚𝑖𝑛

(

 
 
 
 

1,

[(−𝑀𝑆)(𝜆𝐻 − 𝜆𝑇 − 𝜆𝑇𝐻 − 𝜆𝐻𝑇) + (휀1𝑀𝐿𝐻 + (1 − 휀1)𝑀𝐻𝑈)𝜆𝐻
+𝜆𝑇𝐻𝑀𝐿𝑇𝐻 + 𝜆𝐻𝑇𝑀𝐿𝐻𝑇 + (휀2𝑀𝐿𝑇 + (1 − 휀2)𝑀𝑇𝑈)𝜆𝑇]𝑆

∗(𝑡)

+𝛾𝑈𝐻(𝑀𝐻𝐷𝐻𝐷(𝑡)
∗ −𝑀𝐻𝑈𝐻𝑈(𝑡)

∗) + 𝛾𝑈𝑇(𝑀𝑇𝐷𝑇𝐷(𝑡)
∗ −𝑀𝑇𝑈𝑇𝑈(𝑡)

∗)

2𝐴2

)

 
 
 
 

}
  
 

  
 

)

 
 
 
 

)휀1𝜆𝐻𝑆(𝑡)

− (𝜅𝐻 + 𝜇)𝐿𝐻 

+(1

− 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,
𝜑𝐻𝑊

∗(𝑡)[𝑀𝐿𝐻
−𝑀𝐻𝑊

] + 𝜅𝑇𝐻𝐿𝑇𝐻
∗(𝑡)[𝑀𝐴𝑇𝐻 −𝑀𝐿𝑇𝐻

] + 𝜅𝐻𝑇𝐿𝐻𝑇
∗(𝑡)[𝑀𝐴𝐻𝑇 −𝑀𝐿𝐻𝑇

]

2𝐴3
)})𝜑𝐻𝑊(𝑡) 
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5. NUMERICAL SIMULATION 
 
In order to authenticate the theoretical calculations of the model, the numerical simulations of the 
model (3.3) are carried out by differential transformation method, using a set of estimated parameter 
values given in Table 1. 
 

Table 1. Parameter Values used in Numerical Simulations 
 

Parameters Value  Sources 
  2000 Assumed 

21,
 

0.20619, 0.20619  Assumed 


 0.02 [9] 

21,
 

0.7,0.7 [30] 

TH  ,
 

0.2522,0.2522 [30] 

21,
    

0.2,0.3 [30] 

UTUH  ,
 

0.2,0.2 Assumed 


  

0.7 [34] 

TH  ,
  

0.1,0.1 [30] 

dHUH  ,
 

0.3,0.1 [30] 

WdHU  ,,
  

0.001, 0.001, 0.001 [30] 

21,
  

0.1,0.1 [30] 


  0.85 [10] 

THHT  ,
  

0.2522, 0.2522 Assumed 

32 ,
  

0.7, 0.7 [11] 

   0.2 Assumed 
   0.5 [30] 
R 0.8 [11] 


  0.1 Assumed 

RTFdTUT  ,,,
 

0.3, 0.1, 0.1, 0.3 [11] 

21, 
 

0.2 [17] 
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Parameters Value  Sources 

1q
  

0.7 [34] 

RTFTdTU  ,,,
  

0.001, 0.001, 0.001, 0.001 [30] 

 

6. RESULTS AND DISCUSSION  
 
From this research, fifteen (15) new non linear differential equations for gaining more insight on the 
effect of epidemiological features on the dynamical spread of HIV-TB co-infection have been 
obtained. Numerical simulation of the model was carried out by MAPLE software, using differential 
transformation method in order to determine the dynamical spread pattern of the disease in the 
community and to determine which of the diseases should be treated first or the two simultaneously.  
 
The results obtained from numerical simulations using differential transformation method are 
presented in the figures. 
 

 

Fig. 2. Plots of susceptible individuals against time t at 
2.0==== THTTHH 

 
 

 
 

Fig. 3. Plots of ATH& RTH against time t, in the presence of treatment 
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Fig. 4. Plots of HIV infected individuals against time t 
 

 
 

Fig. 5. Plots of TB infected individuals against time t 
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Fig. 6. Plots of HIV & TB, HIV and TB infected individuals against time t 
 

6.1 Discussion 
 
This research deals with the formulation and 
analysis of new robust mathematical model to 
have better understanding of optimal control on 
the dynamical spread of HIV-TB co-infection and 
to have better control strategies of the two 
diseases.  
  
Fig. 2 Shows the effect of effective contact rates 
on susceptible individuals. It is shown from the 

graph that, effective contact rate ( H ) has 
pronounced effect on the susceptible individuals 

than effective contact rate ( T ), which means 
that, the rate at which HIV infection reduces the 
susceptible population is higher than the TB 
disease. Fig. 3 Shows the importance of timely 
treatment on HIV and TB individuals, pronounce 
effect of treatment was shown on active TB and 
HIV individuals when it is almost one and half 
year of treatment, the treatment reduces the 
population of active TB and HIV from 1000 to 
840 and increases recovered TB and HIV 
individuals from 750 to 870.Fig. 4 Shows that 
HIV infected individuals reduced when there is 
control measure compared to when there is no 
control. It reduced HIV infected population from 
4000 to 2580 within two (2) years of control 
intervention. Fig. 5 Shows the effect of control 

4U
on TB infected individuals, the control 

reduces the infected individuals from 4000 to 

2600 when
99.04 =U

 within two (2) years of 
control intervention. Fig. 6. Compared when HIV 
is first treated, when TB is first treated and when 
the two diseases are treated simultaneously. The 
simultaneous treatment of the disease yields 
better results. It shows less HIV-TB infected 
individuals when both are treated jointly, 
compared to when they are treated separately. 
 

Optimal control analysis was carried out for 
different control strategies and the result shows 
that simultaneous treatment of HIV-TB disease 
together with campaign, given and boosting of 
the immune by using necessary drugs yield a 
better result compared to when the two diseases 
are treated separately. 
 

Effective contact rate of infected individuals 
among susceptible individuals needs to be 
reduced to guarantee disease free environment, 
the disease becomes more endemic due to the 
increment in effective contact rate, most 

especially H and HT
. The system becomes 

unstable whenever H and
3.0T . It was 

also shown that TB fuels the progression of HIV 
into full blown AIDS. Likewise HIV increases 
latent TB to active TB in the absence of 
treatment, it was shown that in the presence of 
treatment, the rate of active TB and HIV 



 
 
 
 

Adesola et al.; Asian Res. J. Curr. Sci., vol. 6, no. 1, pp. 23-53, 2024; Article no.ARJOCS.1467 
 
 

 
52 

 

decreases as the treatment increases and 
consequently, TB and HIV recovery cases 
increase rapidly.  
 

7. CONCLUSION 
 
In conclusion, epidemiological features such as 
detection of infected undetected individuals, 
treatment of infected individuals, minimizing the 
effective contact rate and boosting of natural 
immunity play vital roles in the control of the 
spread of HIV- TB co-infection. 
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