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ABSTRACT 
 
The presence of long memory in time series is characterized by an autocorrelation function that 
decreases slowly or hyperbolically. The most suitable model for capturing this phenomenon is the 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, which is particularly 
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useful for modeling historical prices in financial data analysis. This research aims to assess 
ARFIMA modeling of long memory processes using the Geweke and Porter-Hudak (GPH) 
parameter estimation method. The model was applied to the monthly prices of Groundnut in Andhra 
Pradesh, from the period January 2002 to December 2023. The best-fitted model identified was 
ARFIMA (1,0.43,1), which demonstrates a strong short-term forecasting ability, closely matching 
actual prices with lowest AIC, MSE and RMSE values when compared to SARIMA(1,1,3)(0,1,2)12 
model. The study concluded that the ARFIMA model forecasted better than the SARIMA model for 
forecasting of Groundnut prices of Andhra Pradesh. 
 

 

Keywords:  Autoregressive fractionally integrated moving average; Geweke and Porter Hudak 
method; groundnut; long memory; prices. 

 

1. INTRODUCTION 
 
“The Groundnut (Arachis hypogaea L.) is a 
leguminous plant extensively cultivated in tropical 
and subtropical regions between 40°N and 40°S 
latitudes”. (www.fao.org/fileadmin/user_upload 
/inpho/docs/Post_Harvest_Compendium-
Groundnut. =pdf) [1].  “Groundnut renowned for 
its high oil content and edible seeds, it ranks as 
the fourth most important source of edible oil and 
the third most significant source of vegetable 
protein globally. In India, it is not only a vital 
oilseed crop but also a significant agricultural 
export commodity”. (Groundnut outlook reports of 
Andhra Pradesh, January to December 2022, 
ANGRAU, Lam, Guntur). “Globally, groundnut is 
cultivated over 327 lakh hectares, producing 539 
lakh tonnes with productivity of 1648 kg per 
hectare” (FAOSTAT, 2021). “India, with an 
annual all season coverage of 54.2 lakh 
hectares, ranks first in Groundnut cultivation area 
and is the second largest producer, achieving 
101 lakh tonnes with a productivity of 1863 
kilograms per hectare in 2021-22” 
(agricoop.nic.in) “In India, Andhra Pradesh 
contributes an area of 5.94 lakh hectares, 
production 6.01 lakh tonnes and productivity 
1012 kg/ha of during 2022-23 of groundnut”. 
(des.ap.gov.in). Area and production Scenario of 
groundnut in India over several decades were 
depicted in Fig. 1. 
 
“In addition to production, the prices of 
Groundnut were also fluctuated rapidly and were 
unpredictable, largely influenced by various 
factors that introduce significant risk and 
uncertainty into price modeling and forecasting. 
Agricultural commodity prices are vital for 
consumers' access to food, as they directly 
impact real income, especially among the poor 
who allocate a large portion of their income to 
food” [2,3]. “Given the critical role of food prices 
in combating hunger, policymakers require 
reliable forecasts of expected food prices to 

effectively manage food security. So, forecasting 
agricultural commodity prices is a crucial aspect 
in agricultural sector as it allows farmers, traders, 
and policymakers to make informed decisions 
regarding production, marketing, and policy 
implementation [4,5]. The concept of long 
memory processes has evolved to provide 
substantial evidence for describing phenomena 
in time series data, particularly in the fields of 
finance and macroeconomics. The presence of 
long memory can be identified empirically by 
examining the persistent autocorrelations within 
observed time series data. This persistence is 
indicated by the stationarity of the data over time, 
characterized by autocorrelations that decrease 
slowly or hyperbolically, often associated with a 
class of autoregressive moving average (ARMA) 
models” [6]. 
 
The most notable definition of a long memory 
process was provided by Haslett and Raftery [7], 
who stated that “data exhibiting long memory are 
characterized by an autocorrelation function that 
does not decline exponentially, but rather 
decreases slowly or hyperbolically”. The concept 
of long memory in time series was initially 
introduced by Hurst [8] through various data sets. 
Subsequently, Granger and Joyeux [6] and 
Hosking [9] developed a model suited for long 
memory processes, known as the Autoregressive 
Fractionally Integrated Moving Average 
(ARFIMA) model. This model effectively explains 
time series by incorporating both short memory 
and long memory components, with the 
differencing parameter represented as a real 
number. The study of long memory processes, 
particularly in relation to the ARFIMA model, had 
been extensively developed in data analysis 
across both time and space. One of its most 
compelling features was its suitability for long-
term predictions and assessing the effects of 
shocks within conventional macroeconomic 
frameworks. In this study, to demonstrate the 
long memory process using ARFIMA models by 

http://www.fao.org/fileadmin/user_upload%20/inpho/docs/Post_Harvest_Compendium-Groundnut.%20=pdf
http://www.fao.org/fileadmin/user_upload%20/inpho/docs/Post_Harvest_Compendium-Groundnut.%20=pdf
http://www.fao.org/fileadmin/user_upload%20/inpho/docs/Post_Harvest_Compendium-Groundnut.%20=pdf
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Fig. 1. Area, Production and productivity of Groundnut in India 
 
employing the Geweke and Porter-Hudak (GPH) 
differencing parameter estimation method on 
historical data of Groundnut monthly prices of 
Andhra Pradesh. The ARFIMA model was used 
in this study because its capability to directly 
estimate the differencing parameter, eliminating 
the need to initially know the order values of the 
autoregressive and moving average components 
[10-12]. The study also compared the forecasting 
performance of SARIMA model with ARFIMA 
models.  
 

2. METHODOLOGY 
 

2.1 Data 
 

Groundnut monthly prices of Andhra Pradesh 
data was collected from Agricultural Market 
Intelligence Committee (AMIC), Lam farm, 
Guntur from the period January 2002-December 
2023.The collected data was divided into training 
and a testing datasets. First 384 observations 
were used as a training dataset for model 
development and last 12 observations were used 
as testing dataset for model validation purpose. 

 

2.2 Descriptive Statistics 
 

The summary statistics viz., mean median, 
standard deviation, skewness, kurtosis, minimum 
and maximum were used to study the behaviour 
of the monthly prices of Groundnut in Andhra 
Pradesh. 

2.3 ARIMA Model 
 
The Autoregressive Integrated Moving Average 
(ARIMA) methodology developed by Box-Jenkins 
is the most widely used model for analysing time 
series data. The Box-Jenkins model-building 
process is used to fit a blended ARIMA model to 
provided data. The basic purpose of fitting the 
ARIMA model is to accurately characterise and 
forecast the time series stochastic process [13]. 
 

Initially, George Box and Gwilym Jenkins 
conducted substantial research on ARIMA 
models, and their names were frequently 
associated with the broad ARIMA method used 
in time series analysis, forecasting, and control. 
The two forms of stochastic processes are 
stationary and non-stationary. The ARIMA  
model can only be used with stationary               
data [14]. 
 

2.4 Stationarity and Non-stationarity 
 

A process that generates data in equilibrium 
around a constant value and has a constant 
variance around the mean throughout time is 
referred to as “stationary.” If the means shift over 
time and the variance is not roughly constant 
both mean and variance, the series is said to be 
non-stationary. To build the ARIMA model the 
series should be stationary in nature. If the 
original series is not stationary then it has to 
make stationary by differencing [15,16].  
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2.5 Autoregressive (AR) Model 
 
An observed time series 𝑌𝑡  can be elucidate by 
linear function of its previous observation,  𝑌𝑡−1 

and some unexplainable random error 휀𝑡.   Let us 

consider equally spaced time series 𝑌𝑡, 𝑌𝑡−1, 𝑌𝑡−2 

…, over an equal period of time say t, t-1, t-2, …, 
then 𝑌𝑡 can be defined as; 
 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 휀𝑡      (1)

  
If we represent the series in Backshift operator 
format, then it becomes 
 

∅(𝐵) = 1 − ∅1(𝐵) − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝       (2) 

 
Where, B is the backshift 𝐵𝑌𝑡 = 𝑌𝑡−1 then the AR 

model can be written as ∅(𝐵)𝑌𝑡 = 휀𝑡.  
 

2.6 Moving Average (MA) Model 
 
Another important model of great practical utility 
in the frame work of time series is finite moving 
average model.  The MA (q) model is defined as; 
 

𝑌𝑡 = 휀𝑡−𝜃1휀𝑡−1−𝜃2휀𝑡−2 − ⋯ −𝜃𝑞휀𝑡−𝑞          (3) 

 
In terms of backshift operator, the MA model of 
order q is given as follows;  
 

𝜃(𝐵) = 1 − 𝜃1(𝐵) − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞            (4) 

 
Where B is the backshift operator and the 
moving average model can be expresses as; 
 

  𝑌𝑡 = 𝜃(𝐵)휀𝑡                (5) 

 
2.7 Autoregressive Moving Average 

(ARMA) model 
 
In order to obtain the higher efficiency and 
greater flexibility in modeling we combine both 
autoregressive and moving average processes 
together. These models are called as "mixed 
models" and are represented as ARMA (p,q) 
models 
 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 +

휀𝑡−𝜃1휀𝑡−1−𝜃2휀𝑡−2 − ⋯ −𝜃𝑞휀𝑡−𝑞                   (6)

  
 
Generally, in Backshift operator it is expressed 
as follows; 
 

∅(𝐵)𝑌𝑡 = 𝜃(𝐵)휀𝑡               (7)
   

2.8 Autoregressive Integrated Moving 
Average (ARIMA) model 

 
ARIMA is one of the most traditional methods of 
non-stationary time series analysis. In contrast to 
the regression models, the ARIMA model allows 
to explain by its past, or lagged values and 
stochastic error terms. ARIMA modes are also 
called as mixed family of models. Though, the 
mixed models make forecasting process more 
complicated, but these models yield accurate 
forecasts. The pure models mean, the models 
which contains only AR or MA components, but 
not both. The term integration (I) is the reverse 
process of differencing, to produce the forecast. 
An ARIMA model is represented as ARIMA (p d 
q). An ARIMA model is expressed as follows; 
 

∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)휀𝑡                       (8) 
 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 +

휀𝑡−𝜃1휀𝑡−1−𝜃2휀𝑡−2 − ⋯ −𝜃𝑞휀𝑡−𝑞           (9) 

 
𝑌𝑡  is the time series, ∅𝑖 and θj are model 
parameters,   휀𝑡  is random error, p is number of 
autoregressive terms, q is number of moving 
terms and B is the backshift operator such that, 
𝐵𝑌𝑡 = 𝑌𝑡−1 [10], Brockwell and Davis, 1996). 
  
 The four-stage univariate Box Jenkins 
procedure is summarized schematically in Fig. 2. 
 
The main stages in setting up a Box-Jenkins 
forecasting model are described below: 
 

2.9 Identification  
 
The autocorrelation function (ACF) and partial 
autocorrelation function (PACF) are two 
graphical devices to measure the correlation 
between the observations within a single data 
series and they give an idea about the patterns 
and relationship in the available data. As the time 
series under study is a particular realization of 
the process, the theoretical ACF and PACF must 
resemble the estimated ACF and PACF of the 
data. 
 

2.10 Estimation of Parameters  
 
At the estimation stage, coefficients of the 
identified models are estimated using method of 
least squares or maximum likelihood estimation 
methods are used to estimate the parameters. 
Stationarity and invertibility are checked for the 
coefficient obtained and at the same time 
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Fig. 2. Flow chart of Box-Jenkins Methodology 
 

Table 1. Pattern of ACF and PACF for identification of AR, MA and ARMA process 
 

Process ACF PACF 

AR Decays towards zero Cut off to zero (lag length of last spike is the 
order of the process) 

MA Cut off to zero (lag length of last spike is 
the order of the process) 

Decays towards zero 

ARMA Tails off towards zero Tails off towards zero 

 
diagnostic checking is done in order to know 
whether the model fit the data satisfactorily or 
not. The importance of the estimation coefficients 
is measured in terms of the statistical 
significance. 
 

2.11 Diagnostic Checking 
 

Different models can be obtained for various 
combinations of AR and MA individually and 
collectively. The best model is obtained with 
following diagnostics. 
 
(a) Low Akaike Information Criteria (AIC) 
 
AIC is given by (-2 log L + 2m) where m = p + q + 
P + Q and L is the likelihood function. Since -2log 
L is approximately equal to {n (1+log 2𝜋) + n log 

𝜎2} where 𝜎2 is the model MSE. Thus, AIC can 

be written as AIC = {n (1+log 2𝜋) + n log 𝜎2 +
2m} and because first term in this equation is 
constant, it is usually omitted while comparing 
between models. The model having lowest AIC is 
considered as the best model. 
 

2.12 Bayesian Information Criterion  
 

The BIC criterion is defined as:  
 

BIC = n k / n   𝑅𝑠𝑠

𝑛
                   (10) 

Where k = Number of regressors (including the 
intercept) and ‘n’ is the number of observations.  
 
BIC imposes a harsher penalty than AIC, the 
lower the value of BIC, better is the model. 
Again, like AIC, SIC can be used to compare 
forecasting performance of the model 
 
(b) Plot of residual ACF  
 
Once the appropriate model has been fitted, the 
goodness of fit can be examined by plotting the 
ACF of residuals of the fitted model. If most of 
the sample autocorrelation coefficients of the 
residuals are within the limits ± 1.96/N where N 
is the number of observations on which the 
model is based, then the residuals are white 
noises indicating that the model is good fit.  
 
(c) Box-Pierce or Ljung-Box texts 
 
Box-Pierce statistic is a test to measure the 
overall adequacy of the chosen model by 
examining a quantity Q, whose approximate 
distribution is Chi-square.  
 

Q = 𝑛 ∑ 𝑟(𝑗)
2𝑘

1                (11) 

 
Where k as maximum lag considered, and is 
usually around 20, n = number of observations, 
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r(j) is the estimated autocorrelation at lag j. Chi-
square with (k-m-1) degrees of freedom where 
m-1 is the number of parameters estimated in the 
model. 
 
A modified Q statistics is the Ljung-box which is 
given by  

Q = n(n+2) ∑
𝑟(𝑗)

2

𝑛−𝑗
                  (12) 

 
The critical value of Q statistic is compared with 
Chi-square (n-1) degrees of freedom. Residuals 
should be uncorrelated and Q should be small if 
model is correctly specified. A significant value of 
test statistic indicates the chosen model is not a 
good fit. 
 

2.13 Forecasting 
 
The model that satisfies all the diagnostic checks 
is considered for forecasting. If the model is 
based on differencing / de-trending 
transformations, then the model must be 
represented with relevant expressions of original 
series. Then only, the forecasts can be made. 
 

2.14 Seasonal ARIMA 
 
In the time series analysis, seasonality is defined 
as the pattern of changes that repeats over S 
time periods, where S is the number of time 
periods between the repeats of the pattern. For 
quarterly data, S = 4 time periods per year and 
for monthly data S = 12 time periods per year are 
considered. As the regular differencing was 
applied to the series having non-stationary 
nature similarly seasonal differencing will be 
applied to the seasonal non-stationary series. 
The seasonal Autoregressive (SAR) and 
Seasonal Moving Average (SMA) are the 
parameters of seasonal ARIMA. In the seasonal 
ARIMA model, seasonal AR and MA terms 
predicts the 𝑥𝑡  often with the lags that are 
multiples of S. 
 
Seasonal ARIMA model is denoted by ARIMA (p, 
d, q) (P, D, Q)S , where p  represents the number 
of autoregressive terms, q represents the 
number of moving average terms and d denotes 
order of differencing to induce stationarity, P 
represents the number of seasonal 
Autoregressive components, Q represents the 
number of seasonal moving average terms and 
D represents the number of seasonal differences 
required to make the series stationarity. The 
seasonal ARIMA model expressed as follows; 
 

 ∅(𝐵)Φ(𝐵)∇𝑑∇𝑠
𝐷𝑟𝑡 = 𝜃(𝐵)Θ(𝐵)휀𝑡              (13) 

 

   𝑤𝑡 =  ∇𝑑∇𝑠
𝐷𝑟𝑡                    (14) 

 

∇𝑑= (1 − 𝐵)𝑑  denotes the number regular 

differences and ∇𝑠
𝐷=  (1 − 𝐵𝑠)𝐷  denotes number 

of seasonal differences. 
 
Where, ∅(𝐵)  is stationary Autoregressive 

operator, 𝜃(𝐵)  is a stationary moving average 

operator, 휀𝑡  is a white noise (Brockwell and 
Davis, 1996). 

 
2.15 ADF (Augmented Dickey Fuller) test 

for Stationarity 
 
In a stochastic process for a time series data the 
assumption of stationarity holds prime 
importance. It refers to the mean and variance 
constant over time and covariance between the 
two time periods depends only on the distance or 
gap or lag between the two time periods then the 
process is said to be stationary. 
 
For time series data yt, the regression equation 
of ADF (Dickey and Fuller, 1981) test is 
represented as follows: 
 

∆𝑦𝑡 = 𝛼1 + 𝛼2𝑡 + 𝛿𝑦𝑡−1 + ∑ 𝛽𝑖𝑦𝑡−𝑖
ℎ
𝑖=1 + 휀𝑡 (15) 

 
Where ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, 𝛼1, 𝛼2  and 𝛽𝑖  are 
parameters of regression model, h is lag length.  
 

  𝛿 = 𝜌 − 1 and −1 ≤ 𝜌 ≤ 1. 
 
In the ADF test, 𝛿 = 0 indicates the time series 
under consideration is nonstationary. In the tests 
null hypothesis (H0) and alternative hypothesis 
(H1) are as follows: 
 

H0 = Unit root is present in a time series data 
(Time series is nonstationary) 
H1 = Time series is stationary 

 
2.16 Q-S test for Seasonality  
 
The Q-S test is a variant of the Ljung-Box test 
computed on seasonal lags, where we                  
only consider positive auto-correlations. More 
exactly, 
 

QS=n(n+2)∑
[[max (0,γ̂𝑟.𝑙]²

𝑛−𝑖.𝑙

𝑘
𝑖=1                         (16) 

 
The current implementation still considers that 
the statistics is distributed as a χ(k). 

 

https://palatej.github.io/pages/stats/tests/wn/ljungbox.html
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2.17 Long Memory Model 
 
Long memory in time-series can be defined as 
autocorrelation at long lags. According to Jin 
and Frechette memory means that observations 
are not independent (each observation is 
affected by the events that preceded it). The 
ACF of a time-series xt is defined as 
 

ρk = cov (xt, xt−k)/var (xt)      (17) 
 
for integer lag k. A covariance stationary time-
series process is expected to have 
autocorrelations such that limk→∞ ρk = 0.        
Most of the well-known class of stationary and 
invertible time-series processes have 
autocorrelation at decay at the relatively fast 
exponential rate, so that ρk |𝑚|k where, m < 1 
and this property is true, for example, for the 
well-known stationary and invertible ARMA (p, q) 
process.  
 
For long memory processes, the autocorrelations 
decay at an hyperbolic rate which is consistent 

with ρk≈, ρk ≈ 𝑐𝑘2𝑑−1 , k increases without limit, 
where C is a constant and d is the long memory 
parameter. ACF is considered to be the time 
domain analogue of spectral density. In terms of 
the auto covariance sequence (ACVS), i.e. {Sx,k } 
for {xt}, {xt} is a stationary long memory process 
if there exist lim

𝑘→0
𝑆𝑥,𝑘 / (CsKb ) constants b and 

CS satisfying −1 < b < 0 and CS > 0 such that 
the standard time-series models such as 
stationary autoregressive processes have ACVS 

s such that Sx,k≈ 𝑐𝜙𝑘  for large k, where C ≥0 
and |𝜙| < 1. For a long memory process, Sx,k  ≈ 
CSkb for large k. In both the cases Sx,k→ 0 

as k→ ∞, but the rate of decay toward zero is 
much slower for a long memory process, 
implying that the observations that are widely 
separated in time can still have a non-negligible 
covariance i.e. the current observations retain 
some ‘memory’ of the distant past. An alternative 
definition can be stated as if {xt} is a stationary 
process with the spectral density function (SDF) 
denoted by Sx(.), then {xt} is a stationary long 
memory process if there exist constants a           
and CS satisfying 1 < a < 0 and CS > 0 such 
that: 
 

   lim
𝑓→0

𝑆𝑥(𝑓) /(𝐶𝑠|𝑓|𝑎) = 1                       (18) 

 
Where, a = -b-1. In other words, a stationary 
long memory process has an SDF Sx(.) such 
that 𝑆𝑥(. ) ≈ (𝐶𝑠|𝑓|𝑎) , with the approximation 
improving as f approaches zero. 

2.18 GPH Estimator  
 

The approximated regression equation is used in 
this method, which was calculated by logarithmic 
transformation of the spectral density function 
(SDF). This method is based on least squares 
regression in the spectral domain (Geweke and 
Hudak, 1983), utilize the sample form of the pole 
of the spectral density at the origin, (𝜂)~𝜂−2𝑑, 𝑎𝑠 

𝜂→0. The SDF of a stationary model 𝑦𝑡, 𝑡=1,…, 
can be expressed as,  
 

(𝜂)= [4sin(𝜂2)−𝑑]𝑓휀(𝜂)               (19) 
 
where 𝑓휀(𝜂) is the spectral density of 휀𝑡, 
assumed to be a finite and continuous function 
on the interval [−𝜋,𝜋]. After logarithmic 
transformation of the SDF, the log-spectral 
density can be written as,  
 

 𝑙𝑜𝑔(𝑓𝑦(𝜂))=𝑙𝑜𝑔(𝑓휀(0))−𝑑𝑙𝑜𝑔[4𝑠𝑖𝑛2(
𝑛

2
)]+𝑙𝑜𝑔

fε(η)

fε(0)
 (20) 

 
Let, (𝜂𝑖) be the periodogram obtained at the 

Fourier frequencies, 𝜂𝑙=2𝜋𝑙𝑘, 𝑙=1,2,…,𝑡⁄; 𝑘 is the 
total number of observations and 𝑡 is the 
number of considered Fourier frequencies, that 
is the number of periodogram series which is 
utilized in regression, 
 

𝑙𝑜(𝐼𝑦(𝜂𝑙))=𝑙𝑜𝑔(𝑓휀(0))−𝑑𝑙𝑜𝑔[4𝑠𝑖𝑛2(
𝑛

2
)]+𝑙𝑜𝑔

fε(η)

fε(0)
 

+
Iy(ηl)

fy(ηl))
)                  (21) 

 

where, 𝑙𝑜𝑔(𝑓휀(0)) is being constant, 𝑙𝑜𝑔[4𝑠𝑖𝑛2(
𝑛

2
)] 

is the exogenous variable and 𝑙𝑜𝑔
Iy(ηl)

fy(ηl))
 is the 

unforeseen term. The GPH estimate is based on 
two assumptions which are reason behind the 
asymptotic behaviour of the equation. These are,  

 

𝐻1: For low frequencies, we suppose that 

(𝜂)/𝑓휀(0) is negligible  
𝐻2: The random variable (𝜂𝑙)/𝑓𝑦(𝜂𝑙)⁄, 

𝑙=1,2,…,𝑡 are asymptotically 𝑖𝑖𝑑  
 
Under the hypotheses 𝐻1 and 𝐻2, we can write 
the linear regression,  
 

(𝐼𝑦(𝜂𝑙))= 𝛼−𝑑𝑙[4𝑠𝑖𝑛2(
𝑛

2
)+𝑒𝑙                   (22) 

 

where, 𝑒𝑙 ~ 𝑖𝑖𝑑(−𝑐,𝜋2/6). Considering the equation 

(42) as a regression equation of ((𝜂𝑙)) on 𝛼 and 𝑦𝑙 

, where 𝑦𝑙=log [4𝑠𝑖𝑛2(
𝑛

2
)]. The OLS estimate of 𝑑 

is obtained as,  
 

𝑑 ̂𝐺𝑃𝐻=∑ (𝑦𝑖 − y̅)𝑡
𝑖=1 (𝐼𝑦(𝜂𝑙))/=∑ (𝑦𝑖 − y̅ )2𝑡

𝑖=1     (23) 



 
 
 
 

Swarnalatha et al.; J. Sci. Res. Rep., vol. 30, no. 7, pp. 289-302, 2024; Article no.JSRR.118731 
 
 

 
296 

 

List 1. According to the value of 𝑑 long memory process can be sub-divided into 4 groups 
and these are: 

 

Value   of d Names 

𝑑∈(−1/2,0) Intermediate Memory and Anti-persistence 

𝑑=0 White noise(Short-Memory) 

𝑑∈(0,1/2) Stationary and Persistence Long Memory 

𝑑∈[12,1) Non-stationary and Persistence Long Memory 

 
2.19 ARFIMA Model  
 
Fractional integration is a generalization of 
integer integration, under which time-series 
are usually presumed to be integrated of order 
zero or one. Hosking and Reinsen described 
autoregressive fractionally integrated moving 
average (ARFIMA) process in details. xt is 
called an ARFIMA(p, d, q) process with degree 
of differencing as d, if it satisfies 

 
(1 − L)d Φ (L) xt = Θ (L) εt           (24) 

 
where, εt is an independently and identically 
distributed (i.i.d.) random variable with zero 
mean and constant variance, L denotes the 
lag operator; and Φ (L) = 1 φ1L . . .  φpLp and 
Θ (L) = 1 θ1L . . .  θqLq denote finite 
polynomials in the lag operator with roots 
outside the unit circle For d = 0, the process is 
stationary, and the effect of a shock to εt on 
x(t+j) decays geometrically as j increases. For d 
= 1, the process is said to have a unit root, and 
the effect of a shock to εt on x(t + j) persists 
into the infinite future. In contrast, fractional 
integration defines the function (1 - L)d for non-
integer values of the fractional differencing  

parameter d. For 0.5 < d < 0.5 the process x(t) 
is stationary and invertible. For such processes, 
the effect of a shock εt on x (t +j) decays as j 
increases, but the rate of decay is much slower 
than for a process integrated of order zero. More 
precisely, the ACF for zero-integrated processes 
decays geometrically, whereas the ACF for a 
fractionally integrated process decays 
hyperbolically, with the sign of the 
autocorrelations being the same as the sign of 
d. In this sense, fractional integration captures 
long memory dynamics more parsimoniously 
than non-integrated ARMA processes. In the use 
of ARFIMA (p, d, q) models, correct specification 
of p and q is important. According to Robinson, 
under-specification of p or q leads to 
inconsistent estimation of AR and MA 
coefficients, but also of long memory parameter 
d, as does over-specification of both, due to a 
loss of identifiability. 
 

3. RESULTS AND DISCUSSIONS 
 
The actual prices scenario of monthly prices of 
Groundnut in Andhra Pradesh was plotted and 
depicted in Fig. 3 to identify the basic 
behaviour of the price series. 

 

 
 

Fig. 3. Groundnut Actual Prices Scenario in Andhra Pradesh during 2002-2023 
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3.1 Descriptive Statistics 
 
Descriptive Statistics were conducted to examine 
the behaviour of Groundnut monthly prices of 
Andhra Pradesh. The findings were depicted in 
Table 2, provided valuable insights in to the 
characteristics of the data. It was observed that 
the prices of Groundnut during the study period 
had varied from Rs.822/q to Rs.6864/q with an 
average of Rs.3679.19/q. Standard Deviation 
was recorded as 1491.03, which indicates that 
the prices were dispersed highly over the 
months. It was also revealed that the data was 
positively skewed and platykurtic in nature.  
Further lists the summary statistical measures 
which were self-explanatory. The price series 
were also verified for the presence of outliers by 
Grubb’s test. It was confirmed that there were no 
outliers detected from the Grubb’s test during the 
study period. 
 

Table 2. Descriptive statistics of Groundnut 
prices of Andhra Pradesh 

 

Statistic Groundnut 

No of observations 264.00 
Mean 3679.19 
Median 3959.96 
Standard Deviation 1491.03 
Minimum 822.00 
Maximum 6864.00 
Skewness 0.06 
Kurtosis -1.24 
Outliers detected (Grubbs test)  

 

No 

 
3.2 BDS (Brock - Dechert- Scheinkman) 

test for non-linearity 
 
To test the linearity characteristics of the price 
series BDS test was conducted and results of 
the test was presented in Table 3. The 
probability value for both dimensions was less 
than 0.05 (at 5 % LOS) which shows that the 
data under consideration was nonlinear in 
nature. 
 

3.3 Autocorrelation (ACF) and Partial 
Autocorrelation (PACF) plots for 
Groundnut prices of Andhra 
Pradesh 

 
The Autocorrelation (ACF) and Partial 
Autocorrelation Function (PACF) plots of 
Groundnut price series were depicted in the 
below Fig. 4.  The figure shown that the prices 
were autocorrelated, which was supported by 

Box-Jung test statistic as the probability value 
was less than 0.05. It indicates that data under 
consideration    was autocorrelated in nature. Once 
the price series were autocorrelated, the ARIMA 
model was built for the series. Further, the 
Groundnut prices contains seasonal component 
which was confirmed by Q-S test as the 
probability value obtained was 0.02 (p<0.05) 
which indicates the presence of seasonality in 
the dataset. So, SARIMA   model was built for the 
price series. 
 
To develop ARIMA modelling, Augmented 
Dickey-Fuller test (ADF) was used to check the 
stationarity of the data and the results were 
presented in Table 4.  The Groundnut price 
series shows the probability value was 0.18 
(p>0.05), confirmed that the data under 
consideration was non- stationary and became 
stationary at first difference as probability value 
was 0.01 (p<0.05). Before model estimation to 
ensure that the data for model consideration was 
autocorrelated by applying Box- Pierce non-
correlation test and it was found significant as the 
probability value was 0.05 (at 5% LOS) that the 
data was autocorrelated in nature. All the 
possible combinations of SARIMA models were 
developed and best performed SARIMA models 
were presented in Table 5. Out of the best 
performed models, the final SARIMA model order 
i.e., SARIMA (1,1,3)(0,1,2)12 model  was selected 
based on least RMSE, MAE, MAPE and AIC 
values. 
 
The results of the final selected SARIMA (1,1,3) 
(0,1,2)12 model parameter specification viz., AR, 
MA, SAR and SMA were presented in Table 6. 
After determining the SARIMA model order, the 
model parameters were estimated using 
maximum likelihood method. After fitting of the 
model, the diagnostic checking of the residuals 
by Box- Pierce non-correlation test and it was 
showed that the residuals were non-
autocorrelated in nature as probability value was 
0.90 (p>0.05). The performance criteria of 
RMSE, MSE values for both training and testing 
data sets were illustrated in in Table 8 and Table 
9 respectively. 
 
To develop ARFIMA model, first step was to 
ensure that the data exhibiting long memory by 
employing Geweke-Porter-Hudak (GPH) test and 
the differencing parameter (d) value obtained 
was 0.43 (d<0.5) indicated a strong evidence of 
existence of long-memory. It was also confirmed 
by observing the autocorrelations function plot 
does not fall exponentially but decreases slowly 
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or hyperbolically as shown in Fig. 3. Before 
model estimation, to ensure that the data under 
consideration was autocorrelated by applying 
Box- Pierce non-correlation test found significant 
as the probability value was p< 0.0001 (<0.05) 
and concluded that the data was autocorrelated 
in nature. The differenced series was used to fit 
the ARFIMA (1, d, 1) model and the parameter 
specification of AR and MA parameters were 
presented in Table.7. After model development 
the diagnostic checking of the residuals by Box- 

Pierce non-correlation test found non-significant 
as the probability value was 0.35(>0.05). The 
modelling and forecasting performance of the 
training and testing data sets were given in Table 
8 and Table 9 respectively. With the best 
performed model forecasted future values for a 
period of 12 months. For the month of December 
2024, the Groundnut price was forecasted 
Rs.6589.52/q. which was depicted in Table 10. 
The actual and fitted values graph was plotted in 
Fig. 5.  

 
Table 3. BDS test for non-linearity in Groundnut prices of Andhra Pradesh 

 

Sample Dimension Groundnut 

Statistics Probability  

eps (1) m=2 255.82 p<0.0001 
m=3 463.02 p<0.0001 

eps (2) m=2 246.57 p<0.0001 
m=3 320.99 p<0.0001 

eps (3) m=2 86.06 p<0.0001 
m=3 96.80 p<0.0001 

eps (4) m=2 50.62 p<0.0001 
m=3 51.18 p<0.0001 

 

 
 

 
 

Fig. 4. ACF and PACF plots for Groundnut prices of Andhra Pradesh 
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Table 4. ADF test for stationarity in Groundnut prices of Andhra Pradesh 
 

Groundnut Data type ADF statistic P-value Decision 

ADF at level -2.96 0.18 Non-Stationary 
ADF at 1st Difference  -8.04 0.01 Stationary 

 

Table 5. SARIMA models and Error values for Groundnut prices of Andhra Pradesh 
 

SARIMA RMSE MAE MAPE AIC 

SARIMA(1,1,1)(1,0,1)12 341.85 198.56 6.04 3685.21 
SARIMA(1,1,1)(1,0,2)12 340.93 197.23 6.02 3645.20 
SARIMA (1,1,1)(1,0,3)12 336.78 195.63 5.98 3642.12 
SARIMA (2,1,1)(1,1,1)12 336.23 195.23 5.97 3643.23 
SARIMA(2,1,1)(2,0,1)12 336.27 196.67 5.94 3646.45 
SARIMA (2,1,2)(0,1,1)12 335.98 195.84 5.92 3642.89 
SARIMA (1,1,3)(0,1,2)12 335.94 194.27 5.79 3642.02 
SARIMA (1,1,3)(0,1,1)12 336.39 195.98 5.84 3643.25 
SARIMA (1,1,2)(1,0,2)12 338.25 196.49 5.94 3643.89 
SARIMA(2,1,3)(1,1,0)12 338.25 196.49 5.85 3642.23 
SARIMA(2,1,3)(0,1,1)12 336.78 194.63 5.98 3642.69 
SARIMA(3,1,3)(0,1,2)12 336.55 196.67 5.99 3642.96 

 

Table 6. Parameter estimation of SARIMA model for Groundnut prices of Andhra Pradesh 
 

Model Parameters Estimation S.E. Z-
value 

Probability Model fitting 

 
SARIMA 
(1,1,3)(0,1,2)12 

AR1 -0.97 0.08 -21.66 p<0.0001  
log 
likelihood 

 
-1830.1 MA1 -0.65 0.08 -8.44 p<0.0001 

MA2 -0.20 0.07 -2.51 p<0.05 
MA3 -0.15 0.06 -2.11 P<0.05  

 
AIC 

 
 
3642.02  

SAR1 0.16 0.05 2.75 p<0.0001 
SMA1 -0.80 0.05 -16.07 p<0.0001 

Box-Pierce test for non-correlations of Actual series χ² = 242.15,  p<0.0001(<0.05) 
Residuals χ² =0.02, p=0.90 (>0.05) 

 

 
 

Fig. 5. Actual and Fitted values of Groundnut price series of Andhra Pradesh by ARFIMA 
model 
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Table 7. ARFIMA model parameter estimation for Groundnut prices of Andhra Pradesh 
 

Model Parameters Estimation S.E. Z value Probability Model fitting 

ARFIMA 
(1,0,1) 

d 0.43 0.14 3.07 p<0.05 Log-
likelihood 

-1489.50 
Φ (AR) 0.65 0.12 5.33 p<0.0001 
Θ (MA) 0.46 0.06 7.74 p<0.0001 AIC 2988.33 

Box-Pierce test for non-correlations: χ²= 0.88, p=0.35 (>0.05) 

 
Table 8. Performance metrics of Training set for Groundnut prices of Andhra Pradesh 

 

Training set SARIMA ARFIMA 

AIC 3642.02 2988.33 
RMSE 335.94 186.22 
MSE 112855.68 34677.89 

 
Table 9. Performance metrics of testing set for Groundnut prices of Andhra Pradesh 

 

Testing set ACTUAL SARIMA ARFIMA 

Jan-23 6391 6045.906 6211.29 

Feb-23 6864 5945.865 6088.19 

Mar-23 6380 5847.585 5946.46 

Apr-23 6207 5873.262 5846.46 

May-23 6443 5882.055 5799.52 

Jun-23 6384 5907.222 5884.42 

Jul-23 6634 5916.509 5871.78 

Aug-23 6613 5941.196 5965.28 

Sep-23 6540 5950.949 5962.53 

Oct-23 6099 5975.184 5964.57 

Nov-23 6255 5985.375 5978.96 

Dec-23 6470 6009.186 6098.59 

RMSE 541.01 516.27 

MSE 292691.82 266534.71 

 
Table 10. Sample of Predicted values using ARFIMA model for Groundnut price series of 

Andhra Pradesh 
 

Month/Year Actual (Rs./q) Forecasted (Rs./q) Forecast Error (%) 

Jan-24 6752 6687.25 0.96 

Feb-24 6647 6774.63 1.92 

Mar-24 6511 6363.42 2.27 

Apr-24 6437 6589.41 2.37 

May-24  6605.63  

Jun-24  6625.12  

Jul-24  6658.48  

Aug-24  6887.01  

Sep-24  6899.52  

Oct-24  6454.15  

Nov-24  6582.23  

Dec-24  6589.52  

 
4. CONCLUSION 
 

The present study forecasted long memory time 
series data for the monthly prices of Groundnut 

in Andhra Pradesh using the Autoregressive 
Fractionally Integrated Moving Average 
(ARFIMA) model. This model was denoted as 
ARFIMA (p,d,q), incorporates a fractional 
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differencing operator with 𝑑 as a real number in 
the range  0<d<1/2. The ARFIMA (p,d,q) model 
demonstrated superior performance compared to 
the SARIMA model, based on performance 
metrics of both training and testing data sets. 
This model was particularly effective for short-
term predictions of long memory time                    
series, where the forecasting results closely 
match the actual data. The study concluded the 
ARFIMA model shown predictive capability 
compared SARIMA model for forecasting 
Groundnut monthly price series of                     
Andhra Pradesh. With the best performed                  
model forecasted future values for a period                 
of 12 months. For the month of December2024, 
the Groundnut price was forecasted 
Rs.6589.52/q. 
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