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ABSTRACT 
 

The YOLOv5 algorithm is widely used in object detection due to its efficient inference speed and 
high accuracy. However, it still faces challenges in small object detection. This paper proposes a 
series of improvements, including the addition of small object detection layers, the integration of the 
CBAM attention mechanism, and the optimization of the loss function by introducing EIoU, to 
enhance the model's feature extraction capability and detection accuracy. First, the paper enhances 
the network's perception of small objects by adding pyramid low-level semantic layers and 
constructing new small object detection heads. Second, the CBAM module is integrated into the C3 
module, improving the model's feature representation ability and effectively preventing information 
loss. Finally, by introducing the EIoU loss function, the quality contribution of anchor boxes is 
enhanced, improving the model's detection accuracy and regression speed. Experimental results 
show that the improved YOLOv5 algorithm performs excellently on the BDD100K dataset, 
especially in small object detection. Compared with the original algorithm, it shows improvements in 
detection accuracy, recall rate, and mean average precision (mAP), despite the slight increase in 
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parameters and computation, it still meets real-time requirements. This research provides strong 
support for further enhancing small object detection in autonomous driving scenarios. 
 

 
Keywords: YOLOv5; small object detection; CBAM; EIoU. 

 
1. INTRODUCTION 
 

In recent years, with the rapid development of 
computer technology and the continuous 
improvement of automobile manufacturing, 
autonomous driving has become a technological 
hotspot in the field of intelligent transportation. 
Vehicle object detection, as an essential 
component of the data acquisition process for 
autonomous driving [1], provides crucial support 
to ensure the safe operation of autonomous 
vehicles. Therefore, improving the accuracy of 
vehicle object detection algorithms is of 
paramount importance. 
 

Currently, numerous vehicle object detection 
algorithms have been proposed, typically 
categorized into traditional object detection 
algorithms and deep learning-based object 
detection algorithms. Traditional object detection 
algorithms often involve sliding windows [2], 
image segmentation [3], feature classifiers [4], 
and template matching methods [5]. These 
methods lead to computational complexity that 
grows exponentially with the increase in image 
pixels, thereby raising the demand for 
computational power. Moreover, traditional 
algorithms rely on hand-crafted features, which 
lack robustness against variations in object 
diversity, resulting in low detection efficiency and 
accuracy that cannot meet practical needs. With 
the advent of deep learning, object detection 
technology has achieved revolutionary progress 
by leveraging the powerful fitting and feature 
extraction capabilities of deep convolutional 
neural networks (CNNS). Common deep learning 
methods include R-CNN, Fast R-CNN, and 
Faster R-CNN [6], which use CNNs for feature 
extraction and introduce a region proposal 
network (RPN) to generate candidate boxes, 
thereby improving detection efficiency and 
accuracy. 
 

In recent years, object detection methods 
represented by YOLO (You Only Look Once) 
have rapidly emerged. YOLO methods are 
single-stage object detection networks that [7], 
compared to previous two-stage detection 
networks, offer high inference speed and 
relatively high accuracy, making them widely 
applicable in object detection. YOLOv5s is the 
fifth-generation version of this algorithm series 

and has been applied in various scenarios such 
as defect detection and object recognition. In this 
manuscript, we chose YOLOv5 as the base 
algorithm for the following reasons: 

1 Speed and Efficiency: YOLOv5 is 
renowned for its remarkable speed and 
computational efficiency, allowing real-time 
processing while maintaining high 
accuracy. 

2 Ease of Training and Deployment: The 
architecture of YOLOv5 is relatively simple, 
making it easier to train and deploy. It 
supports various frameworks and 
hardware platforms. 

3 Outstanding Performance: YOLOv5 has 
shown excellent performance on multiple 
public datasets, particularly excelling in 
object detection tasks. 

4 Rich Resources: YOLOv5 has a vibrant 
developer community and extensive 
documentation resources, offering strong 
support during our research and 
development process. 

 
Based on these characteristics, we chose 
YOLOv5 as the base algorithm to enhance the 
performance of small object detection. YOLOv5 
has achieved high accuracy in detecting large 
and medium objects, but still faces significant 
challenges in the field of small object detection. 
Small objects usually have smaller sizes and 
lower resolutions in images or videos, with fewer 
available features. Background noise often 
interferes, leading to lower detection accuracy. 
Thus, small object detection remains a hot topic 
in the field of visual research. 
 
To enhance the small object detection 
performance of the YOLO algorithm, researchers 
like Yu Jun et al. [8] have designed new CFM 
and FSM modules to supplement contextual 
information and suppress multi-scale feature 
fusion conflicts, thereby improving the detection 
effect of small objects. Their improvements have 
increased the mAP@0.5 value by 6.9% 
compared to the original model, but the large 
parameter size makes it difficult to meet real-time 
requirements. Chen Fankai et al. [9] have 
introduced the up-sampling operator CARAFE to 
increase the receptive field for data feature 
fusion, thus improving the performance of the 
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feature pyramid network and enhancing the 
detection accuracy for dense and small objects. 
Yang et al. [10] proposed the Query Det 
algorithm for small object detection, which uses 
coarse localization of small objects and sparse-
guided high-resolution features to calculate 
precise detection results, resulting in improved 
mAP for small object detection. Dong et al. [11] 

incorporated C3 Ghost and Ghost modules in the 
YOLOv5 neck to reduce floating-point operations 
during feature channel fusion, and introduced the 
CBAM [12] attention module in the backbone 
network to enhance the extraction of important 
information for vehicle detection tasks, thereby 
improving the detection accuracy of the 
algorithm. They also adopted the Complete 
Intersection Over Union Loss (CIOU Loss) [13] to 
improve the localization precision of the 
algorithm. Although the performance of small 
object detection has improved, issues such as 
low detection rate and poor real-time 
performance still persist. 
 

This paper integrates the C3 module, which can 
obtain richer gradient information, with the CBAM 
(Convolutional Block Attention Module) that 
combines channel attention and spatial attention, 
to create a new feature extraction module called 
C3_CBAM. This integration enhances the feature 
extraction capability of the algorithm without 
significantly increasing the number of 
parameters. Additionally, by adding new small 
object detection layers and introducing EIoU 
(Extended Intersection over Union) as the 
bounding box regression loss function, the 
detection and localization capability for small-
scale objects is effectively improved. The 
improved algorithm was tested on the BDD100K 

[14] dataset and compared with YOLOv3 [15], 
YOLOv4 [16], and YOLOv5s [17]. Results 
indicate that the improved algorithm shows 
varying degrees of enhancement in detection 
speed and accuracy, meeting the real-time 
requirements of autonomous vehicles. 

 
2. IMPROVED YOLOV5S ALGORITHM 
 
Although the YOLOv5s algorithm is widely used 
in object detection, it still faces significant issues 
with missed detections and false detections, 
especially for small objects and occluded targets. 
To further improve the detection accuracy of 
YOLOv5s, this paper proposes the following 
improvements to the YOLOv5s algorithm 
structure: 

 
1) Adding a small object detection head in the 

network’s head to enhance the model's 
detection performance for small objects 
and reduce the rates of false positives and 
missed detections. 

2) Integrating the CBAM attention mechanism 
into the C3 module to enhance the model's 
feature representation capability and 
overall performance. 

3) To improve the detection network's ability 
to detect occluded targets, introducing 
EIoU (Efficient Intersection over Union) as 
the bounding box regression loss function. 
EIoU offers faster regression speed and 
better results, fully considering the center 
point distance, overlap ratio between the 
candidate box and the ground truth box, as 
well as length and width losses. The 
improved YOLOv5s is illustrated in Fig. 1.

 

 
 

Fig. 1. Improved Model Structure 



 
 
 
 

Meng and Shen; J. Eng. Res. Rep., vol. 26, no. 9, pp. 57-65, 2024; Article no.JERR.122434 
 
 

 
60 

 

2.1 Adding A Small Object Detection 
Layer 

 
The YOLOv5 algorithm constructs three 
detection layers, performing down-sampling on 
feature maps at 32x, 16x, and 8x scales, and 
constructs three detection heads for object 
localization at these down-sampling points. 
Down-sampling increases the receptive field and 
ensures that information is not lost. YOLOv5 
obtains prediction results from feature maps at 
three scales. After three rounds of down-
sampling, the input image generates feature 
maps of sizes 20×20, 40×40, and 80×80, 
respectively. These three scales of feature maps 
correspond to detecting large, medium, and 
small-sized objects. However, in practical 
scenarios, objects that are further from the 
camera occupy too few pixels in the entire 
image, leading to missed and false detections for 
small objects in the image. To address these 
issues, a shallow feature map is constructed 
using multi-scale feature fusion on the basis of 
YOLOv5, adding an additional tiny object 
detection layer to improve the model's 
performance for small object detection. 
 

2.2 Integrating the Cbam Attention 
Mechanism 

 
The Convolutional Block Attention Module 
(CBAM) is a typical hybrid attention structure that 
integrates both channel attention and spatial 
attention. The CBAM module utilizes both Global 
Average Pooling (GAP) [18] and Global Max 
Pooling (GMP) [19], combining these two pooling 
strategies to prevent information loss. Applying 
the CBAM attention mechanism to the YOLOv5 
model can enhance the model's feature 
representation capabilities and performance 
without significantly increasing the model's 
complexity, thereby retaining more useful 
information.The CBAM module consists of two 
different sub-components: the Channel Attention 
Module (CAM) [Error! Reference source not 

found.], which operates on the channel 
dimension, and the Spatial Attention Module 
(SAM), which operates on the spatial dimension. 
These two sub-modules are combined in series 
to sequentially generate attention feature maps 
in the channel and spatial dimensions. The 
network structure is shown in Fig. 2. 

 
The CBAM process is as follows: First, the 
Channel Attention Module applies adaptive 
feature refinement to the input feature map 
F,resulting in the refined feature map F′.Next, the 

Spatial Attention Module further refines F′，
ultimately producing the feature map F" 
processed by the CBAM module. 
 
The Channel Attention Module in the CBAM 
mechanism is similar to the SE module. As 
shown in Fig. 3. the input feature map is first 
processed using Global Average Pooling (GAP) 
and Global Max Pooling (GMP) operations, 
generating two 1×1×C feature maps. These two 
feature maps are then fed into a shared 
Multilayer Perceptron (MLP). The two channel 
attention vectors output by the MLP are summed, 
followed by the application of the Sigmoid 
activation function, ultimately producing the 
channel attention weights Mc. The structure of 
the Spatial Attention Module is shown in Fig. 4. 
The feature map is first processed using GAP 
and GMP pooling operations along the channel 
dimension, resulting in two 1×H×W feature maps. 
These are concatenated to form a 1×H×W 
feature map. A 7×7 convolution operation is then 
performed, which both expands the receptive 
field of the feature map and reduces its 
dimension to 1×H×W. Finally, the feature map is 
fed into the Sigmoid activation function to obtain 
the spatial attention vector Ms. Mc and Ms can be 
calculated using equations (1) and (2), 
respectively. 
 
𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) +𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (1) 

  
𝑀𝑠(𝐹) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))           (2)

 

.  
 

Fig. 2. Network structure diagram of the CBAM module 
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Fig. 3. Structure diagram of the channel attention module 
 

 
 

Fig. 4. Structure diagram of the spatial attention module 
 
Here,Mc represents the weights output by the 
Channel Attention Mechanism, and Ms 
represents the weights output by the                            
Spatial Attention Mechanism. 𝜎  denotes the 
sigmoid function, MLP stands for Multilayer 
Perceptron, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹) and 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹) are the 
outputs after Global Max Pooling and Global 
Average Pooling, respectively. 𝑓7×7 refers                               
to a convolution operation with a kernel size of 
7×7. 
 
In the original YOLOv5s algorithm, the input 
image's feature map is first obtained using a 
convolutional module, followed by feature 
extraction using the C3 module. Within the C3 
module, the Bottleneck structure processes the 
input feature map through multiple convolutional 
layers, enabling the extraction of more advanced 
and representative features. The C3 module 
itself is an efficient structure for feature fusion 
and enhancement. Integrating CBAM into the 
Bottleneck structure of the C3 module can 
significantly improve the model's feature 
extraction capability and detection performance 
without significantly increasing computational 
complexity. This improvement is particularly 
notable in small object detection tasks. 
 

2.3 Loss Function Optimization 
 

In deep learning, the loss function typically uses 
mean squared error to calculate the loss of the 
center coordinates and the bounding box 
dimensions. The location information of the 
predicted bounding box in object detection 
algorithms is independent and has no explicit 
connection to the ground truth bounding box 
coordinates. Mean squared error cannot describe 
the overlap relationship between the predicted 
box and the ground truth, and the calculated 
confidence score cannot indicate the quality of 
the prediction. Using the Intersection over Union 
(IoU) loss function for the predicted and ground 
truth boxes can better describe the loss. The IoU 
loss expression is shown in (3): 
 

𝐿IoU = 1 − |
𝑆A∩𝑆B

𝑆A∪𝑆B
|     （3） 

 

In the formula: 𝑆A ∩ 𝑆B represents the area of the 
intersection between the predicted box 𝑆A  and 

the ground truth box 𝑆B ; 𝑆A ∪ 𝑆B  represents the 

area of the union between the predicted box 𝑆A 

and the ground truth box 𝑆B. The more the areas 
overlap, the closer the predicted box is to the 
ground truth. 
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The original YOLOv5s algorithm uses the CIoU 
Loss function, which takes into account the 
overlapping area, center point distance, and 
aspect ratio for bounding box regression. The 
calculation expression is shown in (4): 

 

𝐿CIoU = 𝐿IoU −
𝜌2(𝑂A,𝑂B)

𝑐2
− 𝑎𝑣 （4） 

 
In the formula: OA and OB represent the center 
points of the predicted box SA and the ground 
truth box SB, respectively; O represents the 
Euclidean distance between the center points of 
SA and SB; c represents the diagonal distance of 
the bounding box C; 𝑎 is the weight coefficient. 
The calculation expression is shown in (5): 

 

𝑎 =
𝑣

(1−𝐿𝐼𝑜𝑈)+𝑣
 （5） 

 
In the formula: 𝑣  represents the aspect ratio 
similarity between the bounding boxes SA and SB. 
The calculation expression is shown in (6). The 
closer the aspect ratio of SA is to that of SB, the 
higher the accuracy of the predicted box. 

 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛⁡

𝑤𝐴

ℎ𝐴
− 𝑎𝑟𝑐𝑡𝑎𝑛⁡

𝑤𝐵

ℎ𝐵
)2       （6） 

 

In the formula: 𝑤𝐴 is the width of the ground truth; 

ℎ𝐴  is the height of the ground truth; 𝑤𝐵  is the 

width of the predicted value; ℎ𝐵 is the height of 
the predicted value. 
 
From the calculation formula of CIoU Loss, it is 
clear that the aspect ratio consistency parameter 
𝑣 reflects the difference in aspect ratios but does 
not adequately capture the actual differences in 
height and width relative to their confidence 
levels. This results in the CIoU Loss function not 
being able to effectively learn the similarity 
between the predicted box and the ground truth 
box. To address this issue, this paper introduces 
EIoU, which divides the aspect ratio regression 
into length loss and width loss based on CIoU. 
The EIoU-defined loss function consists of IoU 
loss, center point loss, length loss, and width loss. 
The calculation expression is shown in (7): 

 

𝐿EIoU = 1 − 𝐿IoU −
𝜌2(𝐴,𝐵)

𝑐2
+

𝜌2(𝑤A,𝑤B)

𝑐w
2 +

𝜌2(ℎA,ℎB)⁡⁡

𝑐h
2         (7) 

 
In the formula: 𝑐𝑤 is the width of the bounding box 
C;  is the height of the bounding box C. 
 
EIoU considers four important geometric factors: 
overlapping area, center point distance, length, 
and width. This results in higher speed and 
accuracy for bounding box regression compared 

to the CIoU loss, leading to faster network 
convergence and better performance of the 
predicted bounding boxes. 
 

3. EXPERIMENTAL RESULTS AND 
ANALYSIS 

 

3.1 Dataset and Experimental 
Environment 

 
The BDD100K dataset is an important dataset 
widely used for autonomous driving and 
computer vision research. It was released by the 
DeepDrive Lab at the University of California, 
Berkeley, and contains 100,000 images. There 
are 10 categories of ground truth bounding box 
labels: bike, bus, car, motor, person, rider, traffic 
light, traffic sign, train, and truck. The original 
dataset was preprocessed, with less frequent 
categories merged, and the resulting images 
were split into training, validation, and test sets in 
a 7:2:1 ratio. 
 
The experimental training process was 
conducted on a Windows 10 operating system 
with CUDA 11.7 environment. The GPU 
configuration used was an RTX 3060 with 12GB 
of memory. The initial learning rate for training 
was set to 0.01, the momentum parameter was 
0.9, the batch size was 32, the IoU threshold was 
0.5, and the maximum number of training epochs 
was 200. 
 

3.2 Evaluation Metrics 
 

In object detection, commonly used metrics to 
measure algorithm performance include 
Accuracy, Precision, Recall, Average Precision 
(AP), mean Average Precision (mAP), parameter 
count, Giga Floating-point Operations Per 
Second (GFLOPs), and Frames Per Second 
(FPS). Their specific meanings are as follows: 
 

1) Precision: It represents the proportion of 
true positives among all instances 
predicted as positive. It is used to measure 
the probability of correct predictions in the 
results. The calculation method is shown in 
Equation 8. 

  

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (8) 

 

2) Recall: It represents the proportion of true 
positives among the total actual positive 
samples. It is used to reflect the rate of 
missed detections. The calculation method 
is shown in Equation 9. 
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𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

 
3) Mean Average Precision (mAP): Precision 

and Recall are two interrelated 
performance metrics. However, since each 
of these metrics has limitations when 
considered individually, they cannot fully 
evaluate the model's performance. 
Therefore, the mAP metric is introduced to 
balance the results of both. By plotting 
Precision on the y-axis and Recall on the 
x-axis, a Precision-Recall (P-R) curve can 
be obtained. The area under the P-R curve 
represents the Average Precision (AP) 
value. The mAP represents the average of 
the AP values across all classes in the 
dataset. The calculation method is shown 
in Equation 10. 
 

𝑚𝐴𝑃 =
1

𝑁
∑  𝑁
𝑖=1 𝐴𝑃𝑖 (10) 

 
 

3.3 Comparative Experiments 
 

To validate the superiority of the improved 
YOLOv5s algorithm, several classic object 
detection algorithms were selected for 
comparative experiments. The experiments were 
conducted with identical parameters, with an 
input size of 640×640. The comparison results of 
different network models on the BDD100K 
dataset are shown in Table 1. 
 

The improved YOLOv5s algorithm significantly 
outperforms the other three algorithms in 
detection accuracy while maintaining a relatively 
small number of model parameters. Compared to 
YOLOv3, YOLOv4, and YOLOv5s, this algorithm 

shows improvements in both Recall and mAP. 
Additionally, the number of parameters is 
significantly reduced compared to YOLOv3 and 
YOLOv4. However, compared to YOLOv5s, the 
number of parameters has increased. This is 
primarily due to the addition of a small object 
detection layer and the introduction of the CBAM 
attention mechanism in the C3 module in this 
algorithm. Although these improvements result in 
an increase in the number of parameters and 
GFLOPs, which impacts detection speed to 
some extent, the algorithm still meets the real-
time requirements of autonomous vehicles. 
 

3.4 Ablation Experiments 
 
To verify the effectiveness of the improvements 
made in each module of the proposed algorithm 
for enhancing small object detection accuracy, 
ablation experiments are first conducted. These 
experiments individually assess the impact of 
each module on the model, and the results are 
shown in Table 2. 
 
As shown in the data from Table 2, the improved 
model demonstrates a significant enhancement 
in mAP, particularly after adding the small object 
detection layer and integrating the CBAM 
attention module. Adding the small object 
detection layer helps retain more information 
from lower-level features, which is beneficial for 
accurately determining object locations. The 
integration of the CBAM attention mechanism in 
the C3 module allows for the extraction of more 
feature information, further improving the mAP. 
However, this improvement comes at the cost of 
increased computational load, which results in a 
reduction in detection speed. 

 
Table 1. Performance Comparison of Different Models on the BDD100K Dataset 

 

Algorithm P R mAP@0.5 Number of Parameters GFLOPs FPS 

YOLOv3 59.1% 46.4% 53.2% 61.6 153.5 42 
YOLOv4 63.4% 51.4% 57.9% 52.5 118.6 62 
YOLOv5s 64.6% 52.1% 58.5% 7.0 15.6 110 
Proposed 
Algorithm 

67.1% 56.4% 60.7% 9.4 26.5 86 

 
Table 2. Ablation Experiments on the BDD100K Dataset 

 

NO. Small Object Detection Layer C3_CBAM EloU mAP@0.5 FPS 

1    58.5% 110 
2 ✓   59.7(+2.1%) 96 
3 ✓ ✓  60.4(+1.2%) 89 
4 ✓ ✓ ✓ 60.7%(+0.5) 86 
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4. CONCLUSION 
 
This paper proposes an improved YOLOv5s 
algorithm that effectively enhances the detection 
accuracy of small vehicle targets. First, a new 
small object detection head is constructed by 
adding a pyramid of low-level semantic layers to 
improve the network's ability to perceive small 
objects. The original C3 module is augmented 
with the CBAM module to enhance the model's 
feature representation capability and 
performance, preventing information loss and 
retaining more useful information. The use of 
EIOU Loss highlights the contribution of high-
quality anchor boxes, improving the localization 
accuracy of small-scale vehicle targets. 
Experimental comparisons show a significant 
improvement in detection accuracy with the 
proposed algorithm compared to the original one, 
making it suitable for precision requirements in 
autonomous driving scenarios. In future work, 
further research will focus on lightweight object 
detection models to enhance detection 
performance and optimize the dataset to improve 
the model's generalization ability. 
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