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ABSTRACT 
 

Heat stress severely affects maize yield and productivity, making it essential to identify and select 
heat-tolerant genotypes. Three hundred seven testcrosses derived from a biparental population 
were evaluated during summer at two distinct high VPD environments along with four checks 
(P1844, P1855, DKC9108 and DKC9162) to know their performance and association of traits under 
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heat stress conditions.  Analysis of variance revealed significant variability among the testcrosses, 
indicating substantial genetic diversity. Correlation analysis identified strong positive correlations 
between grain yield and related traits like plant height and ears per plant, highlighting these as vital 
selection criteria in breeding programmes. Additionally, Best Linear Unbiased Predictors (BLUPs) 
were utilized to evaluate the per se performance of the testcrosses, identifying the top-performing 
ones with superior heat tolerance. These top testcrosses achieved an average grain yield of 3.47 t 
ha-1, surpassing the population mean of 3.13 t ha-1. The top 10% of selected testcross families 
exhibited a yield gain of 0.34 t ha-1, representing a 9.79% improvement over the population under 
heat stress conditions. In order to create resilient maize hybrids, the study effectively isolated 18 
elite testcrosses with improved heat tolerance that outperformed the superior check P1844. This 
provides a mitigation method for reducing the negative effects of climate change on maize 
productivity. 

 

 
Keywords: Heat stress; testcrosses; correlation; BLUPs; MetaR. 
 

1. INTRODUCTION 
 
Maize (Zea mays L.), known as the 'Queen of 
Cereals,' is an important crop contributing to food 
security after rice and wheat due to its high 
physiological and photosynthetic efficiency and 
superior yield. Under ideal circumstances, it is 
quite productive, although it is susceptible to heat 
stress and drought. A temperature that is higher 
than the threshold and persists long enough to 
harm crop growth and development irreversibly is 
referred to as heat stress. In India, maize 
production is 35.67 million tonnes with 
productivity of 3032 kg per hectare from 9.47 
million hectare cultivated area. In Karnataka, 1.6 
million hectares of area is under the cultivation of 
maize and production of 3.55 million tonnes and 
productivity of 2755 kg per hectare [1]. 
 
Maize is highly susceptible to drought and heat 
stress, especially during the reproductive stage 
[2]. Under heat stress, plants open their stomata 
to cool leaves through transpiration, but in 
combined drought and heat conditions, they keep 
stomata closed to conserve water, increasing 
leaf temperatures and yield losses. For instance, 
a temperature rise above 30°C leads to a 1% 
reduction in yield under optimal conditions, 1.7% 
under drought, and over 40% under combined 
stress [3]. Meseka et al. [4] reported yield losses 
of 77% from combined stresses.  
 
Vapor pressure deficit (VPD) is the difference 
(deficit) between the amount of moisture present 
in the air at a given air temperature and the 
amount of moisture the air can hold when it is 
fully saturated. VPD is the function of maximum 
temperature (Tmax) and relative humidity at 
Tmax. The combination of high temperature 
(Tmax >33˚C and Tmin >23˚C) with low RH 
(<40%) represent high VPD environment. 

Whereas, moderate VPD occurs when there is 
high RH (>40%) with low temperature (<22˚C) 
[5].  
  
With climate change becoming a reality, the need 
for heat-tolerant cultivars is essential. Hosmani et 
al. [6] assessed genetic gains in maize 
testcrosses from two heat-tolerant heterotic 
multi-parental synthetic populations (MPS 1 and 
MPS 2). The top 10% of F2:3 families were 
selected for further genetic gain analysis, 
showing significant improvements in grain yield 
(58.55%), anthesis (-2.05%), silking (-2.24%), 
ASI (-3.35%), plant height (4.25%), and ear 
height (5.49%) in MPS 1 compared to MPS 2. 
These findings suggest elite heat-tolerant lines 
with strong testcross performance. Vinutha [7] 
worked on genetic analysis for heat stress 
tolerance in hybrids developed from heat resilient 
doubled haploid lines of tropical maize. 
Basavarajeshwari [8] have also contributed to 
heat tolerance research in tropical maize through 
genetic analysis and QTL studies. A key step in 
developing 'climate-smart' maize is identifying 
germplasm tolerant to abiotic stresses [8].  
 
There are limited reports on improving maize for 
both drought and heat stress simultaneously. In 
this paper, we are reporting performance of 
testcrosses derived from heat and drought 
tolerant biparental population evaluated under 
heat stress condition. 
 

2. MATERIALS AND METHODS 
 
A biparental population (BIP1) was developed at 
International Maize and Wheat Improvement 
Center (CIMMYT), c/o ICRISAT, Patancheru, 
Hyderabad, Telangana by crossing a heat-
tolerant line, CAL 182, with a drought-tolerant 
line, CAL 1514, both belonging to heterotic group 
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A. The resulting 307 early inbred lines were 
crossed with a tester from the opposite heterotic 
group, CML 451 during kharif 2023. The 
testcrosses obtained were evaluated for heat 
stress at two high VPD environments i.e., Main 
Agricultural Research Station, Raichur and 
Agriculture College, Bheemarayanagudi during 
summer 2024. Each entry was raised in single 
row of 4 m length with spacing of 60 × 20 cm 
under heat stress conditions. Sowing was carried 
out in the second fortnight of March 2024 to 
ensure that the flowering period would align with 
the peak of summer (around mid-may), thereby 
subjecting the crops to heat stress under field 
conditions. 
 

The experiment was conducted using an alpha 
lattice design with two replications, including four 
checks (P1844, P1855, DKC9162, DKC9108). 
Observations were recorded on various 
quantitative traits, such as days to 50% anthesis 
(DA), days to 50% silking (DS), anthesis-silking 
interval (ASI), plant height (PH), ear height (EH), 
SPAD at 60 DAS (SPAD_60), SPAD at 90 DAS 
(SPAD_90), ears per plant (EPP), and grain yield 
(GY). 
 

Grain yield being a complex trait is affected by 
many genetic and non-genetic factors. In order to 
identify the independent variables like yield 
attributes, association studies serve as an 
effective tool. The analysis of variance for alpha 
lattice and predicted BLUPs were carried out in 
MetaR software and correlation coefficients were 
computed as suggested by Pearson in R 
software using metan package.  
 

3. RESULTS AND DISCUSSION  
 

3.1 Analysis of Variance (ANOVA) for 
Yield and Yield Attributing Traits in 

Testcrosses under Heat Stress 
Conditions across Locations 
 

The results of ANOVA for morphological and 
yield traits in testcrosses from the BIP1 
population under heat stress are shown in             
Table 1. The mean sum of squares due to 
genotypes were highly significant for most traits, 
including days to 50% anthesis, days to 50% 
silking, anthesis-silking interval, SPAD at 90 
DAS, ears per plant and grain yield. In the 
present study, we did not observe the leaf firing 
and tassel blast symptoms. 
 
Significant Genotype × environment interactions 
observed for several traits indicated varying 
testcross behavior across locations. 
Environmental and Environmental × Replication 
variances were significant, reflecting the diverse 
conditions of the evaluation sites. The highly 
significant differences among environments were 
possibly a result of the different soil and climatic 
conditions prevailing in the different 
environments. Block and replication variances 
were also significant, indicating the importance of 
proper experimental design to control field 
variability. Residual variance was relatively low, 
suggesting good model fit. Hosmani et al. [6], 
Nelimor et al. [9], Alam et al. [10], and Teng et al. 
[11] also observed comparable outcomes for all 
traits under conditions of heat stress.  

Table 1. Analysis of variance for morphological and yield related traits in testcrosses derived 
from BIP1 across locations under heat stress condition 

 

Source of 
variance 

DA DS ASI PH SPAD_90 EPP GY 

Genotype 
Variance 

38.07** 23.33* 1.796*** 166.04 520*** 149.20*** 194.10*** 

Environmental 
Variance 

0.49* 6.43* 10.464*** 2781.96*** 3598.1*** 290.941*** 210.71* 

Genotype × 
Environmental 
Variance 

3.09* 1.02 0.557 2926.40*** 8.5* 121.224*** 201.93*** 

Block × 
Replication 
Variance 

109.49*** 108.66*** 0.0016 226.51 188.1*** 1.652 118.4 

Environmental 
× Replication 
Variance 

31.49* 22.44* 0.765* 892.8* 119.8* 8.075* 524.7*** 

Residual 
Variance 

8.43 7.85 0.2287 232.09 18.5 5.138 752.49 

*, ** and *** Significant at 0.05, 0.01 and 0.001 level of probability, respectively 
DA = Days to 50% anthesis (d), DS = Days to 50% silking (d), ASI = Anthesis-silking interval(d), PH = Plant height (cm), 

SPAD_90 =SPAD at 90 DAS, EPP = Ears per plant, GY = Grain yield (t ha-1) 
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3.2 Per se Performance of Testcrosses 
under Heat Stress Conditions for 
Selected Traits across Locations 

 
The per se performance of the testcrosses was 
estimated using Best Linear Unbiased Predictors 
(BLUPs). BLUPs were determined for each 
genotype by applying a mixed-effects model, 
where the environments were treated as fixed 
effects and the genotypes as random effects. 
The current study investigated the performance 
of testcrosses from the BIP1 maize population 
under heat stress conditions in environments 
characterized by moderate to high vapour 
pressure deficit (VPD). The results revealed a 
significant genotype × environment (G × E) 
interaction, influencing grain yield variations 
across the two environments.  
 
Across locations, per se performance of 
testcrosses derived from BIP1 population for 
grain yield ranged from 2.53 (Z1821-254) to 3.60 
(Z1821-17) t ha-1 with a population mean of 3.13 
t ha-1 under heat stress conditions. The top 10 
per cent BIP1 population demonstrated superior 
yield performance (Table 2), with grain yields 
ranging from 3.39 to 3.60 t ha-1 and mean of 3.47 
t ha-1. Several testcrosses performed better for 
grain yield than the best check hybrid P1844 
(3.42 t ha-1). These top 10 per cent selected 
testcross families provided a gain of 0.34 t ha-1 
representing 9.79 per cent improvement over the 
population under heat stress conditions. 
 
The findings of this study are consistent with 
those reported by Vinayan et al. [12], who 
emphasized that relative humidity and VPD are 
key environmental covariates contributing to the 
large G × E interactions observed in grain yield 
under heat stress. These environmental factors 
can significantly alter the physiological responses 
of maize plants, leading to variations in yield 
outcomes depending on the specific conditions 
encountered. As a result, maize crops exposed 
to heat stress at different locations may respond 
differently, depending on the level of VPD at 
maximum temperature (Tmax). This underscores 
the importance of considering environmental 
variability when assessing the performance of 
potential maize varieties under stress conditions. 
 
Grain yield, being a quantitatively inherited trait, 
is highly sensitive to environmental changes, 
making it challenging to determine the true 
genetic value of potential varieties. As 
highlighted by Sserumaga et al. [13], significant 
G × E interactions necessitate the careful 

sampling of target environmental conditions 
during the breeding process. This ensures that 
the varieties released for commercial production 
are well-adapted to the environments in which 
they will be grown. Consequently, it is crucial to 
evaluate maize trials across multiple 
environments to capture the full extent of G × E 
interactions and accurately assess the 
performance of breeding lines. 
 

The comparison of average grain yield 
performance between the top 10 per cent of 
entries from the BIP1 population and commercial 
checks revealed that the heat stress breeding 
pipeline produced superior or at least 
comparable results. The selected testcross 
families achieved an average grain yield of 3.47 t 
ha⁻¹, surpassing or equaling the yields of 

commercial hybrids like P1844 (3.42 t ha⁻¹), 
P1855 (3.34 t ha⁻¹), DKC9162 (3.26 t ha⁻¹) and 

DKC9108 (3.07 t ha⁻¹). These findings align with 
those of Vinayan et al. [12], who reported that top 
entries from heat-stressed breeding programmes 
performed better than commercial checks, 
particularly in moderate-yielding locations.  
 

Eighteen testcrosses (Z1821-17, Z1821-6, 
Z1821-14, Z1821-263, Z1821-37, Z1821-50, 
Z1821-24, Z1821-104, Z1821-84, Z1821-91, 
Z1821-113, Z1821-205, Z1821-280, Z1821-126, 
Z1821-303, Z1821-96, Z1821-9, Z1821-143) 
outperformed the superior check P1844, which 
had a grain yield of 3.42 t ha⁻¹ (Table 2). 
Similarly, Sserumaga et al. [13] found that the 
top 15 testcross hybrids provided a 5.9% yield 
advantage over the best commercial check, 
further validating the effectiveness of targeted 
breeding under heat stress conditions. Overall, 
this study highlights the importance of evaluating 
testcrosses under diverse environmental 
conditions to identify superior genotypes that can 
maintain high yields under heat stress. 
 

3.3 Association among Yield and Its 
Attributing Traits in Testcrosses 
under Heat Stress Condition 

 

The results of correlation analysis (Table 3) 
showed that grain yield had a significant positive 
correlation with several yield-attributing traits: 
plant height (0.22), ears per plant (0.60), and 
SPAD at 90 DAS (0.34), all at the 1% level of 
significance. This suggests that improving            
these associated traits would enhance grain yield 
(Fig. 1). 
 

The correlation analysis revealed that traits such 
as grain yield, plant height, SPAD at 90 DAS and 
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ears per plant had significant                            
positive associations with each other                       
under heat stress condition. In contrast, traits 
such as days to 50 per cent anthesis                                  
and days to 50 per cent silking were                

significantly negatively correlated with all the 
other traits. The same trend was earlier noticed 
by the findings of Elmyhun et al. [14],                    
Zaidi et al. [15], Tandzi et al. [16] and Longmei et 
al. [17]. 

 

Table 2. BLUPs for top 10 per cent of the selected testcrosses of maize across locations under 
heat stress conditions 

 

Sl. No. Entries GY DA DS ASI PH EH EPP 

1 Z1821-17 3.60 58 61 2 159.53 89.67 0.76 
2 Z1821-6 3.57 59 62 2 161.44 88.84 0.72 
3 Z1821-14 3.56 61 63 2 157.79 85 0.72 
4 Z1821-263 3.56 61 62 2 158.02 86.63 0.75 
5 Z1821-37 3.55 61 63 2 156.93 86.29 0.73 
6 Z1821-50 3.54 60 62 2 158.89 87.34 0.71 
7 Z1821-24 3.53 60 62 2 159.64 91.13 0.77 
8 Z1821-104 3.53 60 61 2 159.81 85.94 0.73 
9 Z1821-84 3.52 60 62 2 159.28 85.69 0.7 
10 Z1821-91 3.52 61 63 2 156.5 86.85 0.73 
11 Z1821-113 3.51 60 62 2 157.08 88.47 0.72 
12 Z1821-205 3.51 60 62 2 159.43 89.74 0.72 
13 Z1821-280 3.5 61 63 2 158.65 85.82 0.68 
14 Z1821-126 3.49 60 62 2 158.38 87.59 0.72 
15 Z1821-303 3.48 60 62 2 157.52 86.24 0.75 
16 Z1821-96 3.47 58 61 3 160.13 87.82 0.75 
17 Z1821-9 3.47 60 62 2 154.02 90.66 0.72 
18 Z1821-143 3.43 61 64 3 153.71 85.76 0.68 
19 Z1821-298 3.42 60 62 2 155.12 84.39 0.71 
20 Z1821-64 3.42 60 62 2 156.29 84.52 0.7 
21 Z1821-225 3.41 60 62 2 158.5 86.34 0.75 
22 Z1821-180 3.41 60 63 3 156.13 86.06 0.69 
23 Z1821-119 3.41 60 62 2 156 87.55 0.71 
24 Z1821-212 3.40 60 62 2 158.89 84.69 0.73 
25 Z1821-246 3.40 60 62 2 159.59 85.24 0.7 
26 Z1821-53 3.40 60 62 2 156.38 86.27 0.72 
27 Z1821-166 3.40 60 62 2 156.71 90.54 0.73 
28 Z1821-205 3.40 60 63 3 154.67 89.34 0.71 
29 Z1821-196 3.39 60 63 3 159.4 91.93 0.72 
30 Z1821-88 3.39 61 63 2 157.67 84.25 0.68 
31 Z1821-274 3.39 61 63 2 160.9 87.46 0.72  

Mean 3.47 60.09 62.25 2.16 157.83 87.22 0.72  
P1844 (C) 3.42 58 60 2 164.96 93.62 0.71  
P1855 (C) 3.34 57 59 2 162.65 81.95 0.72  
DKC9162 (C) 3.26 55 58 2 160.04 78.67 0.67  
DKC9108 (C) 3.07 57 60 2 167.89 91.4 0.75 

GY = Grain yield (t ha-1),DA = Days to 50% anthesis (d),  DS = Days to 50% silking (d), ASI = Anthesis-silking interval (d), PH = 
Plant height (cm),EH = Ear height (cm), EPP = Ears per plant 

 

Table 3. Estimates of correlation between grain yield and its attributing traits in testcrosses 
derived from BIP1 population 

 

  DA DS ASI SPAD_60 SPAD_90 PH EH EPP GY 

DA 1 
 

              
DS -0.25* 1               
ASI -0.45* -0.36* 1             
SPAD_60 -0.14 -0.34 0.06 1           
SPAD_90 0.02 -0.13 0.19 0.56 1         
PH -0.09* -0.21* 0.12* 0.08 0.18** 1       
EH -0.12 -0.09 0.06 0.1 0.18** 0.19** 1     
EPP -0.24 -0.23 0.1 0.12* 0.28** 0.15** 0.09 1   
GY -0.36** -0.39* 0.06 0.34** 0.02 0.22** 0.09 0.60** 1 

DA = Days to 50% anthesis (d), DS = Days to 50% silking (d), ASI = Anthesis-silking interval(d), PH = Plant height (cm), 
SPAD_90 =SPAD at 90 DAS, EPP = Ears per plant, GY = Grain yield (t ha-1) 
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Fig. 1. Correlogram depicting estimates of correlation coefficients between yield and its 
component traits among testcrosses of BIP1 population 

 
Under heat stress conditions, grain yield was 
positively associated with plant height. However, 
as heat stress intensifies, plant height tends to 
decrease due to decreased internodal 
elongation, leading to a significant reduction in 
grain yield. This result was in agreement with the 
report of Kaur et al. [18] and Jodage et al. [19]. 
Dinesh et al. [20] and Jodage et al. [19] reported 
that plant height and ears per plant were 
positively associated with grain yield under heat 
stress condition. Therefore, it can be concluded 
that selecting for greater plant height and ears 
per plant could lead to improved grain yield 
under heat stress conditions. 

 
4. CONCLUSION 
 
The study on the genetic basis of heat stress 
tolerance in tropical maize has provided 
significant insights into the genetic variability and 
environmental interactions affecting yield-related 
traits under heat stress conditions. Through 
comprehensive ANOVA and correlation 
analyses, the research identified key traits such 
as plant height and ears per plant, which have 
strong positive associations with grain yield. The 
findings underscore the importance of these 
traits as selection criteria in breeding 
programmes aimed at developing                   
heat-tolerant maize varieties. The evaluation of 
testcrosses across different environments 
revealed Substantial genotype-by-environment 
interactions, highlighting the critical role of 
environmental factors in trait expression. The 

study successfully identified 18 elite testcrosses 
with improved heat tolerance that outperformed 
the superior check P1844 and holds potential for 
developing heat-tolerant maize hybrids and 
creating new cycles of inbred lines with 
enhanced yield potential. 
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