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ABSTRACT

Using the standard Reductive Perturbation Method a nonlinear Schrödinger equation is derived
to study the modulational instability of small amplitude ion acoustic waves in a collisionless
magnetized plasma composed of adiabatic warm ions, Maxwell-Boltzmann distribution of hot
electrons as well as Maxwell-Boltzmann distribution of cold electrons, and the plasma system
immersed in an external uniform static magnetic field (B0 = B0ẑ) propagating along the z−axis.
The instability condition and the maximum growth rate of instability have been investigated
analytically as well as numerically. We have studied the effect of each parameter of the present
plasma system on the maximum growth rate of instability. In particular, it is found that the maximum
growth rate of instability decreases with the increasing value of the ion cyclotron frequency with
some set of values of the parameters associated with the present plasma system. Again, we have
seen that the instability region decreases with the increasing value of the ion cyclotron frequency.
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1 INTRODUCTION

Numerous satellite observations in the Earth’s
magnetosphere, viz., FAST at the auroral region
[1, 2, 3, 4, 5], Viking Satellite [6, 7], S3-3 Satellite
[8], GEOTAIL [9] and POLAR mission [10, 11, 5]
confirm the coexistence of cold and hot electron
plasmas. Studies of two - electron - temperature
plasmas by these satellite observations of
moving localized potential variation regions are
very interesting field of research. On the basis
of laboratory experiments [12, 13, 14, 15], we
can say that two different temperatures (e.g.,
hot and cold) of electrons in plasma are also a
very interesting field of research. Several authors
[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
investigated the nonlinear properties of arbitrary
amplitude ion acoustic (IA) solitary waves in an
unmagnetized/magnetized plasma consisting of
Maxwell-Boltzmann distribution of hot electrons
and Maxwell-Boltzmann distribution of cold
electrons.

Kourakis and Shukla [29] investigated the oblique
modulational instability (MI) of IA envelop solitary
waves in a collisionless unmagnetized plasma
consisting of cold ions, isothermally distributed
cold and hot electrons. Esfandyari and Asgari
[30] investigated the oblique MI of IA waves
in a collisionless unmagnetized plasma system
consisting of warm ions, isothermally distributed
cold and hot electrons. Esfandyari et al. [31]
investigated the MI of IA waves in a collisionless
unmagnetized plasma system consisting of
adiabatic warm ions, two distinct temperatures
of isothermal electrons. Dalui et al. [32]
investigated the MI of IA waves in a collisionless
unmagnetized plasma system consisting of warm
adiabatic ions, nonthermal distribution of hot
electrons and Maxwell-Boltzmann distribution of
cold electrons.

In this paper, we have studied the modulational
instability of IA waves in a collisionless
magnetized plasma composed of adiabatic
warm ions, Maxwell-Boltzmann distribution of
hot electrons as well as Maxwell-Boltzmann

distribution of cold electrons. Here, also we have
considered the external uniform static magnetic
field (B0 = B0ẑ) propagating along the z−axis.
Using the standard Reductive Perturbation
Method (RPM) [33, 34], we have derived a three
dimensional nonlinear Schrödinger equation
(NLSE).

2 BASIC EQUATIONS

We consider a nonlinear behaviour of ion
acoustic waves in a collisionless magnetized
plasma composed of adiabatic warm ions,
Maxwell-Boltzmann distribution of hot electrons
as well as Maxwell-Boltzmann distribution of cold
electrons, and the plasma system immersed in an
external uniform static magnetic field (B0 = B0ẑ)
propagating along the z−axis. Therefore, the
basic equations of the present plasma system are
given by

∂n

∂t
+∇ · (nu) = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇ϕ+ ωc(u × ẑ)− σ

n
∇p, (2.2)

∇2ϕ = nce + nse − n, (2.3)

p = nγ , (2.4)

where ∇ ≡ ( ∂
∂x
, ∂
∂y
, ∂
∂z

).

Here n is number density of ions and normalized
by n0 (unperturbed ion number density), nce is
number density of hot electrons and normalized
by n0, nse is number density of cold electrons and
normalized by n0, ωc is ion cyclotron frequency
and normalized by ωpi(=

√
4πn0e2/m), u =

(u, v, w) is ion fluid velocity and normalized
by cs (=

√
KBTef/m), p is ion pressure

and normalized by n0KBTi, ϕ is electrostatic
potential and normalized by KBTef/e, (x, y, z)
is spatial variables and normalized by λDf (=√
KBTef/4πn0e2), and t is time and normalized

by ω−1
pi , where σ = Ti/Tef and γ = 5

3
. Again KB ,

m, −e and Ti are, respectively, the Boltzmann
constant, mass of an ion, charge of an electron
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and average ion temperature. And the expression
of Tef as follows:

Tef = (nc0 + ns0)

[
nc0
Tce

+
ns0
Tse

]−1

, (2.5)

where nc0, ns0, Tce and Tse are the unperturbed
number density of hot electrons, the unperturbed
number density of cold electrons, average
temperature of hot electrons and average
temperature of cold electrons respectively.

After the normalization, the expressions of the
number densities of isothermally distributed hot
and cold electrons can be written by as follow:

nce = n̄c0 exp[σcϕ], (2.6)

nse = n̄s0 exp[σsϕ], (2.7)

where n̄c0 = nc0
n0

, n̄s0 = ns0
n0

, σc =
Tef

Tce
and

σs =
Tef

Tse
.

Here, we consider the charge neutrality condition
of the plasma system as follows:

nc0 + ns0 = n0. (2.8)

Using (2.8), the equation (2.5) can be expressed
as

n̄c0σc + n̄s0σs = 1. (2.9)

Using the equations (2.5), (2.8) and (2.9), we get

n̄s0 =
nsc

1 + nsc
, n̄c0 =

1

1 + nsc
, (2.10)

σs =
1 + nsc
σsc + nsc

, σc = σsc
1 + nsc
σsc + nsc

, (2.11)

where σsc = Tse
Tce

and nsc = ns0
nc0

.

Expanding both nce and nse as given in (2.6)
and (2.7), using the equations (2.8) - (2.11) and
keeping the terms up to ϕ3, the Poisson equation
(2.3) can be written as follows:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
(2.12)

= h0 + h1ϕ+ h2ϕ
2 + h3ϕ

3 − n,

where h0, h1, h2 and h3 are given by

h0 = 1, h1 =
[
n̄s0σs + n̄c0σc

]
, (2.13)

h2 =
1

2

[
n̄s0σ

2
s + n̄c0σ

2
c

]
, (2.14)

h3 =
1

6

[
n̄s0σ

3
s + n̄c0σ

3
c

]
. (2.15)

3 DERIVATION OF THE NLSE

To investigate the MI of the IA waves in
a collisionless magnetized warm plasma
composed of adiabatic warm ions, Maxwell-
Boltzmann distribution of hot electrons as well as
Maxwell-Boltzmann distribution of cold electrons,
immersed in an external uniform static magnetic
field propagating along the z−axis, we have
considered the following stretching of the spatial
and time variables as follow:

ξ = ϵx, η = ϵy, ζ = ϵ(z − Vgt), τ = ϵ2t, (3.1)

where Vg is a constant and ϵ is a small
parameter. We consider the perturbation of the
field quantities as follow:

f = f
(0)

+
∞∑
l=1

ϵ
l

∞∑
a=−∞

f
(l)
a (ξ, η, ζ, τ) exp [iaψ], (3.2)

s = s
(0)

+

∞∑
l=1

ϵ
l+1

∞∑
a=−∞

s
(l)
a (ξ, η, ζ, τ) exp [iaψ], (3.3)

where

ψ = kz − ωt, (3.4)

k and ω are the wave number and the wave
frequency of the IA waves respectively. Also, f
= n, w, ϕ and s = u, v with f (0) = [1, 0, 0]T and
s(0) = [0, 0]T . Here also we have considered
the notations: f (l)

−a = f̄
(l)
a and s

(l)
−a = s̄

(l)
a where

‘bar’ represents the complex conjugate. Again,
for a = 0 and −a = 0 we obtain only one term in
both the perturbation expansions (3.2) and (3.3),
and therefore, we can consider f̄ (l)

0 = s̄
(l)
0 = 0 for

all l.

We have used the consistency conditions (n(1)
0 ,

u
(1)
0 , v(1)0 , w(1)

0 , ϕ(1)
0 ) = (0, 0, 0, 0, 0) and (n(l)

a ,
u
(l)
a , v(l)a , w(l)

a , ϕ(l)
a ) = (0, 0, 0, 0, 0) for l < |a| to

make a one - one correspondence between the
RPM and the multiple scale perturbation method
[35, 36].

Substituting the perturbation expansions for n,
u, v, w and ϕ, into the equations (2.1), (2.2),
(2.4) and (2.12) and collecting the terms of
different powers of ϵ, we get a sequence of
equations of different orders. From each equation
of a particular order, one can generate another
sequence of equations for different harmonics by
changing the values of a.
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3.1 First Order :
Collecting the first order (O(ϵ) = 1) zeroth
harmonic (a = 0) equations of continuity equation
for ions, the z-component of motion equation for
ions and the Poisson equation, we can conclude
that the first order zeroth harmonic equations are
trivially satisfied according to the first consistency
condition.

Solving the first order (O(ϵ) = 1) first harmonic
(a = 1) equations collecting from the continuity
equation for ions and the z-component of motion
equation for ions, we get

n
(1)
1 =

k2

W 2
ϕ
(1)
1 , w

(1)
1 =

kω

W 2
ϕ
(1)
1 , (3.5)

where W 2 = ω2 − σγk2.

The first order (O(ϵ) = 1) first harmonic (a = 1)
equation collecting from the Poisson equation, we
get

n
(1)
1 = (k2 + h1)ϕ

(1)
1 . (3.6)

Solving the equation (3.6) and the first equation
of (3.5), we get the following linear dispersion
relation (LDR) of IA waves:

ω2

k2
=

1

k2 + h1
+ γσ. (3.7)

3.2 Second Order :

3.2.1 First harmonic
Solving the second order (O(ϵ) = 2) first
harmonic (a = 1) equations collecting from the
continuity equation for ions and the z-component
of motion equation for ions, we get

n
(2)
1 =

k2

W2
ϕ
(2)
1 +

2ikω(Vgk − ω)

W4

∂ϕ
(1)
1

∂ζ
, (3.8)

w
(2)
1 =

kω

W2
ϕ
(2)
1 +

i(Vgk − ω)(ω2 + σγk2)

W4

∂ϕ
(1)
1

∂ζ
. (3.9)

Again, solving the first harmonic (a = 1)
equations collecting from the x-component and
y-component of the motion equation for ions, we
get

u
(1)
1 =

ω2

W 2(ω2
c − ω2)

[
iω
∂ϕ

(1)
1

∂ξ
− ωc

∂ϕ
(1)
1

∂η

]
,(3.10)

v
(1)
1 =

ω2

W 2(ω2
c − ω2)

[
iω
∂ϕ

(1)
1

∂η
+ ωc

∂ϕ
(1)
1

∂ξ

]
.(3.11)

From the second order (O(ϵ) = 2) first harmonic
(a = 1) equation collecting from the Poisson
equation, we get

n
(2)
1 = (k2 + h1)ϕ

(2)
1 − 2ik

∂ϕ
(1)
1

∂ζ
. (3.12)

Substituting (3.8) in the equation (3.12) and
eliminating n(2)

1 , we get

−
k2(k2 + h1)

W2

{
ω2

k2
−

(
γσ +

1

k2 + h1

)}
ϕ
(2)
1 (3.13)

+
2iωk2

W4

(
Vg −

ω2 −W4

ωk

)
∂ϕ

(1)
1

∂ζ
= 0.

The first term of the equation (3.13) is equal to
zero according to LDR (3.7) and the second term
of the equation (3.13) can be made equal to zero
if Vg follows the following relation

Vg =
ω2 −W 4

ωk
=
k

ω

[
h1

(k2 + h1)2
+ σγ

]
. (3.14)

Now, differentiating the LDR (3.7) with respect to
k, we get

∂ω

∂k
=
k

ω

[
h1

(k2 + h1)2
+ σγ

]
. (3.15)

We get from the equations (3.14) and (3.15)

Vg =
∂ω

∂k
, (3.16)

and consequently, the equation (3.13) is
identically satisfied if Vg is the group velocity of
the IA waves.

3.2.2 Second harmonic

Solving the second order (O(ϵ) = 2) second
harmonic (a = 2) equations collecting from the
continuity equation for ions, the z-component of
the motion equation for ions and the Poisson
equation, we get

(ϕ
(2)
2 , n

(2)
2 , w

(2)
2 ) = (Aϕ, An, Aw)[ϕ

(1)
1 ]2, (3.17)

where

Aϕ = − h2

3k2
+
k2ω2

2W 6
+ g1σγ

k4

6W 6
,(3.18)

An = (4k2 + h1)Aϕ + h2, (3.19)

Aw =
ω

k

[
An − k4

W 4

]
, (3.20)

and g1 = (γ − 2).
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3.2.3 Zeroth harmonic

Solving the zeroth harmonic (a = 0) equations
collecting from the continuity equation for ions,
the z-component of the motion equation for ions
and the Poisson equation, we get

(ϕ
(2)
0 , n

(2)
0 , w

(2)
0 ) = (Bϕ, Bn, Bw)|ϕ(1)

1 |2, (3.21)

where

Bϕ =
g1γσk

4 + k2ω(2kVg + ω) − 2h2W
4(V 2

g − γσ)

W4[h1(V 2
g − σγ) − 1]

, (3.22)

Bn = h1Bϕ + 2h2, (3.23)

Bw = VgBn − 2ωk3

W 4
. (3.24)

3.3 Third Order : First Harmonic
Solving the third order (O(ϵ) = 3) first harmonic (a = 1) equations collecting from the continuity
equation for ions and the z-component of the motion equation for ions, we can express n(3)

1 and w(3)
1

as a function of ϕ(1)
1 , ϕ(2)

1 and ϕ(3)
1 along with their different derivatives with respect to ξ, η, ζ and τ .

In particular, n(3)
1 can be written as follows:

n
(3)
1 =

k2

W 2
ϕ
(3)
1 + 2ik

ω(Vgk − ω)

W 4

∂ϕ
(2)
1

∂ζ
− i

2k2ω

W 4

∂ϕ
(1)
1

∂τ

+
ω4

W 4(ω2
c − ω2)

(∂2ϕ
(1)
1

∂ξ2
+
∂2ϕ

(1)
1

∂η2

)
− (Vgk − ω)

W 6

(
3Vgkω

2 − 3σγk2ω − ω3 + σγVgk
3
)∂2ϕ

(1)
1

∂ζ2

+

[
2
k3ω

W 4
(Aw +Bw) +

k2

W 4
(ω2 + σγg1k

2)(An +Bn) + σγg2
k8

W 8

]
|ϕ(1)

1 |2ϕ(1)
1 , (3.25)

where g2 = (γ−2)(γ−3)
2

.

The third order (O(ϵ) = 3) first harmonic (a = 1) equation collecting from the Poisson equation, we
get

n
(3)
1 = (k2 + h1)ϕ

(3)
1 − 2ik

∂ϕ
(2)
1

∂ζ
− ∂2ϕ

(1)
1

∂ξ2
− ∂2ϕ

(1)
1

∂η2
− ∂2ϕ

(1)
1

∂ζ2

+{2h2(Aϕ +Bϕ) + 3h3}|ϕ(1)
1 |2ϕ(1)

1 . (3.26)

Now, eliminating n(3)
1 from the equations (3.26) and (3.25), we get

−k
2(k2 + h1)

W 2

{
ω2

k2
−

(
γσ +

1

k2 + h1

)}
ϕ
(3)
1 +

2iωk2

W 4

(
Vg −

ω2 −W 4

ωk

)
∂ϕ

(2)
1

∂ζ

−i2k
2ω

W 4

∂ϕ
(1)
1

∂τ
+

( ω4

W 4(ω2
c − ω2)

+ 1
)(∂2ϕ

(1)
1

∂ξ2
+
∂2ϕ

(1)
1

∂η2

)
+

[
1−

k4(Vg − ω
k
)

W 6
(3Vg

ω2

k2
− 3γσ

ω

k
− ω3

k3
+ γσVg)

]
∂2ϕ

(1)
1

∂ζ2

+

[
2
k3ω

W 4
(Aw +Bw) +

k2

W 4
(ω2 + σγg1k

2)(An +Bn) + σγg2
k8

W 8

−3h3 − 2h2(Aϕ +Bϕ)

]
|ϕ(1)

1 |2ϕ(1)
1 = 0. (3.27)

5
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Using the equations (3.7) and (3.14), the equation (3.27) can be written as

i
∂ϕ

(1)
1

∂τ
+ P

∂2ϕ
(1)
1

∂ζ2
+Q|ϕ(1)

1 |2ϕ(1)
1 −R

(∂2ϕ
(1)
1

∂ξ2
+
∂2ϕ

(1)
1

∂η2

)
= 0, (3.28)

where

P = − W 4

2k2ω

[
1− k4

W 6

(
Vg −

ω

k

)(
3Vg

ω2

k2
− 3γσ

ω

k
− ω3

k3
+ γσVg

)]
, (3.29)

Q = − W 4

2k2ω

[
2
k3ω

W 4
(Aw +Bw) +

k2

W 4
(ω2 + σγg1k

2)(An +Bn) + σγg2
k8

W 8

− 3h3 − 2h2(Aϕ +Bϕ)

]
, (3.30)

R =
W 4

2k2ω

[
ω4

W 4(ω2
c − ω2)

+ 1

]
. (3.31)

4 MODULATIONAL INSTA-
BILITY

To study the modulational instability of IA
waves in a collisionless magnetized plasma, we
assume the IA wave is propagating along a
direction having direction cosines (l1,m1, n1) and
consequently, we take the transformation

ξ′ = l1ξ +m1η + n1ζ, τ
′ = τ, (4.1)

where l21 +m2
1 + n2

1 = 1.

Substituting (4.1) in equation (3.28) and dropping
the prime from the independent variables ξ′ and
τ ′, we get

i
∂ϕ

(1)
1

∂τ
+ P1

∂2ϕ
(1)
1

∂ξ2
+Q|ϕ(1)

1 |2ϕ(1)
1 = 0, (4.2)

where

P1 = [Pn2
1 −R(l21 +m2

1)],

= [(P +R)n2
1 −R]. (4.3)

Now, we see that ϕ(1)
1 = ϕ0e

i∆τ is a steady state
solution of the NLSE (4.2) if ∆ = Q|ϕ0|2, where
ϕ0 is a constant.

Again, we take ϕ(1)
1 as

ϕ
(1)
1 = (ϕ0 + δϕ)ei∆τ , where |δϕ| << |ϕ0|. (4.4)

Substituting (4.4) into the equation (4.2) and
finally, linearizing the equation with respect to the

perturbed quantity δϕ, we get

i
∂δϕ

∂τ
+ P1

∂2δϕ

∂ξ2
+Q|ϕ0|2(δϕ+ δϕ) = 0, (4.5)

where complex conjugate of δϕ is δϕ.

Substituting δϕ = U + iV into the equation
(4.5) and then separating into real and imaginary
parts, we get

−∂V
∂τ

+ P1
∂2U

∂ξ2
+ 2QU |ϕ0|2 = 0, (4.6)

∂U

∂τ
+ P1

∂2V

∂ξ2
= 0, (4.7)

where U(ξ, τ) and V (ξ, τ) are real functions of ξ
and τ .

Again, we consider the form of U(ξ, τ) and
V (ξ, τ) as given by the following equations:

U = U0 exp
[
i(Kξ − Ωτ)

]
+ c.c. , (4.8)

V = V0 exp
[
i(Kξ − Ωτ)

]
+ c.c. (4.9)

Substituting U(ξ, τ) and V (ξ, τ) into the
equations (4.6) and (4.7), we get

iΩV0 + (−P1K
2 + 2Q|ϕ0|2)U0 = 0, (4.10)

iΩU0 + P1K
2V0 = 0. (4.11)

For the non trivial solution of the above linear
equations (4.10) and (4.11) for the unknown
quantities U0 and V0, we get

Ω2 = [P1K
2]2

(
1− 2Q|ϕ0|2

P1K2

)
. (4.12)

6
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This is the modulated nonlinear dispersion
relation.

If 1 − 2Q|ϕ0|2
P1K2 ≥ 0, then from the relation (4.12),

we can get real values of Ω and consequently,
the modulated IA wave is stable. From the
expression of Ω2 as given in the equation (4.12),
we see that Ω2 is strictly positive for P1Q <
0. Therefore, the modulated IA wave is always
stable for all P1Q < 0. On the other hand, if
P1Q > 0, then Ω2 ≥ 0 when K ≥ Kc or Ω2 < 0
when K < Kc, where Kc is given by as follows:

Kc =

√
2Q|ϕ0|2
P1

. (4.13)

Therefore, we see that the modulated IA wave
is stable, i.e., Ω2 ≥ 0 when either P1Q < 0 or
K ≥ Kc whenever P1Q > 0.

On the other hand, if P1Q > 0 and K < Kc then
Ω2 < 0 and all the roots of the equation (4.12)
for the unknown Ω are purely imaginary and
consequently, the modulated IA wave is unstable.

The modulational growth rate of instability (Γ) is
given by

Γ = [P1K
2]2

[2Q|ϕ0|2

P1K2
− 1

]1/2
. (4.14)

Therefore, the maximum growth rate of instability
(Γmax) is obtained by ∂Γ

∂K
= 0. Thus, we have

Γmax = |Q||ϕ0|2, (4.15)

when K =
√

Q|ϕ0|2
P1

.

5 SUMMARY & DISCUSSIONS

0 4
0

1
ω

c
=0.01

n 1 →

0 4
0

1
ω

c
=0.2

0 4
0

1
ω

c
=0.4

k →

n 1 →

0 4
0

1
ω

c
=0.6

k →

P
1
Q<0

(c)

P
1
Q<0

P
1
Q>0

P
1
Q<0

P
1
Q<0

P
1
Q>0

P
1
Q>0

(d)

(b)(a)

P
1
Q>0

Fig. 1. When P1Q = 0, n1 has been plotted against k for different values of ωc with γ = 5/3,
σ = 0.001, nsc = 0.25 and σsc = 0.25.
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n1 = 0.7 and ωc = 0.2.

8



Dalui and Bandyopadhyay; PSIJ, 23(3): 1-13, 2019; Article no.PSIJ.51498

0.5 0.58 1.3 1.4
0

100
γ=5/3, σ=0.001 n

sc
=0.25, σ

sc
=0.5

P
1 →

0.5 0.58 1.3 1.4
0

0.5
Q

 →

0.5 0.58 1.3 1.4
0

0.5

Γ m
ax

/|φ
0|2  →

k →

(a)

(b)

(c)

Fig. 4. P1, Q and Γmax/|ϕ0|2 have been plotted against k in (a), (b) and (c) respectively for
n1 = 0.7 and ωc = 0.5.

0 0.204 1.3 1.4
0

4,000

γ=5/3, σ=0.001 n
sc

=0.25, σ
sc

=0.5

P
1 →

0 0.204 1.3 1.4
0

1.5

Q
 →

0 0.204 1.3 1.4
0

1.5

Γ m
ax

/|φ
0|2  →

k →

(b)

(c)

(a)

Fig. 5. P1, Q and Γmax/|ϕ0|2 have been plotted against k in (a), (b) and (c) respectively for
n1 = 0.25 and ωc = 0.2.

9



Dalui and Bandyopadhyay; PSIJ, 23(3): 1-13, 2019; Article no.PSIJ.51498

0.5 0.58 1.3 1.4
0

200
γ=5/3, σ=0.001 n

sc
=0.25, σ

sc
=0.5

P
1 →

0.5 0.58 1.3 1.4
0

0.6

Q
 →

0.5 0.58 1.3 1.4
0

0.6

k →

Γ m
ax

/|φ
0|2  →

(a)

(b)

(c)

Fig. 6. P1, Q and Γmax/|ϕ0|2 have been plotted against k in (a), (b) and (c) respectively for
n1 = 0.25 and ωc = 0.5.

It is simple to check that P1Q is a function of k,
nsc, σsc, ωc, n1, σ and γ. Thus, we can say that
P1Q is a function of k and n1 for fixed values of
nsc, σsc, ωc, σ, γ and consequently, P1Q = 0
gives a functional relation between k and n1. This
functional relation between k and n1 is plotted in
figure 1 and figure 2 when P1Q = 0 and the other
values of the parameters as mentioned in figure
caption.

In figure 1, n1 has been plotted against k when
P1Q = 0 for different values of ωc viz., (a) for
ωc = 0.01, (b) for ωc = 0.2, (c) for ωc = 0.4
and (d) for ωc = 0.6. Here, the other values
of the parameters are nsc = 0.25, σsc = 0.25,
γ = 5/3 and σ = 0.001. In figure 1, the
shaded regions are the region P1Q < 0. In the
shaded regions, i.e., P1Q < 0, Ω2 > 0 and
consequently, the modulated IA wave is stable for
any point (k, n1) lies within the shaded regions of
the figure 1. Again, the regions P1Q > 0 can
be divided into two parts K > Kc and K < Kc

where Ω2 > 0 or Ω2 < 0 according to weather
K > Kc or K < Kc. Therefore, the modulated
IA wave is stable for any point (k, n1) lies within
the region P1Q > 0 with the restriction K > Kc

and the modulated IA wave is unstable for any
point (k, n1) lies within region P1Q > 0 with the
restriction K < Kc. From figure 1, we see that
the region P1Q > 0 decreases with increasing
ωc, i.e., instability state of the modulated IA wave
decreases with increasing ωc. In figure 1(a), we
can not express n1 as a function of k from the
relation P1Q = 0, within the interval 0 < k <
0.012. In figure 1(b), we can not express n1 as
a function of k from the relation P1Q = 0, within
the interval 0 < k < 0.204. In figure 1(c), we can
not express n1 as a function of k from the relation
P1Q = 0, within the interval 0 < k < 0.432. In
figure 1(d), we can not express n1 as a function
of k from the relation P1Q = 0, within the interval
0 < k < 0.736. Also, from figure 5, we see that
the region P1Q > 0 is bounded and this region
is bounded by the curves n1 = 1 and P1Q = 0
whereas the region P1Q < 0 is also bounded
by the curves k = 0, k = 3.817, n1 = 0 and
P1Q = 0.

In figure 2, n1 has been plotted against k when
P1Q = 0 for different values of ωc viz., (a) for
ωc = 0.01, (b) for ωc = 0.2, (c) for ωc = 0.4 and
(d) for ωc = 0.6. Here, the other values of the
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parameters are nsc = 0.25, σsc = 0.25, γ = 5/3
and σ = 0.1. In figure 2, the regions P1Q > 0
are shaded. In the region P1Q < 0, Ω2 > 0 and
consequently, the modulated IA wave is stable for
any point (k, n1) lies within the region P1Q < 0
of figure 2. Again, all the regions P1Q > 0 can
also be divided into two regions, viz., K > Kc

and K < Kc where Ω2 > 0 if K > Kc and
Ω2 < 0 if K < Kc. Therefore, the modulated IA
wave is stable for any point (k, n1) lies within the
region P1Q > 0 with the restriction K > Kc and
the modulated IA wave is unstable for any point
(k, n1) lies within the region P1Q > 0 with the
restriction K < Kc. From figure 2, we see that
the region P1Q > 0 decreases with increasing
ωc, i.e., instability state of the modulated IA wave
decreases with increasing ωc. In figure 2(a), we
can not express n1 as a function of k from the
relation P1Q = 0, within the interval 0 < k <
0.008. In figure 2(b), we can not express n1 as
a function of k from the relation P1Q = 0, within
the interval 0 < k < 0.124. In figure 2(c), we can
not express n1 as a function of k from the relation
P1Q = 0, within the interval 0 < k < 0.248. In
figure 2(d), we can not express n1 as a function
of k from the relation P1Q = 0, within the interval
0 < k < 0.38. Also, from figure 2, we see that
the region P1Q > 0 is bounded and this region
is bounded by the curves n1 = 1 and P1Q = 0
whereas the region P1Q < 0 is also bounded
by the curves k = 0, k = 1.844, n1 = 0 and
P1Q = 0.

Again, considering the figure 1 and figure 2 we
see that if we increase the value of σ then we
see that the instability state is decreasing and the
stability regions are increasing.

P1, Q and Γmax/|ϕ0|2 have been plotted against
k in figure 3(a), figure 3(b) and figure 3(c)
respectively for γ = 5/3, σ = 0.001, nsc = 0.25,
σsc = 0.5, n1 = 0.7 and ωc = 0.2. Again, P1,
Q and Γmax/|ϕ0|2 have been plotted against k in
figure 5(a), figure 5(b) and figure 5(c) respectively
for γ = 5/3, σ = 0.001, nsc = 0.25, σsc = 0.5,
n1 = 0.7 and ωc = 0.5. Clearly, we have seen
that figure 3 and figure 4 are characteristically
different. If ωc ∈ (0, 0.405) then we have figures
look like figure 4 and if 0.406 < ωc the we have
figures look like figure 4. In the interval 0.84 <
k < 1.3 of figure 4, P1Q < 0, i.e., the modulated
IA wave is stable in the interval of k consequently,

we get a jump type of discontinuity. So, we have
seen that Γmax/|ϕ0|2 decreases with increasing
ωc.

P1, Q and Γmax/|ϕ0|2 have been plotted against
k in figure 5(a), figure 5(b) and figure 5(c)
respectively for γ = 5/3, σ = 0.001, nsc = 0.25,
σsc = 0.5, n1 = 0.25 and ωc = 0.2. And
again, P1, Q and Γmax/|ϕ0|2 have been plotted
against k in figure 6(a), figure 6(b) and figure 6(c)
respectively for γ = 5/3, σ = 0.001, nsc = 0.25,
σsc = 0.5, n1 = 0.25 and ωc = 0.5. Finally,
from figure 5 and figure 6 we have seen that
Γmax/|ϕ0|2 decreases with increasing ωc.

6 CONCLUSIONS

We have studied the MI of IA waves in
a collisionless magnetized plasmas composed
of adiabatic warm ions, Maxwell-Boltzmann
distribution of hot electrons as well as Maxwell-
Boltzmann distribution of cold electrons. Here
also we have considered the external uniform
static magnetic field (B0 = B0ẑ) propagating
along the z−axis. We have derived a NLSE using
RPM [34, 33]. Finally, we have observed the
following results:

1. Analytically we have derived the instability
condition and the maximum growth rate
of instability (Γmax) of the modulated IA
waves.

2. Numerically we have investigated the
instability condition as well as Γmax with
respect to the different parameters nsc,
σsc, σ, ωc and n1.

3. Numerically, we have seen that the
phase velocity (ω

k
) as well as the group

velocity (Vg = ∂ω
∂k

) both are decreasing
functions of k for any feasible value of the
parameters. For a fixed value of k = 4,
both the phase velocity as well as the
group velocity of the IA wave takes a very
small numerical value.

4. P1Q < 0 =⇒ Ω2 > 0. Therefore, the IA
wave is modulationally stable for all P1Q <
0. On the other hand, if P1Q > 0, then
Ω2 ≥ 0 or Ω2 < 0 according to whether
K ≥ Kc or K < Kc. Therefore, the IA
wave is modulationally stable for P1Q > 0
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and with the restriction K ≥ Kc and the IA
wave is modulationally unstable for P1Q >
0 and with the restriction K < Kc.

5. We have seen that the region P1Q >
0 decreases with increasing ωc, i.e.,
instability state of the IA waves is
decreases with increasing ωc. Also, if we
increase the value of σ, i.e. if we increase
the ion temperature then we have seen
that the instability state is decreasing and
the stability regions are increasing.

6. We have seen that the region of existence
of Γmax/|ϕ0|2 decreases with increasing
ωc. As well as Γmax/|ϕ0|2 decreases
with increasing ωc. Finally, we have seen
that the region of existence of Γmax/|ϕ0|2
increases with increasing n1.
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