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Abstract

In the present work, a fractional-order differential equation based on the Susceptible-Infected-
Recovered (SIR) model with nonlinear incidence rate in a continuous reactor is proposed. A
profound qualitative analysis is given. The analysis of the local and global stability of equilibrium
points is carried out. It is proved that if the basic reproduction number R > 1 then the
disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if R ≤ 1,
then the disease-free equilibrium is globally asymptotically stable. Finally, some numerical tests
are done in order to validate the obtained results.
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1 Introduction

The first epidemiological models appeared at the beginning of the 20th century [1, 2]. It was
in 1927 that Kermack and McKendrick proposed the first comprehensive model for modeling an
epidemic. The main idea comes from the fact that in discrete time, the number of new infections is
proportional to the product of the number of infected and susceptible.

The spread of an infectious agent in a population is a dynamic phenomenon: the numbers of
susceptible and infected individuals evolve over time, depending on the contacts in which the agent
moves from an infected individual to a healthy individual not immune, infecting it in turn. Such
a phenomenon can be studied by modeling it with differential equations and by determining its
behavior through the numerical resolution of these equations.

The qualitative study of epidemiological models such as the ”SIR” model is and has been a field of
intense and varied research [3, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12]. An excellent review of the literature,
but not very recent, was made by Hethcote [2].

In this paper, I revisit the classical ”SIR” epidemic model in a chemostat but with a general
nonlinear saturated incidence rate and by considering the fractional-order time derivative instead
of the classical ordinary differential equations.

The chemostat is an experimental device used to analyze the growth of populations of microorganisms
(Fig. 1). It was introduced simultaneously by A. Novick and L. Szilard [13] in the 1936s and by
J. Monod [14] in the 1950s. The mathematical growth of a species of bacteria in the chemostat is
due to C. Spicer [15]. From this date there are many articles relating to the competition of several
species.

In a chemostat, an epidemic model can also be understood as a competition model where various
pathogen strains compete for the the same susceptible host as only resource [16, 17]. Such models
predict the strain with the largest basic reproduction number to be the winner. In [17], it is
proved that this prediction amount to the same if the per capita functional responses of infective
individuals to the density of susceptible are proportional to each other but that they are different
if the functional responses are non-proportional.

The important aspect in the model that considered by many researchers to interpret the dynamical
behaviour of the infectious disease is the susceptible-infected-recovered model (SIR) introduced by
Kermack and McKendrick in 1927 [18]. The considered population here is subdivided into three
subgroups of individuals. Each group has different epidemiological significance: the compartments of
Susceptible, the compartment of Infected and the compartment of Recovered, which are respectively
represented by the following letters S, I andR. The model developed here has then three components,
S, I and R known as ’SIR’ model of infectious disease transmission in a chemostat. I neglect all
individuals natural mortality other than one caused by the disease concerned by this study and I
take into account the dilution rate (D) only. Only susceptible individuals are introduced into the
reactor with a constant rate D and an input individual number Sin (Fig. 1). Note that Sin can
be seen as the new cases infected per unit of time by one infective individual. DSin describes the
rate of recruitment of susceptible (as input), this includes newborns who are born susceptible in the
type of infection considered. γ is the rate at which infectious agents recover their health. (D+γ)−1

describes the average infection period.

The epidemic is spread by contacts between infected individuals and susceptible individuals. The
number of these contacts is proportional to S and I, respective populations of susceptible and
infected individuals. The patients recover on average after a time 1/γ, they are then immune and
can no longer infect other people or be re-infected.
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S I R

D Sin D (S, I,R)

Fig. 1: ”SIR” epidemic model in a continuous reactor

This paper is organized as follows. In section 2, a fractional-order mathematical dynamical
system involving deterministic ”SIR” epidemic model with nonlinear incidence rate in a continuous
reactor is considered. The analysis of the local and global stability of equilibrium points is carried
out. It is proved that, for the deterministic model, if R > 1, then the disease-persistence (endemic)
equilibrium is globally asymptotically stable. However, if R ≤ 1, then the disease-free equilibrium
is globally asymptotically stable. Finally, in section 4, some numerical tests are done in order to
validate the obtained results.

2 Mathematical Model and Properties

Notions of non-integer differentiation and integration are an effective tool for characterizing the
behavior of a large category of infinite dimensional dynamical systems. The applications are
numerous, whether in electricity, heat, chemistry or signal processing. Fractional calculus is a
domain of mathematics whose purpose is to extend the definitions of traditional derivatives to non-
integer orders. The fractional derivative represents the generalization to non-integer orders of the
derivative [19], just like the real exponent power function which corresponds to the ”extension” of the
full exponent power function. Several definitions have been proposed for the non-integer derivation.
It should be noted, however, that these definitions do not always lead to identical results but are
globally equivalent for a large number of functions. In this paper, the Caputo derivative approach
will be used due to its application advantages. The most important advantage is that the initial
conditions for fractional order is the same as that of integer order, avoiding solvability issues.

I first give some definitions that I use later in this paper.

For an arbitrary function f(t), the definition of the Caputo fractional derivative is defined as follows:

Dα
Cf(t) = Jn−α[f (n)(t)] =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds (2.1)

where n is the first integer which is greater than α.

The Laplace transform of the Caputo fractional derivative is given by

L(Dα
Cf(t)) = λαF (s)−

n−1∑
k=0

f (k)(0)λα−k−1. (2.2)
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The Mittag-Leffler function is defined by the following infinite power series:

Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)
. (2.3)

The Laplace transform of the Mittag-Leffler function is given by

L[tβ−1Eα,β(±αtα)] =
sα−β

sα ∓ α
. (2.4)

Let α, β > 0 and z ∈ Z, and the Mittag-Leffler functions satisfy the equality given by [20, Theorem
4.2]

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
. (2.5)

Dα denotes the Caputo fractional derivative of order 0 < α ≤ 1 defined for an arbitrary function
f(t) by [21] as follows:

Dαf(t) =
1

Γ(1− α)

∫ t

0

(t− x)−αf ′(x)dx.

The considered mathematical model is given by the following three-dimensional dynamical system
of Fractional Differential Equations (FDEs):


DαS(t) = D Sin −DS(t)− µ(I(t))S(t),

DαI(t) = µ(I(t))S(t)− (D + γ)I(t)

DαR(t) = γI(t)−DR(t)

(2.6)

with positive initial condition (S0, I0, R0) ∈ R3
+ .

µ represents the saturated incidence rate and it is assumed to satisfy the following Assumption.

Assumption 1. µ is non-negative C1(R+), increasing bounded concave function such that µ(0) = 0,
µ′(I) > 0 and µ′′(I) < 0.

Remark 1. • The saturated incidence rate satisfies µ(I) ≤ µ′(0)I,∀I ≥ 0 and µ(I) > µ′(I)I, ∀I >
0.

• The classical Monod function can be used to express transmission rate of infection from
infected individuals to susceptible ones.

µ(I) =
µ̄I

k + I
(2.7)

µ̄ represents the transmission rate of the disease. k is the Monod constant which is equal to

the number of infected individuals when the saturated incidence rate is
ū

2
.

Given a disease, a fundamental question is whether it can spread in the population. This
amounts to calculating the average number of individuals that an infectious individual can infect,
as long as it is contagious. This number is called the basic reproduction rate [11], and is denoted R.
It is considered in a population where all individuals are healthy, except the infectious individual
introduced. If R < 1, then an individual infects on average less than one, which means that the
disease will disappear from the population eventually. In contrast, if R > 1, then the disease can
spread in the population. Determining R according to the parameters of the model thus makes it
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possible to calculate the conditions under which the disease is spreading.
In our case, the basic reproduction number for the system (2.6), denoted by R, is given by:

R =
µ′(0)Sin

(D + γ)
(2.8)

R3
+, the closed non-negative cone in R3, is positively invariant [22, 23, 24, 25, 4, 26, 27, 28, 29,

30, 31, 32, 33] for the system (2.6). More precisely,

Proposition 1.

1. For all initial condition (S0, I0, R0) in R3
+ , the solution of system (2.6) is bounded and has

positive components and thus is defined for all t > 0.

2. System (2.6) admits a positive invariant attractor set of all solution given by Ω = {(S, I,R) ∈
R3

+ / S + I +R ≤ Sin}.

Proof. 1. The positivity of the solution is proved by the fact that :
Since S = 0 then DαS = DSin > 0, if I = 0 then DαI = 0, and if R = 0 then DαR = γI > 0.
Next I have to prove the boundedness of solutions of (2.6). By adding three equations of
system (2.6), one obtains, for T = S + I +R−Sin, a single equation for the total number of
individuals :

DαT (t) = DαS(t) +DαI(t) +DαR(t) = D(Sin − S − I −R) = −DT.

I solve the above equation by applying the Laplace transform (2.2) , I obtain

λαL(T (t))− λα−1T (0) = −DL(T (t))

that can be written as below using the Laplace transform properties (2.4) and equality (2.5),

(λα +D)L(T (t)) = λα−1T (0).

Then

L(T (t)) =
λα−1

(λα +D)
T (0)

≤ tα−1Eα,α(−Dtα)T (0)

where 0 < α ≤ 1 and Ea,b(z) is the two parameter Mittag-Leffler function with parameter a
and b [20]. Since Mittag-Leffler function is an entire function, thus Eα,α(−Dtα) is bounded
for all t > 0. Therefore I have

lim
t7→+∞

T (t) ≤ 0 (2.9)

Thus, closed set Ω is positively invariant and attracting to the system (2.6).

Since all terms of the sum are positive, then the solution of system (2.6) is bounded.

2. The invariance of the attractor Ω is simply deduced from inequality (2.9) .

Remark 2. Since the compartment R doesn’t affect equations of S and I compartments, it is
sufficient to consider only both first equations of system (2.6).

DαS(t) = D Sin −DS(t)− µ(I(t))S(t),

DαI(t) = µ(I(t))S(t)− (D + γ)I(t)
(2.10)

with positive initial condition (S0, I0) ∈ R2
+ .
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Define E∗ = (S∗, I∗) as an endemic equilibrium of system (2.10) where S∗ > 0 and I∗ > 0
satisfying 

DSin = DS∗ + µ(I∗)S∗,

µ(I∗)S∗ = (D + γ)I∗.
(2.11)

Regarding the characteristic equations and characteristic roots of the proposed model (2.10),
it is easy to prove the following proposition.

Proposition 2. • If R ≤ 1 then system (2.10) admits a disease-free equilibrium Ē = (Sin, 0) as
the unique equilibrium.

• If R > 1 then system (2.10) admits only two equilibrium: a unique disease-free equilibrium
Ē = (Sin, 0) and a unique disease-persistence (endemic) equilibrium E∗ = (S∗, I∗).

The value ofR has a great importance in determining whether there exists an endemic equilibrium
or not (as in [3], Theorem 2.3).

Theorem 1. • If R < 1, then the disease-free equilibrium Ē is locally asymptotically stable.

• IfR > 1, then the disease-free equilibrium Ē is unstable and the disease-persistence equilibrium
E∗ is locally asymptotically stable.

Proof. The Jacobian matrix at a point (S, I) is given by:

J =

 −D − µ(I) −µ′(I)S

µ(I) µ′(I)S − (D + γ)


The Jacobian matrix evaluated at Ē is then given by:

J̄ =

 −D −µ′(0)Sin

0 µ′(0)Sin − (D + γ)

 =

 −D −µ′(0)Sin

0 (D + γ)(R− 1)


J̄ admits two eigenvalues given by λ1 = −D < 0 and λ2 = (D + γ)(R− 1). It follows that

• If R < 1, then λ2 < 0 and Ē is then locally asymptotically stable

• If R > 1, then λ2 > 0 and Ē is unstable.

The Jacobian matrix evaluated at E∗ is then given by:

J∗ =

 −D − µ(I∗) −µ′(I∗)S∗

µ(I∗) µ′(I∗)S∗ − (D + γ)

 .

The associated characteristic polynomial to J∗ is given by

P (λ) = λ2 +A1λ+A0

where A0 and A1 are given by
A0 = (D + γ)(D + µ(I∗))−Dµ′(I∗)S∗ = (D + γ)µ(I∗) +

(D + γ)

µ(I∗)

(
µ(I∗)− µ′(I∗)I∗

)
,

A1 = 2D + γ + µ(I∗)− µ′(I∗)S∗ = D + µ(I∗) +
(D + γ)

µ(I∗)

(
µ(I∗)− µ′(I∗)I∗

)
.
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As µ is a concave function and µ(I∗) > µ′(I∗)I∗, it follows that A0 > 0 and A1 > 0 and thus using
Routh-Hurwitz criterion, both eigenvalues have negative real parts.
Thus, if R > 1, then E∗ exists and it is always locally asymptotically stable. This completes the
proof.

The global stability of the disease-free equilibrium Ē and the disease-persistence equilibrium
E∗ are given in the following theorem.

Theorem 2. • If R ≤ 1, then the disease-free equilibrium Ē is globally asymptotically stable.

• If R > 1, then the disease-persistence equilibrium E∗ is globally asymptotically stable.

Proof. Let (S, I) to be a solution of the system (2.10) and define the Lyapunov function

V1(t) = S(t) + I(t)− S∗ ln(
S

S∗ )−
∫ I(t)

I∗

µ(I∗)

µ(η)
dη

The equilibrium E∗ is the only internal stationary point and minimum point of V1(t), and
V1(t) 7→ +∞ at the boundary of the positive quadrant. Consequently, E∗ is the global minimum
point, and the function is bounded from below.

The Caputo fractional derivative of V1(t) along solution of system (2.10) is given by

DαV1(t) =
(
1− S∗

S

)
DαS(t) +

(
1− µ(I∗)

µ(I)

)
DαI(t)

=
(
1− S∗

S

)(
D Sin −DS − µ(I)S

)
+

(
1− µ(I∗)

µ(I)

)(
µ(I)S − (D + γ)I

)
=

(
1− S∗

S

)(
DS∗ + µ(I∗)S∗ −DS − µ(I)S

)
+

(
1− µ(I∗)

µ(I)

)(
µ(I)S − (D + γ)I

)
=

S − S∗

S

(
D(S∗ − S) + (µ(I∗)S∗ − µ(I)S)

)
+

µ(I)− µ(I∗)

µ(I)

(
µ(I)S − (D + γ)I

)

= −D
(S − S∗)2

S
+ (D + γ)I∗

µ(I∗)− µ(I)

µ(I)

( I

I∗
− µ(I)

µ(I∗)

)
− (D + γ)I∗

(S∗

S
− 1− ln(

S∗

S
)
)

On the one hand, µ is concave and then

• µ(I)

µ(I∗)
≥ I

I∗
for all 0 ≤ I ≤ I∗ and

• µ(I)

µ(I∗)
≤ I

I∗
for all I ≥ I∗.

Then
µ(I∗)− µ(I)

µ(I)

( I

I∗
− µ(I)

µ(I∗)

)
≤ 0 for all I ≥ 0. On the other hand, x − 1 − ln(x) > 0 for all

x > 0 thus

•
(S∗

S
− 1− ln(

S∗

S
)
)
> 0, ∀S ≥ 0

Since all parameters of the model are non-negative, it follows that DαV1 ≤ 0. Therefore, all the
conditions of [34] are satisfied. This proves that E∗ is globally asymptotically stable where R > 1.

Let (S, I) to be a solution of the system (2.10) and define the Lyapunov function

V2(t) = S(t) + I(t)− Sin ln(
S

Sin
),
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The equilibrium Ē is the only internal stationary point and minimum point of V2(t), and V2(t) 7→
+∞ at the boundary of the positive quadrant. Consequently, Ē is the global minimum point, and
the function is bounded from below.

The Caputo fractional derivative of V2(t) along solution of system (2.10) is given by

DαV2(t) =
(
1− Sin

S

)
DαS(t) +DαI(t)

=
(
1− Sin

S

)(
D Sin −DS − µ(I)S

)
+ µ(I)S − (D + γ)I

=
S − Sin

S

(
D (Sin − S)− µ(I)S

)
+ µ(I)S − (D + γ)I

= −D(Sin − S)2

S
+ (D + γ)

( Sin

(D + γ)
µ(I)− I

)
Note that Assumption 1 ensure that

µ(I) ≤ µ′(0)I, ∀ I > 0.

Then

DαV2(t) ≤ −D(Sin − S)2

S
+ (D + γ)

( Sin

(D + γ)
µ′(0)− 1

)
I = −D(Sin − S)2

S
+ (D + γ)(R− 1)I .

Since all parameters of the model are non-negative and R < 1, it follows that DαV2 ≤ 0.
Therefore, again, using [34], {Ē} is globally asymptotically stable for R < 1.

Now, if R = 1, then DαV2 = 0 if and only if S = Sin and the largest compact invariant
set in {(S, I) ∈ Ω : DαV2 = 0} is the singleton {Ē}. Therefore, by the LaSalle’s invariance
principle (see, for instance, [34]), {Ē} is globally asymptotically stable (for other applications, see
[26, 27, 28, 31, 33]).

3 Numerical Simulations

The system (2.6) has the following form

Dα
Cy(t) = f(t, y(t)), y(0) = y0 (3.1)

There are several analytical and numerical methods have been proposed to solve such systems
(3.1). Diethelm and Freed [35] proposed the well-known algorithm called FracPECE, using the
classical predict, evaluate, correct, evaluate (PECE) type approach, but modified in order to solve
fractional-order derivative equations [36]. This approach combines fractional Adams-Bashforth-
Moulton methods.

Suppose that the time interval [0, T ] is discretized uniformly into N sub-intervals; define tj =
j dt, n = 0, 1, · · · , N , where dt = T/N is the time step. Let yj be the exact value of a function y(t)
at time step tj .
Firstly, I calculate the predictor yP

n+1 according to

yP
n+1 = y0 +

1

Γ(α)

n∑
j=0

bj,n+1f(tj , yj) (3.2)
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where

bj,n+1 =
dtα

α

(
(n+ 1− j)α − (n− j)α

)
. (3.3)

Then I evaluate f(tn+1, y
P
n+1), use this to determine the corrector yn+1 by means of equation

yn+1 = y0 +
1

Γ(α)

( n∑
j=0

aj,n+1f(tj , yj) + an+1,n+1f(tn+1, y
P
n+1)

)
(3.4)

where

aj,n+1 =
dtα

α(α+ 1)

(
(n+ 2− j)α+1 − 2(n+ 1− j)α+1 + (n− j)α+1

)
. (3.5)

Finally I evaluate f(tn+1, yn+1) which is then used in the next integration step.
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(a) (S(t), I(t), R(t)) behavior. (b) Variables S(t), I(t) and R(t)
with respect to time.

Fig. 2: Parameters are fixed to α = 0.8, Sin = 10, D = 1, γ = 2, k = 3 and µ̄ = 5,
thus R = 5.5556 > 1 and the solution of system (2.6) converge asymptotically to
E∗.

I performed numerical simulations for system (2.6) using FracPECE algorithm. I use classical
Monod functions to express transmission rate of infection from infected individuals to susceptible

ones µ(I) =
µ̄I

(k + I)
with µ̄, k > 0 which satisfies Assumption 1.

Two cases were considered. The first case performs the global stability of the disease-persistence
equilibrium. The second case performs the global stability of the disease-free equilibrium. In a first
case, the parameters are chosen such Sin = 10, D = 1, γ = 2, k = 3, µ̄ = 5 and R = 5.5556 >
1. The solution of system (2.6) converge asymptotically to E∗ (Fig. 2 (a)). This performs the
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with respect to time.

Fig. 3: Parameters are fixed to α = 0.8, Sin = 1, D = 1, γ = 2, k = 3 and µ̄ = 5, thus
R = 0.5556 < 1 and the solution of system (2.6) converge asymptotically to Ē.

global stability of the disease-persistence equilibrium E∗ = (S∗, I∗, R∗) when R > 1. Note that
S∗ + I∗ + R∗ = Sin. In a second case, the parameters are chosen such α = 0.8, Sin = 1, D =
1, γ = 2, k = 3, µ̄ = 5 and R = 0.5556 < 1. The solution of system (2.6) converge asymptotically
to Ē = (Sin, 0, 0) = (1, 0, 0) (Fig. 3 (a)). This performs the global stability of the disease-free
equilibrium Ē = (Sin, 0, 0) when R ≤ 1.

4 Conclusion

A Fractional-order mathematical three-dimensional dynamical system involving a deterministic
”SIR” epidemic model with a general nonlinear saturated incidence rate in a reactor is proposed.
A profound qualitative analysis is given for each form. The analysis of the local and global stability
of equilibrium points is carried out. It is proved that if R > 1 then the disease-persistence
(endemic) equilibrium is globally asymptotically stable. However, if R ≤ 1, then the disease-
free equilibrium is globally asymptotically stable. I consider the optimal control problem relative
to this epidemic model by minimizing the infected and susceptible populations and maximizing the
recovered populations. Numerical tests were used to validate the obtained results.
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