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Abstract

We consider planar GC',, node sets, i.e., n-poised sets whose all n-fundamental polynomials are
products of n linear factors. Gasca and Maeztu conjectured in 1982 that every such set possesses
a maximal line, i.e., a line passing through n + 1 nodes of the set. Till now the conjecture is
confirmed to be true for n < 5. The case n = 5 was proved recently by H. Hakopian, K. Jetter,
and G. Zimmermann (Numer. Math. 127 (2014) 685-713). In this paper we bring a short and
simple proof of the conjecture for n = 4.

Keywords: Polynomial interpolation; Gasca-Maeztu conjecture; fundamental polynomial; mazimal
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1 Introduction

In this paper we bring a simple and short proof of the Gasca-Maeztu conjecture for the case n = 4.
The conjecture proposed in 1982 by Gasca and Maeztu [1] has been confirmed to be true for n < 5,
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yet. We think that a simple proof of the Gasca-Maeztu conjecture for n = 4 will be helpful in trying
to prove it for the higher values.
Denote by II,, the space of bivariate polynomials of total degree at most n :

II,, = Z aijmiyj tai; € R

i+j<n
We have that

N := N, := dimTl, = <”;2>

Consider a set of distinct nodes

X = {(21,0), (02,92); -, (20,1
The problem of finding a polynomial p € II,, which satisfies the conditions

p(Ti,yi) = ¢y 1=1,2,...s, (1.1)
is called interpolation problem.

Definition 1.1. The interpolation problem with the set of nodes X; is called n-poised if for any
data {ci1,...,cs} there exists a unique polynomial p € II,,, satisfying the conditions (1.1).

A polynomial p € II,, is called an n-fundamental polynomial for a node A = (zg, yx) € X if
p(xi,yi) = 0k, i =1,...,5,

where ¢ is the Kronecker symbol. We denote the n-fundamental polynomial of A € X by ph =
PTA,XS-
A necessary condition of n-poisedness is: s = N. In this latter case the following holds:

Proposition 1.1. The set of nodes Xn is n-poised if and only if for any polynomial p € II,, we
have
p(zi,y) =0 i=1,...,N=p=0.

Definition 1.2. A set of nodes X is called n-independent if all its nodes have n-fundamental
polynomials. Otherwise, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition of n-
independence is #X < N. Suppose a node set X, is m-independent. Then we have following
Lagrange formula for a polynomial p € II,, satisfying the interpolation conditions (1.1):

p(x,y) = Y caphx,. (1.2)

AEX,

In view of this formula we readily get that the node set X, is m-independent if and only if the
interpolating problem (1.1) is solvable, i.e., for any data {ci,...,cs} there exists a (not necessarily
unique) polynomial p € II,, satisfying the conditions (1.1).

We shall use the same letter, most often ¢ to denote the linear polynomial £ € II; and the line
defined by the equation £(z,y) = 0.

Definition 1.3. Given an n-poised set X', we say, that a node A € X" uses a line /, if ¢ is a factor
of the fundamental polynomial p} .

The following proposition is well-known (see [2], [3]):
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Proposition 1.2. Suppose that ¢ is a line. Then for any polynomial p € I, vanishing at n + 1
points of £ we have
p=4Lr, where 71 € Il,_1.

From here we readily get that at most n + 1 nodes of an n-poised set X'n can be collinear
and the line ¢, containing n + 1 nodes, is used by all the nodes in Xy \ £. In view of this a line ¢
containing n + 1 nodes of an n-poised set X is called a maximal line [4].

In the sequel we will use the particular case n = 3 of the following

Proposition 1.3. Any set of at most 2n+ 1 points in the plain is n-dependent if and only if n+ 2
of points are collinear.

Now let us define the following set of nodes:

Definition 1.4. For the given line ¢ we define Ny to be the set of all nodes in X, which do not lie
in £ and do not use ¢:

Ne={AeX:A¢/l¢ and A isnotusing /}.

Theorem 1.1 ([5]). Suppose, that we have a line £ and an n-poised set X. Then the following
hold:
1. If the set Ny is nonempty, then it is (n — 1)-dependent and for no node A € Ny, there exists
a fundamental polynomial p} »r, in Tp—1.

2. N¢ =0 if and only if £ passes through n + 1 nodes in X.

2 The Gasca-Maeztu Conjecture and GC,-sets

Now we are going to consider a special type of n-poised sets whose n-fundamental polynomials are
products of n linear factors as it always takes place in the univariate case.

Definition 2.1 (Chung, Yao [6]). An n-poised set X is called GCp-set, if each node A € X has an
n-fundamental polynomial which is a product of n linear factors.

Since the fundamental polynomial of an n-poised set is unique we get (see e.g. [7], Lemma 2.5)

Lemma 2.1 ([7]). Suppose X is a poised set and a node A € X uses a line £: ply = £q,q € p_1.
Then £ passes through at least two nodes from X, at which q does not vanish.

Now we are in a position to present the Gasca-Maeztu conjecture.

Conjecture 2.2 (Gasca, Maeztu [1]). Any GC\-set X possesses a mazimal line, i.e., a line passing
through its n + 1 nodes.

The Gasca-Maeztu conjecture is proved to be true for n < 5. The case n = 4 was proved for
the first time by J.R. Busch [8]. The case n = 5 was proved recently by H. Hakopian, K. Jetter,
and G. Zimmermann in [9]. In this paper we bring a short and simple proof of the conjecture for
n = 4.

Now let us formulate the Gasca-Maeztu conjecture for n = 4 as:

Theorem 2.3. Any GC4-set X of 15 nodes possesses a mazximal line, i.e., a line passing through
5 nodes.
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To prove the theorem assume by way of contradiction the following.

The set X is a GCy-set without any maximal line.

We call a line k-node line if it passes through exactly k£ nodes of the set X'. In the next subsection
we discuss the problem: Given a 2,3 or 4-node line. By how many nodes in X’ it can be used at
most.

The following lemma is in ([7], Lemma 4.1). We bring it here for the sake of completeness.

Lemma 2.4. Any 2 or 3-node line can be used by at most one node of X.

Proof. Assume by contradiction that ¢ is a 2 or 3-node line used by two points A, B € X. Consider
the fundamental polynomial p%. The node A uses the line ¢ and three more lines, which contain
the remaining > 11 nodes of X' \ (¢ U {A}), including B. Since there is no 5-node line, we get

Ph = Ul—yl_ 0>

Here the subscript = 4 means that the corresponding line is a 4-node line, while the subscript > 3
means that except the 3 nodes the corresponding line may also pass through some nodes belonging
to the other lines. First suppose that B belongs to one of the 4-node lines, say to /_,. We have also

pp = £q, where q € IIs.

Notice that ¢ vanishes at 4 nodes of /—4 and 3 nodes of 6;4 (i-e., except B). Therefore by using
Proposition 1.2 twice we get t}}at q=Ll=yr, r €Il2 and r = E/:457 s € II;. Thus py = M:4€'=4s,
Hence pp vanishes at B (B € ¢—_,), which is a contradiction.

Now assume that B belongs to the line £>3. Then ¢ vanishes at 4 nodes of £—4, 4 (> 3) nodes of
5;4 and at least 2 nodes of ¢>3. Therefore again, as above, by consecutive usage of Proposition 1.2
we get that p = 66246;4623. Hence again p; vanishes at B (B € £>3), which is a contradiction. [

The following lemma is in ([10], Lemma 2.6). Here we bring a very short proof of it.
Lemma 2.5. Any 4-node line can be used by at most three nodes of X.

Proof. Assume by contradiction that ¢ is a 4-node line used by four points from X. Therefore we
have #N; < 15—4 —4 = 7. In view of Theorem 1.1 Ny # 0 is (essentially) 3-dependent. According
to Theorem 1.3 a set of < 2 X 3+ 1 = 7 nodes is 3-dependent if and only if there is a 5-node line,
which contradicts Assumption 2. O

Now we are in a position to present

3 Proof of the Gasca-Maeztu Conjecture for n =4

Let us start with an observation from ([9], Section 3.2). Fix any node A € X, and consider all the
lines through the node A and some other node(s) of X. Denote this set of lines by L£4. Let n,(A)
be the number of m-node lines from L 4. In view of Assumption 2 we have

In2(A) + 2n3(A) + 3na(A) = #(X \ {A4}) = 14. (3.1)

Denote by M (A) the total number of uses of the lines passing through A. By Lemma 2.1 each
of 14 nodes of X'\ {A} uses at least one line from £4. On the other hand, we get from Lemmas 2.4
and 2.5 that

Comparing this with (3.1), we conclude that necessarily M (A) = 14 and n3(A) = 0, i.e., there is
no 3-node line in L4.
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Thus we have
n2(A) + 3nq4(A) = 14. (3.2)

Therefore each 4-node line in £ 4 is used exactly three times and each 2-node line is used exactly
once. From here we conclude easily that na(A) > 2. Next we show that actually n2(A) = 2.

Consider two 2-node lines passing through A. Suppose except A they pass through B and C,
respectively. Denote these two lines by £ and {c, respectively (see Fig 1).

Figure 1: The lines of L4

Next, we will prove that B uses £¢. Let us verify that in this case the node C uses £5. Indeed,
if B uses ¢ we have pj = £cq, where q is a product of three lines. Notice that the polynomial ¢
is the fundamental polynomial of the node C, which means that C' uses ¢g. Now, suppose by way
of contradiction that B does not use ¢¢c. Therefore C does not use {g.

Thus, there are two nodes D and E in the 12 nodes of X' \ {4, B,C} using the lines g and {c
respectively. In this case, we have p), = {pq1 and pg = £cqe, where ¢1 and g2 are polynomials of
degree 3.

Since ¢1 and g2 have 10 common nodes we get from the Bezout theorem that they have common
linear factor «, passing through at most 4 nodes. So we can write ¢1 = af and g2 = a2, where 1
and (2 have at least 6 common nodes. Therefore, 51 and B2 have common linear factor o, passing
through at most 4 nodes.
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Now, we have f/or the following present/ations of the fundamental polynomials: p}, = £paaiaz and
pr = Loaaias . Therefore aa and as have at least two common nodes, which means that they
coincide. We have that F € a U a1 U a2 and thus come to a contradiction, which proves that B
uses {c.

Note that £c was an arbitrary 2-node line, which means that B uses all 2-node lines different from
{p. It is easy to see that any node from X can use at most one 2-node line, since otherwise if some
node uses two 2-node lines the remaining > 10 nodes have to lie on two. Therefore, we conclude
that there are no 2-node lines other than ¢ and {c, i.e., n2(A) = 2. From here and the equality
(3.2) we get na(A) =4.

Thus, the 12 nodes of X \ {A, B,C} lie on four 4-node lines passing through A. We denote these
lines by /1, ..., 4.

Finally, by taking p(z,y) = €1€20304, in the Lagrange formula (1.2), we obtain
Lilolsls = \ip + A2pC, (3:3)

since {1£203¢4 vanishes in X'\ { B, C'}. Now recall that p = ¢cq and p&: = €pq, where ¢ is a product
of three 4-node lines passing through the 12 nodes of X'\ {4, B, C}. Thus we get

Lilolsly = q(Mlc + A2lB).

Clearly none of the lines #; here is a factor of q. Hence this leads to a contradiction, which proves
Theorem 2.3.

4 Conclusions

We presented a simple, short, and clear proof of the Gasca-Maeztu conjecture for the case n = 4.
The Conjecture was proposed in 1981 by Gasca and Maeztu [1]. Until now, this has been confirmed
only for the values n < 5. The case n = 5 was proved in 2014 by Hakopian, Jetter, and Zimmermann,
in [9]. So far this is the only proof for n = 5. In addition, it is very long and complicated. In our
opinion a simple proof of the Gasca-Maeztu conjecture for smaller values of n greatly simplifies its
generalization to higher values. We believe that this is a way in trying to prove the Conjecture for
the values n > 6.
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