

Asian Research Journal of Mathematics

12(2): 1-7, 2019; Article no.ARJOM.47275 *ISSN: 2456-477X*

The Gasca-Maeztu Conjecture for $n = 4$

Vahagn Vardanyan¹ *∗*

1 *Institute of Mathematics, National Academy of Sciences of Armenia, Armenia.*

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2019/v12i230083 *Editor(s):* (1) Dr. Radoslaw Jedynak, Analysis, Statistics, Applied Mathematics, Kazimierz Puaski University of Technology and Humanities in Radom, Poland. *Reviewers:* (1) Aliyu Bhar Kisabo, Nigeria. (2) Mohamed Reda Ali, Benha University, Egypt. (3) Zlatin Zlatev, Trakia University, Bulgaria. Complete Peer review History: http://www.sdiarticle3.com/review-history/47275

Original Research Article Published: 20 February 2019

[Received: 02 December 2018](http://www.sdiarticle3.com/review-history/47275) Accepted: 11 February 2019

Abstract

We consider planar *GCⁿ* node sets, i.e., *n*-poised sets whose all *n*-fundamental polynomials are products of *n* linear factors. Gasca and Maeztu conjectured in 1982 that every such set possesses a maximal line, i.e., a line passing through $n + 1$ nodes of the set. Till now the conjecture is confirmed to be true for $n \leq 5$. The case $n = 5$ was proved recently by H. Hakopian, K. Jetter, and G. Zimmermann (Numer. Math. 127 (2014) 685–713). In this paper we bring a short and simple proof of the conjecture for $n = 4$.

Keywords: Polynomial interpolation; Gasca-Maeztu conjecture; fundamental polynomial; maximal line; n-poised set; n-independent set.

2010 Mathematics Subject Classification: 41A05; 41A63

1 Introduction

In this paper we bring a simple and short proof of the Gasca-Maeztu conjecture for the case *n* = 4*.* The conjecture proposed in 1982 by Gasca and Maeztu [1] has been confirmed to be true for *n ≤* 5*,*

^{}Corresponding author: E-mail: vahagn.vardanyan@gmail.com*

yet. We think that a simple proof of the Gasca-Maeztu conjecture for $n = 4$ will be helpful in trying to prove it for the higher values.

Denote by Π*ⁿ* the space of bivariate polynomials of total degree at most *n* :

$$
\Pi_n = \left\{ \sum_{i+j \leq n} a_{ij} x^i y^j : a_{ij} \in \mathbb{R} \right\}.
$$

We have that

$$
N := N_n := \dim \Pi_n = \binom{n+2}{2}.
$$

Consider a set of distinct nodes

$$
\mathcal{X}_s = \{(x_1, y_1), (x_2, y_2), \ldots, (x_s, y_s)\}.
$$

The problem of finding a polynomial $p \in \Pi_n$ which satisfies the conditions

$$
p(x_i, y_i) = c_i, \qquad i = 1, 2, \dots s,
$$
\n(1.1)

is called interpolation problem.

Definition 1.1. The interpolation problem with the set of nodes \mathcal{X}_s is called *n*-poised if for any data $\{c_1, \ldots, c_s\}$ there exists a unique polynomial $p \in \Pi_n$, satisfying the conditions (1.1).

A polynomial $p \in \Pi_n$ is called an *n*-fundamental polynomial for a node $A = (x_k, y_k) \in \mathcal{X}_s$ if

$$
p(x_i, y_i) = \delta_{ik}, i = 1, \ldots, s,
$$

where δ is the Kronecker symbol. We denote the *n*-fundamental polynomial of $A \in \mathcal{X}_s$ by $p_A^* =$ $p_{A,\mathcal{X}_s}^{\star}$.

A necessary condition of *n*-poisedness is: $s = N$. In this latter case the following holds:

Proposition 1.1. *The set of nodes* X_N *is n*-poised if and only if for any polynomial $p \in \Pi_n$ we *have*

$$
p(x_i, y_i) = 0 \quad i = 1, \dots, N \Rightarrow p = 0.
$$

Definition 1.2. A set of nodes \mathcal{X} is called *n*-independent if all its nodes have *n*-fundamental polynomials. Otherwise, X is called *n*-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition of *n*independence is $\#\mathcal{X} \leq N$. Suppose a node set \mathcal{X}_s is *n*-independent. Then we have following Lagrange formula for a polynomial $p \in \Pi_n$ satisfying the interpolation conditions (1.1):

$$
p(x,y) = \sum_{A \in \mathcal{X}_s} c_A p_{A,\mathcal{X}_s}^{\star}.
$$
\n(1.2)

In view of this formula we readily get that the node set \mathcal{X}_s is *n*-independent if [and](#page-1-0) only if the interpolating problem (1.1) is solvable, i.e., for any data $\{c_1, \ldots, c_s\}$ there exists a (not necessarily unique) polynomial $p \in \Pi_n$ satisfying the conditions (1.1).

We shall use the same letter, most often ℓ to denote the linear polynomial $\ell \in \Pi_1$ and the line defined by the equation $\ell(x, y) = 0$.

Definition 1.3. Give[n an](#page-1-0) *n*-poised set *X*, we say, that a node $A \in \mathcal{X}$ uses a line ℓ , if ℓ is a factor of the fundamental polynomial $p_{A,X}^{\star}$.

The following proposition is well-known (see [2], [3]):

Proposition 1.2. *Suppose that* ℓ *is a line. Then for any polynomial* $p \in \Pi_n$ *vanishing at* $n+1$ *points of ℓ we have*

 $p = \ell r$, *where* $r \in \Pi_{n-1}$.

From here we readily get that at most $n + 1$ nodes of an *n*-poised set \mathcal{X}_N can be collinear and the line ℓ , containing $n + 1$ nodes, is used by all the nodes in $\mathcal{X}_N \setminus \ell$. In view of this a line ℓ containing $n + 1$ nodes of an *n*-poised set X is called a maximal line [4].

In the sequel we will use the particular case $n = 3$ of the following

Proposition 1.3. *Any set of at most* $2n+1$ *points in the plain is n*-dependent if and only if $n+2$ *of points are collinear.*

Now let us define the following set of nodes:

Definition 1.4. For the given line ℓ we define \mathcal{N}_{ℓ} to be the set of all nodes in \mathcal{X} , which do not lie in *ℓ* and do not use *ℓ*:

 $\mathcal{N}_{\ell} = \{ A \in \mathcal{X} : A \notin \ell \text{ and } A \text{ is not using } \ell \}.$

Theorem 1.1 ([5])**.** *Suppose, that we have a line ℓ and an n-poised set X . Then the following hold:*

- *1. If the set* \mathcal{N}_{ℓ} *is nonempty, then it is* $(n-1)$ *-dependent and for no node* $A \in \mathcal{N}_{\ell}$ *, there exists a* fundamental polynomial p_{A,\mathcal{N}_ℓ}^* in Π_{n-1} .
- *2.* $N_{\ell} = \emptyset$ *if [an](#page-6-0)d only if* ℓ *passes through* $n + 1$ *nodes in* \mathcal{X} *.*

2 The Gasca-Maeztu Conjecture and *GCn***-sets**

Now we are going to consider a special type of *n*-poised sets whose *n*-fundamental polynomials are products of *n* linear factors as it always takes place in the univariate case.

Definition 2.1 (Chung, Yao [6])**.** An n-poised set *X* is called GC_n -set, if each node $A \in \mathcal{X}$ has an *n*-fundamental polynomial which is a product of *n* linear factors.

Since the fundamental polynomial of an *n*-poised set is unique we get (see e.g. [7], Lemma 2.5)

Lemma 2.1 ([7]). Suppose $\mathcal X$ [i](#page-6-1)s a poised set and a node $A \in \mathcal X$ uses a line $\ell : p_A^* = \ell q, q \in \Pi_{n-1}$. *Then ℓ passes through at least two nodes from X , at which q does not vanish.*

Now we are in a position to present the Gasca-Maeztu conjecture.

Conjecture 2[.2](#page-6-2) (Gasca, Maeztu [1])**.** *Any GCn-set X possesses a maximal line, i.e., a line passing through its* $n + 1$ *nodes.*

The Gasca-Maeztu conjecture is proved to be true for $n \leq 5$. The case $n = 4$ was proved for the first time by J.R. Busch [8]. The case $n = 5$ was proved recently by H. Hakopian, K. Jetter, and G. Zimmermann in [9]. In th[is](#page-5-0) paper we bring a short and simple proof of the conjecture for $n = 4$.

Now let us formulate the Gasca-Maeztu conjecture for $n = 4$ as:

Theorem 2.3. *Any* GC_4 -set X of 15 nodes possesses a maximal line, i.e., a line passing through 5 *nodes.*

To prove the theorem assume by way of contradiction the following.

The set $\mathcal X$ is a GC_4 -set without any maximal line.

We call a line k -node line if it passes through exactly k nodes of the set $\mathcal X$. In the next subsection we discuss the problem: Given a 2,3 or 4-node line. By how many nodes in $\mathcal X$ it can be used at most.

The following lemma is in ([7], Lemma 4.1). We bring it here for the sake of completeness.

Lemma 2.4. *Any* 2 *or* 3*-node line can be used by at most one node of* X *.*

Proof. Assume by contradiction that ℓ is a 2 or 3-node line used by two points $A, B \in \mathcal{X}$. Consider the fundamental polynomial p_A^* [.](#page-6-2) The node A uses the line ℓ and three more lines, which contain the remaining ≥ 11 nodes of $\mathcal{X} \setminus (\ell \cup \{A\})$, including *B*. Since there is no 5-node line, we get

$$
p_A^* = \ell \ell_{=4} \ell_{=4}' \ell_{\geq 3}.
$$

Here the subscript $= 4$ means that the corresponding line is a 4-node line, while the subscript ≥ 3 means that except the 3 nodes the corresponding line may also pass through some nodes belonging to the other lines. First suppose that *B* belongs to one of the 4-node lines, say to $\ell'_{=4}$. We have also

$$
p_B^* = \ell q, \text{ where } q \in \Pi_3.
$$

Notice that *q* vanishes at 4 nodes of $\ell_{=4}$ and 3 nodes of $\ell'_{=4}$ (i.e., except *B*). Therefore by using Proposition 1.2 twice we get that $q = \ell_{=4}r$, $r \in \Pi_2$ and $r = \ell'_{=4}s$, $s \in \Pi_1$. Thus $p_B^* = \ell \ell_{=4} \ell'_{=4}s$. Hence p_B^* vanishes at B ($B \in \ell'_{=4}$), which is a contradiction.

Now assume that *B* belongs to the line $\ell_{\geq 3}$. Then *q* vanishes at 4 nodes of $\ell_{=4}$, $4 \geq 3$) nodes of $\ell'_{=4}$ and at least 2 nodes of $\ell_{\geq 3}$. Therefore again, as above, by consecutive usage of Proposition 1.2 we get that $p_B^* = \ell \ell_{=4} \ell'_{\geq 3}$ $p_B^* = \ell \ell_{=4} \ell'_{\geq 3}$ $p_B^* = \ell \ell_{=4} \ell'_{\geq 3}$. Hence again p_B^* vanishes at $B (B \in \ell_{\geq 3})$, which is a contradiction.

The following lemma is in ([10], Lemma 2.6). Here we bring a very short proof of it.

Lemma 2.5. *Any* 4*-node line can be used by at most three nodes of* \mathcal{X} *.*

Proof. Assume by contradiction that ℓ is a 4-node line used by four points from χ . Therefore we have $\#\mathcal{N}_{\ell} \leq 15 - 4 - 4 = 7$. In v[iew](#page-6-4) of Theorem 1.1 $\mathcal{N}_{\ell} \neq \emptyset$ is (essentially) 3-dependent. According to Theorem 1.3 a set of $\leq 2 \times 3 + 1 = 7$ nodes is 3-dependent if and only if there is a 5-node line, which contradicts Assumption 2. \Box

Now we are in a position to present

3 Proof of the [Ga](#page-2-1)sca-Maeztu Conjecture for *n* = 4

Let us start with an observation from ([9], Section 3.2). Fix any node $A \in \mathcal{X}$, and consider all the lines through the node *A* and some other node(s) of *X*. Denote this set of lines by \mathcal{L}_A . Let $n_m(A)$ be the number of m -node lines from \mathcal{L}_A . In view of Assumption 2 we have

$$
1n_2(A) + 2n_3(A) + 3n_4(A) = \#(\mathcal{X} \setminus \{A\}) = 14.
$$
\n(3.1)

Denote by *M*(*A*) the total number of uses of the lines passing through *A.* By Lemma 2.1 each of 14 nodes of $\mathcal{X} \setminus \{A\}$ uses at least one line from \mathcal{L}_A . On t[he](#page-2-1) other hand, we get from Lemmas 2.4 and 2.5 that

$$
14 \le M(A) \le 1n_2(A) + 1n_3(A) + 3n_4(A).
$$

Comparing this with (3.1), we conclude that necessarily $M(A) = 14$ and $n_3(A) = 0$, i.e., [the](#page-2-2)re is no 3-node line in \mathcal{L}_A .

Thus we have

$$
n_2(A) + 3n_4(A) = 14.\t\t(3.2)
$$

Therefore each 4-node line in \mathcal{L}_A is used exactly three times and each 2-node line is used exactly once. From here we conclude easily that $n_2(A) \geq 2$. Next we show that actually $n_2(A) = 2$.

Consider two 2-node lines passing through *A.* Suppose except *A* they pass through *B* and *C,* respectively. Denote these two lines by ℓ_B and ℓ_C , respectively (see Fig 1).

Figure 1: The lines of *L^A*

Next, we will prove that *B* uses ℓ_C . Let us verify that in this case the node *C* uses ℓ_B . Indeed, if *B* uses ℓ_C we have $p_B^* = \ell_C q$, where *q* is a product of three lines. Notice that the polynomial $\ell_B q$ is the fundamental polynomial of the node *C*, which means that *C* uses ℓ_B . Now, suppose by way of contradiction that *B* does not use ℓ_C . Therefore *C* does not use ℓ_B .

Thus, there are two nodes *D* and *E* in the 12 nodes of $\mathcal{X} \setminus \{A, B, C\}$ using the lines ℓ_B and ℓ_C respectively. In this case, we have $p_D^* = \ell_B q_1$ and $p_E^* = \ell_C q_2$, where q_1 and q_2 are polynomials of degree 3*.*

Since *q*¹ and *q*² have 10 common nodes we get from the Bezout theorem that they have common linear factor α , passing through at most 4 nodes. So we can write $q_1 = \alpha \beta_1$ and $q_2 = \alpha \beta_2$, where β_1 and *β*² have at least 6 common nodes. Therefore, *β*¹ and *β*² have common linear factor *α*1, passing through at most 4 nodes.

Now, we have for the following presentations of the fundamental polynomials: $p_D^* = \ell_B \alpha \alpha_1 \alpha_2$ and $p_E^* = \ell_C \alpha \alpha_1 \alpha_2'$. Therefore α_2 and α_2' have at least two common nodes, which means that they coincide. We have that $E \in \alpha \cup \alpha_1 \cup \alpha_2$ and thus come to a contradiction, which proves that *B* uses ℓ_C .

Note that *ℓ^C* was an arbitrary 2-node line, which means that *B* uses all 2-node lines different from ℓ_B . It is easy to see that any node from X can use at most one 2-node line, since otherwise if some node uses two 2-node lines the remaining *≥* 10 nodes have to lie on two. Therefore, we conclude that there are no 2-node lines other than ℓ_B and ℓ_C , i.e., $n_2(A) = 2$. From here and the equality (3.2) we get $n_4(A) = 4$.

Thus, the 12 nodes of $\mathcal{X} \setminus \{A, B, C\}$ lie on four 4-node lines passing through *A*. We denote these lines by *ℓ*1*, ..., ℓ*4.

[Fina](#page-4-0)lly, by taking $p(x, y) = \ell_1 \ell_2 \ell_3 \ell_4$, in the Lagrange formula (1.2), we obtain

$$
\ell_1 \ell_2 \ell_3 \ell_4 = \lambda_1 p_B^{\star} + \lambda_2 p_C^{\star},\tag{3.3}
$$

since $\ell_1\ell_2\ell_3\ell_4$ vanishes in $\mathcal{X}\setminus\{B,C\}$. Now recall that $p_B^*=\ell_C q$ and $p_C^*=\ell_B q$, where q is a product of three 4-node lines passing through the 12 nodes of $\mathcal{X} \setminus \{A, B, C\}$ $\mathcal{X} \setminus \{A, B, C\}$ $\mathcal{X} \setminus \{A, B, C\}$. Thus we get

$$
\ell_1 \ell_2 \ell_3 \ell_4 = q(\lambda_1 \ell_C + \lambda_2 \ell_B).
$$

Clearly none of the lines *ℓⁱ* here is a factor of *q.* Hence this leads to a contradiction, which proves Theorem 2.3.

4 Conclusions

We prese[nted](#page-2-1) a simple, short, and clear proof of the Gasca-Maeztu conjecture for the case $n = 4$. The Conjecture was proposed in 1981 by Gasca and Maeztu [1]. Until now, this has been confirmed only for the values $n \leq 5$. The case $n = 5$ was proved in 2014 by Hakopian, Jetter, and Zimmermann, in $[9]$. So far this is the only proof for $n = 5$. In addition, it is very long and complicated. In our opinion a simple proof of the Gasca-Maeztu conjecture for smaller values of *n* greatly simplifies its generalization to higher values. We believe that this is a wa[y i](#page-5-0)n trying to prove the Conjecture for the values $n \geq 6$.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] Gasca M, Maeztu JI. On Lagrange and Hermite interpolation in R *k* . Numer. Math. 1982;39:1- 14.
- [2] Hakopian H, Jetter K, Zimmermann G. Vandermonde matrices for intersection points of curves. Jaén J. Approx. 2009;1:67-81.
- [3] Mohamed M. Mousa, Mohamed R. Ali. The method of lines and Adomian decomposition for obtaining solitary wave solutions of the KdV equation. Applied Physics Research. 2013;5:43-57.
- [4] de Boor C. Multivariate polynomial interpolation: conjectures concerning GC-sets. Numer. Algorithms. 2007;45:113-125.
- [5] Carnicer JM, Gasca M. A conjecture on multivariate polynomial interpolation. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.), Ser. A Mat. 2001;95:145-153.
- [6] Chung KC, Yao TH. On lattices admitting unique Lagrange interpolations, SIAM J. Numer. Anal. 1977;14:735-743.
- [7] Hakopian H, Jetter K, Zimmermann G. A new proof of the Gasca-Maeztu conjecture for *n* = 4. J. Approx. Theory. 2009;159:224-242.
- [8] Busch JR A note on Lagrange interpolation in R 2 . Rev. Un. Mat. Argentina. 1990;36;33-38.
- [9] Hakopian H, Jetter K, Zimmermann G. The Gasca-Maeztu conjecture for *n* = 5, Numer. Math. 2014;127:685-713.
- [10] Bayramyan V, Hakopian H, Toroyan S. A simple proof of the Gasca-Maeztu conjecture for n $= 4$, Jaén J. Approx. 2015;7:137147.

 $\overline{}$, and the contract of the contrac

*⃝*c *2019 Vardanyan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review hi[story for this paper can be accessed here \(Please](http://creativecommons.org/licenses/by/4.0) copy paste the total link in your browser address bar)

http://www.sdiarticle3.com/review-history/47275