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Abstract

We introduce the first AI-based framework for deep, super-resolution, wide-field radio interferometric imaging and
demonstrate it on observations of the ESO 137-006 radio galaxy. The algorithmic framework to solve the inverse
problem for image reconstruction builds on a recent “plug-and-play” scheme whereby a denoising operator is
injected as an image regularizer in an optimization algorithm, which alternates until convergence between
denoising steps and gradient-descent data fidelity steps. We investigate handcrafted and learned variants of high-
resolution, high dynamic range denoisers. We propose a parallel algorithm implementation relying on automated
decompositions of the image into facets and the measurement operator into sparse low-dimensional blocks,
enabling scalability to large data and image dimensions. We validate our framework for image formation at a wide
field of view containing ESO 137-006 from 19 GB of MeerKAT data at 1053 and 1399 MHz. The recovered maps
exhibit significantly more resolution and dynamic range than CLEAN, revealing collimated synchrotron threads
close to the galactic core.

Unified Astronomy Thesaurus concepts: Astronomy image processing (2306); Computational astronomy (293);
Convolutional neural networks (1938); Radio galaxies (1343); Aperture synthesis (53)

1. Introduction

Image formation in aperture synthesis by radio interfero-
metry (RI) has never been more challenging. On the one hand,
the extreme data sampling rates produced by modern radio
arrays raise the urgent need for scalable algorithms. On the
other hand, the ill-posedness of the underlying inverse problem
calls for tailored regularization models to be injected into the
image formation process in order to deliver the expected
precision and robustness of the reconstruction. Over the last
decade, regularization approaches leveraging advanced spar-
sity-based image models embedded in optimization algorithms
have been proposed (e.g., Li et al. 2011; Carrillo et al. 2012;
Dabbech et al. 2015; Garsden et al. 2015). In particular, the
SARA family of algorithms (Onose et al. 2017; Repetti et al.
2017; Dabbech et al. 2018; Abdulaziz et al. 2019; Dabbech
et al. 2021; Thouvenin et al. 2022a, 2022b) have recently
delivered a significant increase of resolution and dynamic range
(or depth) over CLEAN-based algorithms (e.g., Högbom 1974;
Wakker & Schwarz 1988; Cornwell 2008) on the well-known
radio galaxy Cygnus A. Owing to the complexity of the
regularization models underpinning the imaging accuracy,
optimization approaches are significantly more computationally
expensive than CLEAN. Their scalability to gigabyte-scale
image sizes and data volumes has been enabled by resorting to
advanced algorithmic structures enabling a significant degree
of parallel processing (e.g., Pesquet & Repetti 2014; Chouze-
noux et al. 2016). Nonetheless, scalability to much larger image
and data dimensions is required for upcoming instruments, with

the Square Kilometre Array (SKA; Scaife 2020) intended to
deliver petabyte-scale images from exabyte-scale data volumes.
Assuming monochromatic, nonpolarized radio emission and

a narrow field of view (FoV), the measured complex visibilities
are noisy Fourier components of the sky surface brightness,
where the sampled (u,v) points are the projections of each
antenna pair baseline on the plane perpendicular to the line of
sight. Under these assumptions, the visibility vector y MÎ
can be modeled as

y x n , with , 1( )F F= + = GFZ

where x NÎ is the unknown radio map whose pixel
resolution is often set between 1.5 and 2.5 times below the
angular resolution of the observations to reduce the limitations
of pixel-based image restoration, n MÎ is a realization of a
complex random Gaussian noise of mean zero and standard
deviation τ> 0, and M NF Î ´ denotes the measurement
operator, which encodes the incomplete Fourier sampling.
More precisely, M N Î ´ ¢G denotes a sparse degridding
matrix whose rows are nonuniform Fourier transform inter-
polation kernels, N N Î ´¢ ¢F stands for the discrete Fourier
transform, and N N Î ´¢Z is a zero-padding operator,
allowing for a fine grid in the spatial Fourier domain, which
also involves a correction for approximations in the convolu-
tion kernels of G (Fessler & Sutton 2003). Given the
remarkable sensitivity of the modern arrays, the RI measure-
ment equation is further complicated by the so-called direction-
dependent effects (DDEs). Some of these are unknown and of
either atmospheric or instrumental origin and should be
calibrated (Smirnov 2011). In contrast, the DDEs originating
from the w-component of the antenna pair baselines on the
line of sight are known and induce the so-called w-effect
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(Cornwell & Perley 1992). The DDEs can be encapsulated as
additional baseline-specific convolution kernels on each row of
G (Dabbech et al. 2017; Repetti et al. 2017). In this work, we
propose a new parallelized and automated framework for wide-
field, high-resolution, high dynamic range monochromatic
intensity imaging, which we use to revisit observations of the
radio galaxy ESO 137-006, the loudest radio galaxy in the
Norma cluster.

The remainder of this letter is structured as follows. In
Section 2, we provide a summary of the proposed framework,
from the underpinning algorithmic structure and the two
specific incarnations respectively propelled by sparsity-based
and AI-based regularization, to parallelization and automation
functionalities critical to scalability. A description of the
utilized RI data of ESO 137 from the MeerKAT telescope is
given in Section 3. Imaging settings, as well as a description of
the utilized computational resources, are provided in Section 4.
Imaging results are presented in comparison with a CLEAN-
based benchmark method in Section 5, followed by a
discussion of the unveiled structure in ESO 137-006. Finally,
conclusions are drawn in Section 6.

2. Methods

At the algorithmic level, the proposed framework is
underpinned by the versatile forward–backward (FB) convex
optimization iterative structure (Bauschke & Combettes 2017).
At each iteration, FB simply alternates until convergence
between a (forward) gradient-descent step promoting fidelity to
data and a (backward) step enforcing a prior image model,
critical to the regularization of the inverse problem and the
resulting imaging precision (see Appendix A). We investigate
two incarnations of a recent plug-and-play (PnP) scheme
(Venkatakrishnan et al. 2013; Romano et al. 2017), whereby
dedicated denoising operators can be plugged into FB as an
image regularizer.

The unconstrained SARA (uSARA) algorithm is a pure
optimization variant leveraging a so-called “proximal” denoi-
ser, handcrafted to enforce an advanced sparsity-based image
regularization (Carrillo et al. 2012; Repetti & Wiaux 2021;
Terris et al. 2022). The sophistication of the underlying prior
image model is precisely introduced to deliver the best possible
resolution and dynamic range from the data. The resulting
denoiser itself is implemented as an iterative algorithm, leading
to an overall subiterative FB structure (see Appendix B).

The AI for Regularization in radio interferometric Imaging
(AIRI) algorithm (Terris et al. 2022) is an AI-based variant
leveraging a learned denoiser in the form of a deep neural
network (DNN) trained on a rich database to clean Gaussian
random noise from high dynamic range images with a noise
level commensurate with the target sensitivity of observation
(see Appendix C). By design, AIRI inherits the robustness and
interpretability of optimization algorithms and the learning
power and speed of DNNs.

Importantly, the degree of refinement with which the
uSARA and AIRI image models are enforced is adjusted to
the measurement noise τ, more precisely to the corresponding
estimate of the noise level in the image domain, L2t , which
results from a normalization by the norm L of the measurement
operator. In other words, uSARA and AIRI automatically adapt
to the input signal-to-noise ratio or, equivalently, the target
dynamic range of reconstruction. Last but not least, we

emphasize that, by construction, PnP denoisers are completely
blind to the measurement conditions underpinning the data to
be imaged. As a consequence, the learned variants can be
trained once and for all at an appropriate dynamic range,
significantly alleviating the associated computation cost. They
do not suffer from generalizability challenges with respect to
measurement conditions either. This stands in stark contrast
with the more traditional end-to-end approaches, where a DNN
would be trained to reconstruct an image directly from data
(Connor et al. 2022; Terris et al. 2022).
At the high-resolution and high dynamic range regime of

interest, parallelization and automation functionalities are
critical to the scalability of the algorithmic framework. In this
context, the image denoisers of uSARA and AIRI are
decomposed on small image facets with no loss of precision
thanks to their convolutional nature and the compactness of the
associated kernels (see Appendix D). Relying on a hybrid
approach to efficiently correct for the wide-field w-effect in
both image and data spaces (Cornwell et al. 2005; Wiaux et al.
2009; Offringa et al. 2014; Dabbech et al. 2017), the
measurement operator is decomposed into sparse and low-
dimensional building blocks (see Appendix E). These decom-
positions are fully automated, enabling a parallel image facet
and data block processing, seamlessly adapting to the
architecture of the high-performance computing (HPC) system
where the reconstruction is run.

3. Data Description

Both uSARA and AIRI are used to revisit MeerKAT L-band
observations of a wide FoV containing the radio galaxy
ESO 137-006. MeerKAT (Jonas 2016), located in the Karoo
desert of South Africa, is a precursor to the SKA. Its 64
antennas with cryogenic receivers are arranged in a close-
packed core and baselines of up to 8 km, resulting in superb
sensitivity and imaging quality. The array is particularly suited
to study faint extended emission and objects with complex
morphology, of which ESO 137-006 represents a “flagship”
case. Previous analysis of these observations by Ramatsoku
et al. (2020) revealed multiple collimated synchrotron threads
(CSTs) connecting the lobes of the radio galaxy, whose origin
is yet to be unraveled.
The technical details of the observations and the initial

calibration (i.e., reference calibration, or 1GC) were reported
by Ramatsoku et al. (2020). The 1GC was performed using the
CARACAL pipeline (Makhathini 2018; Józsa et al. 2020). The
1GC-calibrated data are averaged down from 4096 to 1024
channels of 0.84 MHz each, spanning the frequency range
856–1712 MHz. We utilize about 7 hr of on-target time and
select two subbands relatively free from radio frequency
interference, referred to as the “low” band (961–1145 MHz,
centered at 1053MHz) and the “high” band (1295–1503 MHz,
centered at 1399MHz), to form two continuum images. The
respective data sizes after flagging are 8.2 GB (∼532 million
data points, double precision) and 10.76 GB (∼673 million
data points). The data were then self-calibrated for phase using
a combination of the WSClean imager (Offringa & Smir-
nov 2017) and the CubiCal calibration suite (Kenyon et al.
2018). Attempts to calibrate for the amplitude and the DDEs
(Repetti et al. 2017; Dabbech et al. 2021) did not bring a
substantial improvement. Therefore, no further data preproces-
sing was performed. The resulting WSClean images, obtained
with the multiscale variant of CLEAN (Cornwell 2008), are
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presented for comparison purposes. Then uSARA and AIRI are
used for image reconstruction on these self-calibrated data.

4. Imaging Settings and Computational Resources

The images formed are 4096× 4096 pixels in size, spanning
an FoV of 1.91× 1.91 deg2 with a cell size of 1 68 for super-
resolution factors beyond the angular resolution of observation
of about 2 and 1.6 at the low and high bands, respectively. The
data were weighted using the Briggs weighting scheme (robust
parameter zero) to mitigate at best the complicated lobes of the
dirty beam, i.e., the point-spread function arising from the
Fourier sampling pattern. Specifically to AIRI, a single
denoiser with an appropriate dynamic range was trained and
used as an AIRI regularizer at both bands. Imaging parameter
selection for both uSARA and AIRI is automated (see
Appendix F). Finally, the WSClean parameters are set similarly
to Ramatsoku et al. (2020).

With regard to computing resources, the MATLAB
implementation of uSARA and AIRI and the C++ WSClean
imager were run on Cirrus,5 a UK Tier-2 HPC system. The
uSARA and CLEAN are deployed on CPUs, while AIRI is
deployed mainly on CPUs, with AIRI’s denoiser utilizing a
GPU. More precisely, for uSARA and AIRI, the computation
of the measurement operator (see Appendix E for details),
decomposed into sparse low-dimensional building blocks,
utilized 240 and 280 CPUs at the low and high bands,
respectively. For the imaging process itself, forward steps
utilized 99 and 180 CPUs at the low and high bands,
respectively. The denoiser of uSARA, distributed over 64
image facets, utilized 64 of the CPUs already allocated for the
forward steps. The denoiser of AIRI relied on a decomposition
of the image into four facets, lowering the memory require-
ments per facet and enabling each facet to be processed on a
single GPU. Given the relatively negligible GPU computation
cost, a single GPU was used, with facets denoised sequentially
rather than in parallel. Finally, WSClean used 72 CPUs,
associated with the considered number of w-stacks.

5. Results and Discussion

The reconstruction results are provided in Figures 1–3,
focusing on the ESO 137-006 region of the imaged FoV, and
displayed in log10 scale to enable the joint visualization of high-
intensity and faint emission. Specific to the CLEAN recon-
structions, we display the outcome of the convolution of the
associated model image with the so-called restoring beam for a
more physical representation of the radio sky. By construction,
the uSARA and AIRI images are in units of janskys per pixel.
In order to compare intensities in the same units, the CLEAN
images are normalized by the flux of the restoring beam.
Zooms on selected regions of the imaged FoV are provided on
each figure. First, a zoom on the central region of ESO 137-
006, including the active galactic nucleus (AGN) at its core, is
provided in panels (b) and (e). Second, a zoom on some
background compact sources at the high band are shown in
panel (c). Third, a zoom on the neighboring radio galaxy
ESO 137-007 north of ESO 137-006 at the low band is
displayed in panel (f). Images of the full FoV are provided as
supplementary material (Dabbech et al. 2022).

Where the residual images contain additional information,
CLEAN’s restored image, consisting of the sum of the
convolved model and the residual image, is considered in our
analysis. Both zooms on the selected background compact
sources at the high band and the neighboring radio galaxy
ESO 137-007 at the low band from CLEAN restored images
are included in the respective panels (c′) and (f′) of Figure 3.
No such consideration is necessary for uSARA and AIRI,
where the algorithm solution itself, without further processing,
is considered to be the final image reconstruction. This
advantage was already highlighted for the previous algorithms
of the SARA family, which rely on more advanced and
physical regularization models than CLEAN (Dabbech et al.
2018; Abdulaziz et al. 2019; Dabbech et al. 2021; Thouvenin
et al. 2022b). Finally, the model image of CLEAN is
considered to support our analysis, particularly through zooms
of the central region of ESO 137-006 at the high and low bands
shown in the respective panels (b′) and (e′) of Figure 3.
Generally speaking, on both bands, one can observe the high

level of detail achieved by uSARA and AIRI in comparison
with CLEAN, particularly noticeable within the lobes of the
radio galaxy. As opposed to the maps produced by CLEAN,
whose resolution is, by design, restricted due to the convolution
with the restoring beam, the uSARA and AIRI maps show a
wealth of filamentary detail within the radio lobes of ESO 137-
006. These improvements also come with some pixelation
effects, more noticeable in AIRI’s reconstructions, in super-
resolved structures around the galactic core/jets.
The ability of both uSARA and AIRI to capture complex

structure is further showcased when looking at the zoom on
ESO 137-007 at the low band (a similar observation is made at
the high band), in contrast with CLEAN (panel (f) of each
figure). In fact, the filamentary detail of its jet is not recovered
in the CLEAN convolved model image. Instead, it is left in the
residual image and therefore only seen in the CLEAN restored
image (panel (f′) of Figure 3). The uSARA and AIRI also
deliver further reconstruction depth, recovering lower signal
intensities than CLEAN. Additional examination of the bright
super-resolved pointlike sources south of the jet showcases the
improvement in resolution brought by both AIRI and uSARA.
Last but not least, one can notice that AIRI further improves the
reconstruction dynamic range over uSARA, as is apparent from
the recovered faint compact sources at the high band in panel
(c) of each figure (a similar observation is made at the low
band). These sources are also visible in the CLEAN restored
image (panel (c′)), though not directly recovered in the CLEAN
model image (panel (c)). This supports the fact that they are
real and not hallucination artifacts of the DNN. The AIRI also
seems to be less sensitive to calibration errors that take the form
of extended ringing structure around ESO 137-006 (panels (a)
and (d) of Figures 1 and 2).
Since the low- and high-band images are produced

completely independently, flux measurements of unresolved
sources provide an important cross-check of the results. Table 1
summarizes the flux measurements of the AGN. We can see
that all three methods recover almost the same flux and that the
spectrum is relatively flat, as expected from an AGN.
Furthermore, spectral index maps of ESO 137-006 obtained
from uSARA and AIRI images (Figures 1 and 2, panel (g)) are
in broad agreement with the findings of Ramatsoku et al.
(2020) based on the CLEAN images of ESO 137-006 at close5 http://www.cirrus.ac.uk
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Figure 1. ESO 137-006: uSARA reconstructions (flip pages to visualize differences at a glance with AIRI in Figure 2 and CLEAN in Figure 3). First and second rows:
recovered model images (Jy pixel−1, displayed in log10 scale) at the high and low bands (panels (a) and (d)), respectively, overlaid with zooms on the core of
ESO 137-006 (panels (b) and (e)), a region with compact sources from the imaged FoV (panel (c)), and a zoom on ESO 137-007, a radio galaxy north of ESO 137-006
(panel (f)). Third row: spectral index map of ESO 137-006 (displayed in linear scale; panel (g)), overlaid with a zoom on its core (panel (h), same region as in panels
(b) and (e)). Focusing on the central region (panels (b) and (e)), the first side lobe of the dirty beam is highlighted with a dashed circle. One can see three filaments
emerging: T1 and T2, located north and south of the inner core, seen at both bands, and T3, located further south, recovered only at low band. A fourth filament, T0,
detected previously, is also recovered. The filamentary structure S is an example of what mostly likely is a calibration residual artifact, as it moves with the geometry
of the dirty beam. The spectral index values of the newly formed filaments (panel (h)) are inconclusive.
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Figure 2. ESO 137-006: AIRI reconstructions (flip pages to visualize differences at a glance with uSARA in Figure 1 and CLEAN in Figure 3). First and second rows:
recovered model images (Jy pixel−1, displayed in log10 scale) at the high and low bands (panels (a) and (d)), respectively, overlaid with zooms on the core of
ESO 137-006 (panels (b) and (e)), a region with compact sources from the imaged FoV (panel (c)), and a zoom on ESO 137-007, a radio galaxy north of ESO 137-006
(panel (f)). Third row: spectral index map of ESO 137-006 (displayed in linear scale; panel (g)), overlaid with a zoom on its core (panel (h), same region as in panels
(b) and (e)). Focusing on the central region (panels (b) and (e)), the first side lobe of the dirty beam is highlighted with a dashed circle. Similarly to uSARA
reconstructions, one can see three filaments emerging: T1 and T2, located north and south of the inner core, seen at both bands, and T3, located further south, recovered
only at low band. A fourth filament, T0, detected previously, is also recovered. The filamentary structure S is an example of what mostly likely is a calibration residual
artifact, as it moves with the geometry of the dirty beam. The spectral index values of the newly formed filaments (panel (h)) are inconclusive.
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Figure 3. ESO 137-006: CLEAN reconstructions (flip pages to visualize differences at a glance with uSARA in Figure 1 and AIRI in Figure 2). First and second rows:
recovered convolved model images (Jy pixel−1, displayed in log10 scale) at the high and low bands (panels (a) and (d)), respectively, overlaid with zooms on the core
(panels (b) and (e)), a region with compact sources from the imaged FoV (panels (c) and (c′)), and a zoom on ESO 137-007, a radio galaxy north of ESO 137-006
(panels (f) and (f′)). Third row: estimated spectral index map of ESO 137-006 (displayed in linear scale; panel (g)), overlaid with a zoom on its core (panel (h), same
region as in panels (b), (b′), and (e)). First, regarding the central region, the first side lobe of the dirty beam is highlighted with a dashed circle. Unlike the uSARA and
AIRI reconstructions, only one new filament, T2, has clearly emerged south of the core at the high band. The previously detected filament, T0, is recovered at both
bands. The filamentary structure S is an example of what mostly likely is a calibration residual artifact, as it moves with the geometry of the dirty beam. Inspection of
the zooms on the core from CLEAN model images (panels (c′) and (e′)) confirms these findings. Second, looking at the zooms on the compact sources, one can see
that some faint sources are not recovered in the CLEAN model image (panel (c)). Instead, they are left in the residual and so only visible in the CLEAN restored image
(panel (c′)). Finally, a close look at ESO 137-007 in the convolved model image (panel (f)) indicates that much of the filamentary structure is not captured and is only
visible on the CLEAN restored image (panel (f′)).
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frequencies, where the lobes exhibit steep spectra, with a
spectral index close to 5 at the tails.

The central region zooms (panels (b) and (e) of each figure)
highlight both the super-resolution potential of uSARA and
AIRI and the difficulty of interpreting features in RI images. At
the low band, both AIRI and uSARA recover what appear to be
additional sets of filaments, or CSTs: T1 and T2, respectively
north and south of the core/jet structure; T3, further south; and
T0, a filament already detected by Ramatsoku et al. (2020). The
pixel intensity values of these filaments are within the range
[0.1, 0.4] mJy, not only well above the image domain noise
level of about 0.0014 mJy but also at least five times higher
than the level of the imaging artifacts, induced by the lack of
amplitude calibration. The filaments are roughly parallel to the
linear core/jet structure. This is a cause for both excitement and
wariness. On the one hand, one explanation for the origin of
CSTs is shearing of relativistic electrons off the jets, which then
follow the ambient magnetic field with possibly stretched field
lines (see also Condon et al. 2021). From that point of view,
additional inner filaments parallel to the jets make physical
sense. On the other hand, the core/jet structure is one of the
brightest features in the image, and one must always be wary of
secondary image features that appear to trace bright features too
closely, since calibration and deconvolution artifacts could
easily take this form (being modulated by the side lobes of the
dirty beam). One must therefore carefully compare reconstruc-
tions made with different methods and at different frequencies,
since imaging artifacts tend to scale spectrally following the
geometry of the dirty beam.

The innermost filaments T1 and T2 appear in both the low-
and high-band images made by AIRI and uSARA. Filament T2

is also confirmed by the CLEAN high-band image and is not
inconsistent with the CLEAN low-band image, where there is
emission blending with the core/jets. Filament T1 is not
inconsistent with the CLEAN images either, where there is also
emission, however, not resolved at all. This is also backed up
by the associated model images (Figures 3(b′) and (e′)), where
large-scale components are recovered around the same region.
The first side lobe of the dirty beam (indicated by dashed
circles in panels (b) and (e) of each figure) is, in any case, only
slightly smaller than the separation between the jets and T1 and
T2, explaining why the filaments are not well resolved by
CLEAN. Finally, the core/jet structure recovered by AIRI and
uSARA has a clear discontinuity between the core and the jets,
while the innermost filaments show no such thing. For
CLEAN, although the core and jets are fully connected on
the model images (Figures 3(b′) and (e′)), the connection seems

weaker after convolution with the restoring beam (panels (b)
and (e) of the same figure). The position of the filaments shifts
slightly (by about a pixel) between the low- and high-band
images but in the opposite direction than would be expected
from a dirty beam–modulated artifact. This is possibly due to
pixelation effects in the reconstructions. The recovered spectral
indices are inconclusive. On balance, we must conclude that
the innermost filaments are likely to be physical CSTs and not
imaging artifacts.
Although reconstructed by both uSARA and AIRI, the

nature of T3 is less conclusive, as it only appears at the low
band. It may be that, at the high band, the reconstruction
confuses it with the more complex structure of T0, just to the
south of it. We note that T0 is reconstructed by all algorithms,
with an impressively clear and finely resolved east–west
connection at the low band by uSARA and AIRI, while the
structure is very blurred and interrupted in the CLEAN image.
Finally, examples of what are almost certainly artifacts are

the fainter extended structures labeled S. They are roughly
parallel to the radio galaxy structure and scale inwardly with
the dirty beam in the high-band images. Since they are
reconstructed by all three methods, they are likely to be
residual amplitude calibration errors.
Computational cost. Table 2 summarizes the computational

cost of the imaging algorithms. Specific to uSARA and AIRI,
the computation cost associated with the decomposition of the
measurement operator is reported alongside the cost to run the
imaging algorithm. As expected, with AIRI leveraging a fast
denoiser on GPU and uSARA relying on a subiterative
denoiser on CPU, the former brings a significant reduction of
the imaging cost over the latter, about 2.3 times fewer CPU
hours at both bands, with a negligible amount of GPU hours.
The AIRI was only four times more expensive than WSClean
in the imaging process and seven when including the
computation cost of the measurement operator. As AIRI
denoisers are trained completely independently of the data to
be imaged, the training cost associated with the single denoiser
used for both bands is not considered part of the computa-
tional cost.

6. Conclusions

We have introduced the first AI-based framework for deep,
super-resolution, wide-field RI imaging based on a plug-and-
play scheme whereby a dedicated denoising operator is injected
as an image regularizer in an optimization algorithm. We have

Table 1
Flux Measurements of the AGN in ESO 137-006 at Both Bands and Its

Spectral Index Values Recovered by uSARA, AIRI, and CLEAN

Frequency
uSARA AIRI CLEAN (MHz)

Flux 143 143 146 1053
(mJy) 124 125 123 1399

Spectral index 0.50 0.47 0.60

Note. Flux measurements of CLEAN are computed from the convolved model
images over a region centered at the AGN and of the size of the main lobe of
the associated dirty beams. The source being super-resolved in uSARA and
AIRI images, its flux measurements are computed over its active pixels.

Table 2
Computational Cost of uSARA, AIRI, and CLEAN in CPU Hours

uSARA AIRI CLEAN Frequency

(CPU hr)
(CPU hr,
GPU hr) (CPU hr) (MHz)

Computation of
Φ†Φa

427 427, − L 1053

Imaging 1120 480, 5 132

Computation of
Φ†Φa

652 652, − L 1399

Imaging 2377 1028, 6 236

Notes. Specific to AIRI, GPU hours used by the DNN denoiser are also
reported.
a Computation cost of the underlying sparse matrices.
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demonstrated two image reconstruction algorithms, uSARA
and AIRI, respectively propelled by powerful handcrafted and
learned denoisers, aiming at delivering a high level of imaging
precision. Both algorithms are highly parallelized for scal-
ability via automated image faceting and decomposition of the
RI measurement operator into sparse low-dimensional building
blocks. An in-depth study of practical scalability to the extreme
data and image dimensions expected in the SKA context, in
particular for wideband imaging, is warranted. The uSARA and
AIRI were used to revisit MeerKAT L-band observations of a
wide FoV containing ESO 137-006 from 19 GB of visibility
data. Our results confirm the ability of uSARA and AIRI to
access a new regime of imaging resolution and dynamic range
with respect to CLEAN. In particular, we have studied the
wealth of filamentary structure revealed within ESO 137-006’s
radio lobes, some of which are likely CSTs. Our results also
demonstrate further improvement brought by AIRI over
uSARA in both dynamic range and speed, underpinned by
the hybrid approach at the interface of optimization and AI.
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Data Availability

The utilized data are observations with the MeerKAT
telescope (Project ID SCI-20190418-SM-01). The images
underlying this article are available from the research portal
of Heriot-Watt University with the digital object identifier 10.
17861/b3a4ea6b-805c-4629-8c5c-fbb1f06ab53a.

Appendix A
The FB Algorithmic Structure

In this work, the inverse RI imaging problem is approached
as an optimization problem. In the context of optimization
theory, an “objective function” is defined, typically as the sum
of a data fidelity term f and a regularization term r injecting a
prior image model to compensate for data incompleteness. The
image estimate is defined as the minimizer of this objective and
reached via provably convergent algorithms (Bauschke &
Combettes 2017). The obtained solution can also be understood
in a Bayesian framework as a maximum a posteriori estimate
with respect to a posterior distribution, the negative logarithm
of which is the objective. More specifically to our setting, we
aim at solving

x y xf rminimize ; . A1
x N

( ) ( ) ( )l+
Î

In this objective, f is a convex Lipschitz differentiable function
of a variable x NÎ representing the image variable, also a
function of the data vector y MÎ , whose role is to enforce
fidelity to data. The function r is a convex and possibly

nondifferentiable function of x, encoding the prior image model.
The regularization parameter λ> 0 acts as a trade-off between
the two terms. Problems of the form (A1) can be solved via the
iterative FB algorithm, alternating between a forward step in the
negative direction of the gradient of f and a backward step
involving a simple denoising operator, known as the proximal
operator of the regularization function r. The proximal operator
is itself defined as the solution of a (simpler) minimization
problem, z u z urprox argmin 2ur 2

2
N( ) ( )  l= + -l Î , for

any z NÎ and λ> 0. The proximal operator of simple
functions r often benefits from a closed-form solution (e.g., the
proximal operator of the ℓ1 norm is a simple component-wise
soft-thresholding operator). However, proximal denoisers of
sophisticated regularizations must usually be computed itera-
tively as solutions of the minimization task by which they are
defined.
The FB iterative structure reads

x x xk fprox , A2k
r

k k1( ) ( ( )) ( )g" Î = - gl
+

where the step size γ> 0 is strictly upper-bounded by 2/L to
ensure convergence, with L being the Lipschitz constant of ∇f.
Interestingly, the recently emerged PnP scheme has

established that proximal optimization algorithms such as FB
enable not only the use of proximal operators of handcrafted
regularization functions but also the injection of learned
DNN denoisers defining the regularization term implicitly
(Venkatakrishnan et al. 2013; Romano et al. 2017). We note
that, in order to preserve algorithm convergence and the
interpretability of its solution, the PnP denoiser must typically
satisfy a “firm nonexpansiveness” constraint, ensuring that it
contracts distances (Pesquet et al. 2021; Hurault et al. 2022).
Our RI imaging framework relies on a data fidelity term that

reflects the Gaussian nature of the noise and is given by
x y x yf ; 1 2 2

2( )  F= - , where ∥ · ∥2 denotes the standard ℓ2

norm. Its gradient reads ∇f (x)=Φ†Φx−Φ†y, where ( · )†

denotes the adjoint of its argument. The Lipschitz constant of
∇f is given by L Re S{ }† F F= , where ∥ · ∥S denotes the
spectral norm. As for the image regularization, we leverage the
versatility of the PnP framework and investigate both advanced
handcrafted and learned prior image models, respectively
propelling the uSARA and AIRI imaging algorithms.

Appendix B
uSARA’s Handcrafted Denoiser

The image model of uSARA, originally proposed in Carrillo
et al. (2012), promotes the nonnegativity of the intensity image
and its sparsity in an overcomplete dictionary N BY Î ´ ,
which consists of a normalized concatenation of orthogonal
wavelet bases. The sparsity model is encoded via a nondiffer-
entiable log-sum regularization function r, generalizing the ℓ1

norm. The resulting multiterm regularization thus reads
(Thouvenin et al. 2022a; Repetti & Wiaux 2021)

x x xr log 1 , B1n
B

n1
1 N( )( ) ( ∣ ) ∣ ( ) ( )†l l r r iY= å + +=

-
+

where (. )n denotes the nth coefficient of its argument vector,
and Ni +

denotes the indicator function of the real positive
orthant, imposing the nonnegativity constraint xN ( )i = +¥

+
if

x NÏ + and zero otherwise. The log-sum regularization being
nonconvex, the minimization task is approached via a
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reweighting procedure, where a series of convex surrogate
minimization tasks, composed of weighted-ℓ1 regularization
with nonnegativity constraints, are solved using FB (Repetti &
Wiaux 2020, 2021; Terris et al. 2022). The denoising proximal
operator of the resulting multiterm regularization does not have
a closed-form solution and is solved iteratively. In other words,
uSARA relies on FB with subiterative regularization denoisers.

We note that the parameter λ controls a soft-thresholding
operation acting on the wavelet coefficients. As proposed by
Terris et al. (2022), the exact thresholding parameter γλ is set
equal to the measurement noise transferred to the image
domain L2t ,6

L2 , B2( )gl t=

with the step size γ typically set to γ= 1.98/L. The parameter
ρ> 0 represents a floor level on the wavelet coefficients and is
naturally set to the noise level ρ= γλ (Thouvenin et al. 2022a).

Appendix C
AIRI’s Learned Denoiser

Following Terris et al. (2022), we trained a convolutional
DNN with a simple DnCNN architecture (Zhang et al. 2017) on
a rich, synthetic database  of normalized images with an
adaptive dynamic range. The training loss is a classical ℓ1 loss
enhanced with a firm nonexpansiveness constraint on the
denoiser,

u n u

u

minimize D

such that 2D 1, C1

u n

u
N

D
, 0,1 1

S



  

[ ( ) ]

( ) ( ) ( )

( )  

 

s+ -

" Î  -

~ ~ 

where u NÎ are samples of the training database  ,
n 0, 1( )~  is the additive Gaussian random noise, σ> 0 is
the training noise level,  denotes the expectation taken over u
and n,  denotes the identity operator, and ∥ · ∥1 denotes the ℓ1
norm.
We emphasize that training under the firm nonexpansiveness

constraint is a highly challenging task. As proposed in Pesquet
et al. (2021), in practice, we relax the constraint and introduce a
variant of the regularization in Equation (C1), which penalizes
softly nonfirmly nonexpansive networks. We further note that,
while Terris et al. (2022) demonstrated in simulation that this
leads to a robust way to ensure convergence of the resulting
PnP algorithms, we have witnessed that, when used for real
data and at large image sizes and dynamic ranges, such as those
of interest here, some denoisers lead to algorithm instability,
requiring further training.

The performance of the learned image regularization is
highly dependent on the training noise level σ, the impact of
which mirrors that of the regularization parameter λ in
uSARA’s denoiser. Terris et al. (2022) proposed a heuristic
according to which σ should be set equal to the measurement
noise transferred to the image domain L2t . However, the
training database is normalized, with peak image values upper-
bounded by 1. To avoid any generalizability issues, the trained
denoisers should therefore be used on similarly normalized
images, which was the case for the test images in the simulation

framework of Terris et al. (2022). In general, this constraint can
be accommodated by rescaling the inverse problem
(Equation (1)), effectively dividing it by an upper bound on
the peak intensity of the sought image, xmaxj j { }a , which
can be inferred from the peak of the dirty image. The rescaled
inverse problem,

y x n , C2( ) ( )a a aF= +

now targets the recovery of x a, with a peak value upper-
bounded by 1. As a result, the heuristic generalizes to setting σ

equal to the inverse input image domain peak signal-to-noise
ratio, which can be understood as the target reconstruction
dynamic range rather than an absolute noise level:

L2 . C3( )s t a=

Interestingly, if a predefined denoiser trained at some high
dynamic range is available, any RI data set with a signal-to-
noise ratio a priori pointing to a lower dynamic range denoiser
can be further rescaled (with a larger α) to match the existing
denoiser, according to Equation (C3). Here we adopt this single
denoiser approach, where different data are matched to the
denoiser, rather than the contrary. Naturally, PnP solutions are
multiplied by α after reconstruction.

Appendix D
Denoiser Faceting

Specific to the algorithm scalability requirement arising from
the large image dimensions of interest, we propose an
automated parallelization of the studied denoisers enabled by
image faceting. First, uSARA’s proximal denoiser takes
advantage of a faceted implementation of the sparsity
dictionary Ψ enabled by its convolutional nature and the
compact support of the wavelet kernels (Pruša 2012). The
number of facets is set to optimize the parallelization of the
processing across the available CPUs under communication
constraints. Second, AIRI’s learned denoiser is decomposed
and applied independently across the facets of the image. This
procedure is enabled by the convolutional nature of the DNNs,
which rely on kernels with compact support, in turn yielding a
small receptive field (Luo et al. 2016). The number of facets is
set to optimize the parallel processing across the available
GPUs for scalability under memory constraints.

Appendix E
Parallel Wide-field Measurement Operator

First, on large FoVs, such as the one of interest here, the w-
component of the baselines induces a nonnegligible baseline-
dependent chirp-like phase modulation on the radio sky
(Cornwell et al. 2005; Wiaux et al. 2009). This w-effect can
be formulated in closed form and needs to be accounted for in
the model of the measurement operator. Its modeling as a
simple phase modulation in the image domain for each baseline
is, however, impractical when used in combination with the fast
Fourier transform (FFT) underpinning the fast implementation
of N NÎ ¢´ ¢F in Equation (1), which computes all of the
discrete coefficients of the Fourier plane at once, rather than a
selected (u,v) point. For accurate and computationally efficient
modeling, we consider a hybrid approach combining the w-
stacking (Offringa et al. 2014) and w-projection approaches
(Cornwell et al. 2005), whereby the measurements are grouped

6 When considering a data weighting scheme other than natural weighting,
such as uniform or Briggs weighting, a multiplicative correction factor is
applied to L for a more accurate noise estimate in the image domain (A. Wilber
et al. 2022, in preparation).
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into P w-stacks composed of Mp data points each, with
1� p� P, resulting from binning the visibilities in the w-
dimension. The w-modulation of each visibility is decomposed
into two components: (i) a large phase modulation associated
with the central w-value of the w-stack to which it belongs,
incorporated into the measurement operator through phase
modulation in the image domain, and (ii) an offset phase
modulation injected through convolution with a small w-kernel
(Dabbech et al. 2017) in the Fourier plane. The resulting
measurement operator Φ is decomposed into a series of sparse
operators as

, E1

P

1

2

⫶ ( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

F

F
F

F

=

where the operator p p p
M NpF = Î ´G FZ is the measurement

operator associated with the pth w-stack. More specifically,
p

N NÎ ¢´Z denotes the zero-padding operator that encom-
passes the w-modulation of the associated w-stack, in addition
to the correction for the convolution with the approximate
nonuniform Fourier transform interpolation kernels, and

p
M NÎ ´ ¢G is the sparse degridding matrix encoding row-

based convolutions between these kernels and the small w-
kernels implementing the phase modulation of the w-offsets in
the Fourier plane, combining w-stacking and w-projection
results in a memory-efficient and accurate measurement
operator. We also emphasize that any DDE calibration
solutions modeled as Fourier kernels can be easily injected
into the measurement operator model via further row-based
convolution (Dabbech et al. 2021).

Second, the operator of interest in the gradient step of the FB
iterative structure (Equation (A2)) is not M NF Î ´ but rather

N N†F F Î ´ , which now reads

, E2
p

P

p p
1

( )† †åF F F F=
=

with p p p p p
N N† † †F F = Î ´Z F H FZ , and where the holographic

matrices p p p
N N†= Î ¢´ ¢H G G encode both the degridding and

gridding steps. The scalability of Φ†Φ to large data acquisition
regimes is promoted by enabling three key features.

First, a dimensionality reduction feature to reduce the
memory requirements of Φ†Φ is supported. The functionality
consists in gridding the data and encoding the degridding and
gridding steps as a single operation with the holographic
matrices Hp directly implemented as sparse operators. By doing
so, the operator Φ†Φ becomes effectively blind to the data
dimension M.

Second, a planning strategy to automate the choice of the
number of the w-stacks and the decision to enable the
dimensionality reduction from a subset of the data is devised.
In the first instance, estimates of the computational complexity
of the application of Φ†Φ (derived from the number of FFTs
and the sparsity of the degridding matrices) and of the memory
required to host the degridding matrices are obtained for a wide
range of values of the w-stacks number. The retained value is
the one presenting the best trade-off between the computational
cost and the memory requirements under constraints set by the
computing architecture on which the imaging algorithm is

deployed (number of compute nodes, number of CPUs per
node, available memory per CPU, etc). Data dimensionality
reduction via visibility gridding is enabled when the memory
requirements exceed the available resources.
Third, a fully automated parallelization of Φ†Φ is achieved

through memory-based partitioning of its underlying degridding/
holographic matrices and data vectors. The sparse matrices are
computed as part of the initialization of the imaging algorithm. A
data-clustering step is first performed in parallel for each w-stack
to further distribute its degridding/holographic matrix into blocks.
The clusters are made of visibilities belonging to the same radial
slice of the Fourier plane, minimizing the amount of underpinning
discrete Fourier coefficients and subsequent communication
requirements. The angular opening of each radial slice is
determined by the memory needed to compute and host the
resulting blocks. From the identified number of clusters, the CPUs
dedicated to the forward step are allocated. The blocks of the
degridding/holographic matrices are then computed only once
and hosted directly on the compute nodes to be applied in parallel
at each FB iteration.

Appendix F
Automated Parameter Selection

The estimated image noise levels at the low and high bands
are, respectively, L2 0.0014t and 0.0017 mJy. The peak
intensity values as estimated from the normalized7 dirty images
are 0.69 Jy at the low band and 0.37 Jy at the high band. For
uSARA, γλ and ρ are set equal to the estimated noise levels,
per Equation (B2). For AIRI, the estimated noise and peak
values suggest target dynamic ranges of 5× 105 and 2.2× 105

at the low and high bands, respectively. Owing to the chosen
normalization of the dirty image for peak estimation, the dirty
peak value consistently overestimates the true peak value, so
that the real target dynamic ranges are below these values.8 In
this context, we have used a single denoiser trained for target
dynamic range 4× 105, rescaling the inverse problems by the
appropriate α at each band independently as in Equation (C2).
In other words, after rescaling, and as in Equation (C3), the
inverse problem at each band is affected by a noise of standard
deviation L2t a equal to the training noise level of the
chosen denoiser, i.e., σ= 2.5× 10−6 Jy.
The uSARA and AIRI denoisers were respectively applied

on 8× 8 and 2× 2 facet decompositions of the images. The
low- and high-band data were decomposed into 12 and 14 w-
stacks in Equation (E1), with Φ†Φ encoded via the holographic
matrices Hp. At the low and high bands, respectively, this
enabled lower memory requirements from 470 and 645 GB
needed to host the degridding matrices Gp down to 81 and 159
GB. Finally, in WSClean, multiscale CLEAN utilized 72 w-
stacks for both bands.
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