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ABSTRACT 
 

Aims: The present study aimed to determine the growth indices of the Nile Tilapia, detected levels 
of Cu, Pb, Zn, and Cr in muscles of Tilapia and expected the potential adverse human health risks 
according to USEPA methodologies.  
Study Design: The design of the study depended on the determination of the impact of the 
drainage waste water on the fish quality, ecosystem health and human health.  
Place and Duration of the Study: the study investigated five sampling sites, two sites in the 
Torrent drainage channel and three sites on the Nile River during winter and summer seasons of 
2014-2015 at Beni-Suef governorate in Egypt.  
Methodology: Fish tissue samples were dried at 105°C for 6 hours, burned in a muffle furnace for 
6 hours at 550°C, acid-digested, and diluted with deionized water to known volume using the dry-
ashing procedure. All the digested samples were analyzed by flame atomic absorption 
spectrophotometer (Perkin-Elmer, Model 2380). Analytical blanks were run in the same way as the 
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samples, and standard solutions were prepared in the same acid matrix.  
Results: Metals were found to accumulate in fish muscles at the following order Zn> Cu> Cr> Pb. 
Levels of Zn and Pb exceeded the permissible limits of the world health organization (WHO) 
especially during summer season. The calculated hazard quotients for all the detected metals did 
not pose unacceptable risks at both consumption rates, but the excessive and continuous 
consumption of fish from the current sampling sites could induce cancer for habitual consumers.  
Conclusion: The present study could be considered as a beginning for further investigations for 
the health status of Nile River aquatic ecosystems and human populations feeding on fish 
produced from the study area. 
 

 
Keywords: Tilapia fish; Nile river; risk assessment. 
 

1. INTRODUCTION  
 
Metal Pollution of world aquatic ecosystems has 
increased dramatically during the last few years 
[1-3]. The whole course of the Nile receives 
agricultural, domestic and industrial waste water 
from both pointed and non-pointed polluted 
sources. Such pollutants may explain the Nile 
water quality deterioration in Egypt [4-8]. Metals 
monitoring for both essential and non-essential 
elements in aquatic ecosystems become crucial 
because of their toxicity, non-degradable nature, 
tendency to accumulate in different biota, and 
their transmission throughout the food chain and 
biomagnification in high trophic level organisms 
[3,9,10,11]. 
 
Humans are exposed to metals via several 
routes such as direct ingestion of contaminated 
water or food, dermal contact, and inhalation of 
fume and particles [12,13]. Continuous exposure 
of living organisms and human beings to metals 
and other toxic substances may cause the 
decline of humans' health and aquatic ecosystem 
status [14,15]. Risk assessment aims to quantify 
the potential environmental hazards to human 
health into a numerical value [8,14]. The 
selection of a fish as a model for toxic risk 
assessment is because fish provide a model of 
exposure that is relevant to natural settings; also 
the safety of the aquatic products has a great 
concern recently [16-18]. Tilapia was identified 
as a potential fish model for the present study to 
determine the probability of inducing adverse 
human health effects because of its high 
production in the Middle East and North Africa 
[19], its large tissue mass, its low price in relative 
to other fish models, in addition to the wide 
acceptance of the Egyptian consumers to tilapia 
[7]. 
 
Several studies evaluated the concentration of 
metals in fish tissues in Egypt [20-23]. Based on 
literature review there are no studies referring to 

the level of metals in muscle of tilapia collected 
from the Torrent drainage channel that was 
designed in 2007 at the eastern side of the Nile 
at Beni-Suef governorate and nearby Nile River 
sampling sites. The Torrent drainage channel 
receives waste water from several sources, such 
as the agricultural waste water, poultry and fish 
farms wastes, the rubbish dump leachates, and 
the diffused industrial and domestic waste water 
[24,25]. The scarcity of studies related to the 
human health risk assessment for fish 
consumption in Egypt in general and the 
absence of results related to the sampling sites 
in the eastern side of the Nile necessitated the 
present study. The current study aimed to (і) 
determine the spatial and seasonal variations of 
the growth indices of the Nile Tilapia, (іі) detect 
levels of Cu, Pb, Zn, and Cr in muscles of Tilapia 
and (ііі) evaluate the contribution of the selected 
metals to the expected adverse human health 
risks by calculating the average daily exposure 
dose (ADD), hazard quotient (HQ), hazard index 
(HI), and cancer risk (CR) according to USEPA 
methodologies. 
 

2. MATERIALS AND METHODS 
 
2.1 The Study Area 
 
As seen in Fig. 1, the study area was subdivided 
into five sampling sites (S1, S2, S3, S4 and S5), 
where fish (Oreochromis niloticus) was exposed 
to different metal levels and different 
environmental conditions.  
 
S1: represented the upstream point in the Nile 
approximately 2.5 km before the Torrent 
drainage channel destination at the Nile River, it 
was expected to be exposed to less 
contamination and represented the reference 
site. It is located at global positioning system 
(GPS) coordinates of N 29°03ˋ.726ˋˋ and E 
31°31ˋ.0224ˋˋ. 
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S2 and S3: represented two points in the Torrent 
drainage channel which its entire length 2.2 km, 
where there are different sites for waste water 
discharge into it. They are located at global 
positioning system (GPS) coordinates of N 
29°023ˋ.1876ˋˋ and E 31°426ˋ.8464ˋˋ for S2; and 
N 29°038ˋ.1852ˋˋ and E 31°359ˋ.7564ˋˋ for S3. 
 

S4: represented the middle stream point at the 
Nile where the drainage water from the Torrent 
drainage channel was mixed with the Nile River 
water. This site was exposed to different non-
pointed sources of contamination through 
diffusion of industrial, agricultural and domestic 
waste water, where there is no sewer system 
around. It is located at global positioning system 
(GPS) coordinates of N 29°055ˋ.2744ˋˋ and E 
31°327ˋ.9828ˋˋ. 
 

S5: represented the downstream point at the Nile 
that is located after approximately 2.1 km from 
the Torrent drainage channel end at the Nile. It is 
located at global positioning system (GPS) 
coordinates of N 29°123ˋ.2176ˋˋ and E 
31°341ˋ.6844ˋˋ. 
 

2.2. Samples Collection  
 

Fish specimens were collected from the five 
sampling sites during winter season (December, 
January and February) and summer season 
(June, July and August) from 2014 to 2015. A 
total number of 120 Oreochromis niloticus were 
collected, where 12 fish specimen were caught 
from every site for each season (4 fish 
specimen/month). Fish were caught by the local 
fishermen who used local traps, webs and 
anglers for catching fish.  
 

2.3 The Condition Factor (CF)  
 

The condition factor was calculated according to 
the equation (1) [26,27]:  
 

CF=  L
Wx

3

100

                                             (1) 
 
Where, 
 
W is the weight of the total fish (gm), and  
L is the total length of the fish (cm).  
 

2.4 Samples Preparation and Laboratory 
Analysis  

 
Oreochromis niloticus specimens were freshly 
dissected and their dorsal muscles were 

sampled, mixed, homogenized, and stored at 
clean polyethylene vials at -20°C until their 
analysis [28]. All glassware was acid-washed, 
rinsed in deionized water, and air-dried for 12 
hours prior to usage. Fish tissue samples were 
dried at 105°C for 6 hours, burned in a muffle 
furnace for 6 hours at 550°C, acid-digested, and 
diluted with deionized water to known volume 
using the dry-ashing procedure according to 
Hseu [29]. All the digested samples were 
analyzed by flame atomic absorption 
spectrophotometer (Perkin-Elmer, Model 2380) 
according to APHA [30]. All used reagents were 
analytical grade (Merck, Germany). Analytical 
blanks were run in the same way as the samples, 
and concentrations were determined using 
standard solutions prepared in the same acid 
matrix. Standards for instrument calibration were 
prepared on the basis of mono-element certified 
reference solution inductively coupled plasma 
standard (Merck). Standard reference material 
(National Institute of Standards and Technology 
(NIST, USA) was used to validate analysis, and 
the metals recoveries were between 90 and 110 
%. 

 
2.5 Metal Pollution Index (MPI)  
 
MPI was calculated to indicate the total metal 
load in fish muscles of collected specimens by 
using equation (2)  [31,32] 
 
MPI = (M1xM2xM3x….Mn)

1/n 
                              (2) 

 
Where,  
 
Mn is the concentration of metal n (mg/kg dry wt.) 
in the fish muscles. 
 

2.6. Bioaccumulation Factor (BAF)  
 
BAF was calculated by equation (3). 
 

BAF=      w

f

C

C

                                                   (3)  
 

Where, 
 

Cf is the metal concentration in fish muscles 
(mg/kg) and  
Cw is the metal concentration in water (mg/l), 
metals concentrations in water have been     
taken from the results reported by Mahmoud et 
al. [24]. 
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2.7 Health Risk Assessment  
 

The level of exposure to different metals through 
ingestion of fish muscles is estimated by the 
equation (4) [33,34]:  
 

ADD=     BWxAT

CxIRxEFxED

                                 (4) 
 

Where, 
 

ADD is the average daily exposure dose (mg/kg-
day) through ingestion of metal contaminated fish 
muscles, C is the concentration of the measured 
metal in the fish muscles (mg/kg dry wt.), IR is 
the ingestion rate of fish muscles per day (0.0312 
kg/day for normal adult, and 0.1424 kg/day for 
habitual or subsistent fish consumers), EF is the 
exposure frequency (365 days/year), ED is the 
exposure duration (70 years), BW is the average 
body weight (70 kg for normal adult), and AT is 
the average life time (365 days x 70 years).  
 
The risk assessment of non-carcinogenic 
adverse effects was estimated by calculating the 
hazard quotient (HQ) from the intake of metal 
contaminated fish muscles, and it is expressed 
by the ratio of ADD to the reference dose RfD of 
each metal by the equation (5), when HQ≥ 1 the 
consumers may be exposed to non- carcinogenic 
adverse health effects [33,34]:  
 

HQ=          
RfD

ADD

                                           (5) 
 

Where, 
 

oral RfD (mg/kg-day) for Cu is (0.04),  
Pb is (0.0035), Zn is (0.3), and  
Cr is (0.003) [35,36].  
 
Hazard index (HI) is introduced to evaluate the 
total potential for non-carcinogenic effects posed 
by more than one pathway, which was the sum 
of the HQs from all applicable pathway equations 
(6). HI≥ 1 showed a potential for adverse effects 
on human health: 
 

HI=



n

i

HQ
0                                                        (6)  

 
Cancer risk (CR) was also evaluated by using 
equation (7) [33,37]. The range of carcinogenic 
risks acceptable or tolerable by USEPA [36] is 
1.0E-06. 
  

CR=
SF

ADD

                                                    (7) 
 

Where, SF is the cancer slope factor (mg/kg-
day), the SF for Pb is (0.0085) and for Cr is (0.5) 
the slope factor for Cu and Zn is not available 
[35,36]. 
 

2.8 Statistical Analysis  
 
Statistical tests were performed by using IBM 
SPSS statistical package version 22. One way 
analysis of variances (ANOVA) was used to 
determine the spatial variations followed by the 
Tukey test for the multiple comparisons between 
the five sampling sites. Student t-test was used

 

 
 

Fig. 1. The five sampling sites in the eastern side of Beni-Suef governorate, Egypt 
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to determine the seasonal variations during 
winter and summer seasons. Pearson correlation 
analysis was used to evaluate the relationships 
between fish body indices and metals 
accumulation. All the results were expressed as 
mean and standard deviation (M ± SD). P< 0.05 
was the accepted significance level.   
 

3. RESULTS AND DISCUSSION  
 
In the present study 120 Oreochromis niloticus 
were collected from five sampling sites (S1, as a 
reference study site; S2 and S3 representing the 
Torrent drainage channel; S4 where the drainage 
mixes with the Nile River and S5 that lies 
downstream of S4) to evaluate some growth 
parameters and metal levels of the studied fish. 
Collected data of metal concentration during 
winter and summer seasons were used to 
evaluate the hazard quotient (HQ), the hazard 
index (HI) and the cancer risk (CR) as indicators 
of human health risks and adverse health effects 
associated with fish consumption.  
  

3.1 The Body Indices  
 
The body indices assessment is one of the 
methods that is used to provide indication for the 
degree of fitness and pollution load in aquatic 
organisms and could be used as biomarkers for 
adverse effect on fish [32]. Total weight (W), total 
length (L), body length (BL) and body height (H) 
of Tilapia fish collected from S3 have a significant 
increase at P< 0.01 when compared to their 
relevant values of fish collected from the other 
sampling sites during winter season as seen in 
Table 1. The condition factor (CF) values of fish 
collected from S2 show significant higher values 
at P< 0.05 when compared to the other study 
sites during summer season. Seasonally, 
significant higher values are noticed for W, L, BL, 
and H of fish collected from the reference site 
(S1) during winter season when compared to 
their relevant values of fish collected during the 
summer season. Similar seasonal variation is 
noticed for L, BL, and H of fish collected from S3 
during winter season that show significant higher 
values at P< 0.05 when compared to those of 
fish collected during summer season. CF values 
of fish collected from S2 and S3 during summer 
season show a seasonal significant increase at 
P< 0.05 when compared to their relevant values 
of fish collected during the winter season. The 
significant differences in the body indices of fish 
collected from the Torrent drainage channel 
could be explained by the exposure of fish to 
higher residual levels of livestock food stuff from 

the surrounding poultry farms that is considered 
as a source for the fish nutrition [24,25]. 
 

3.2 Metals concentration in Fish Muscles   
 
The concentrations of metals in the muscles of 
the tilapia and metal pollution index (MPI) during 
winter and summer seasons are summarized in 
table 2. Cu, Pb, Zn and Cr were detected in all 
the samples. Mean concentrations of Cu, Pb, Zn 
and Cr in the muscles of the tilapia during the 
two seasons followed the order: Zn> Cu> Cr> Pb 
except at S1 which reveals the following order 
Zn> Cr> Pb> Cu during summer season.   
 
The average Cu values range from 0.292 to 
5.823 mg/kg in the fish muscles collected from 
the current sampling sites during winter and 
summer seasons. The highest mean of Cu 
(5.823 ± 0.77 mg/kg) is recorded at S4 during 
summer season. Spatially, Cu concentrations in 
fish muscles collected from S4 show a significant 
increase at P< 0.05 when compared with their 
relevant values at the other sites during summer 
season. At seasonal scale, Cu reveals a 
significant increase in S3 at P< 0.005 and in S4 at 
P< 0.05 during summer season. Cu 
concentrations in the current sampling sites 
during the two seasons are found to be below the 
permissible limits (10 mg/day) [38, 39]. Cu range 
in the present study is found to be almost similar 
to Cu level (3.9 mg/kg) that was reported by 
Osman and Kloas [20] along the whole course of 
the Nile river at Egypt for Clarias gariepinus 
muscles and less than Cu average (20 mg/kg) 
that was reported by Lasheen et al. [1] in the 
agricultural drains at the greater Cairo for 
Oreochromis niloticus muscles. The 
accumulation of copper in fish muscles at the 
current sampling sites probably due to the 
sewage and agricultural waste water diffusion 
from the surrounding area, it may be due to Cu 
addition as a nutrient in fertilizers and animal 
feeds, or it could be due to the extensive 
application of insecticides [40]. Cu

2+
 and the Cu 

hydroxyl soluble ions are found to be the more 
toxic forms of Cu for fish [41]. Cu is associated 
with the total cholesterol which induce 
cardiovascular disease risk risk factors in 
children and adolescents [42].   
 
The average Pb values range from 0.071 to 
1.082 mg/kg in the fish muscles collected from 
the present sampling sites. The highest mean of 
Pb (1.082 ± 0.077 mg/kg) is recorded at S4 
during summer season. At spatial scale, Pb 
shows a significant increase at P< 0.05 in S5 
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when compared with its relevant value in S1 
during winter season. Seasonally, Pb increase 
significantly in S1 at P< 0.05, S3 at P< 0.01 and 
S4 at P< 0.05 The fish muscles collected from the 
current sampling sites during the two seasons 
show Pb concentrations above the permissible 
limits (0.025 mg/day) of WHO [38]. Pb range in 
the present study is within the range reported by 
Abdel-Mohsen and Mahmoud [22] in the Nile 
River at Egypt of (0.25 - 1.05 mg/kg) and higher 
than Pb range reported by Bekheit [43] in the 
White Nile at Sudan of (0.247 - 0.307 mg/kg). Pb 
accumulation in fish muscles in the current 
sampling sites could be attributed to air-borne 
lead due to the fuels combustion. Moreover, the 
excessive application of different types of 
fertilizers especially in the desert reclaimed lands 
may be another source of Pb contamination [44]. 
Pb is a neurotoxic to fish; it may cause persistent 
behavioral defects [45]. 
 
The average Zn values range from 10.047 to 
42.034 mg/kg in fish muscles collected during the 
current study. The highest mean of Zn (42.034 ± 
0.71 mg/kg) is noticed at S4 during summer 
season. Spatially, Zn shows a significant 
increase at P< 0.05 in S4 when compared with 
their relevant values at the other sites during 
summer season. Seasonally, Zn shows a 
significant increase in S1 at P< 0.05, S2 at P< 
0.05 and S4 at P< 0.01 during summer season. 
All investigated Zn concentrations in fish muscles 
during summer season show higher level over 
the permissible limits (10-20 mg/day; 10-30 

mg/day) of WHO [38] and FAO/WHO [39] 
respectively. During winter season, all Zn 
concentrations in fish muscles in the five 
sampling sites are below the permissible limits. 
The observed Zn range is higher than its relevant 
values (25.4 – 35.7 mg/kg) reported by Omar et 
al. [32] in the Nile River at the greater Cairo in 
Oreochromis niloticus muscles, and it is less than 
its concentration range (13.51 – 69.8 mg/kg) 
reported by Nacéra et al. [46] in Cyprinus carpio 
muscles from Sidi Abdeli dam at Algeria. Zn 
concentrations in the fish muscles in the current 
study may be attributed to fertilizers and 
pesticides application in the around agricultural 
lands [47]. Fish take up Zn directly from water, 
especially by mucous and gills, high 
concentration of Zn can cause growth 
retardation, respiratory and cardiac changes, 
inhibition of spawning, and a multitude additional 
detrimental effects which dramatically affect the 
fish survival [45]. 
 
The average Cr values range from 0.162 to 
1.451 mg/kg in the fish muscles collected from 
the present sampling sites. The highest mean of 
Cr (1.451 ± 0.35 mg/kg) is recorded in S3 during 
summer season. Cr reveals a seasonal 
significant increase in S1 at P< 0.01, S3 at P< 
0.05 and S4 at P< 0.0001 during summer 
season. All Cr concentrations in the five sampling 
sites during the two seasons are below 
FAO/WHO [39] permissible limits (10 mg/day). Cr 
range in the present study is higher than Cr 
concentration range (0.009 – 0.05 mg/kg)

 
Table 1. Average values ± standard deviation of total Weight (W), Total Length (L), Body 

Length (BL), Body Height (H), and Condition Factor (CF) of Nile Tilapia fish collected from the 
sampling sites (S1 to S5) during winter and summer seasons 

 
 S1 S2 S3 S4 S5 
W (gm) 
W  
S 

 
72.5± 15.6  
42.7 ± 11.3  

 
63.1 ± 7.5  
66.7 ± 8.2 

 
103.8 ±22.8 
72.5 ±33.7 

 
71.3 ± 14.8  
60.8± 27.5 

 
61.7 ± 21  
54.8 ± 17.2  

L (cm) 
W  
 S  

 
15± 1.2  
12.8 ± 1.1  

 
14.8 ± 0.65  
14.1 ± 1.1 

 
17.3 ± 0.92 
14.6 ± 2.7 

 
14.9 ± 1.4  
14.2 ± 2.2 

 
14.1 ± 1.5  
13.8 ± 1.9 

BL (cm) 
W  
S 

 
12.3 ± 0.99  
10.5 ± 0.97 

 
12.3 ± 0.6 
11.5 ± 1 

 
14.4 ± 0.68  
11.97 ± 2.3  

 
12.2 ± 1.1  
11.5 ± 1.6 

 
11.7 ± 1.3  
11.3 ± 1.4 

H (cm) 
W  
S  

 
5.6 ± 0.6  
4.2 ± 0.5 

 
4.8 ± 0.4  
5.1 ± 0.4  

 
5.7 ± 0.6  
4.9± 0.4  

 
5.4 ± 0.3  
5.1 ± 1.1  

 
5.2  ± 0.9  
4.8 ± 0.8 

CF
* 

W  
S  

 
2.12 ±0.12  
1.99± 0.18  

 
1.99 ± 0.29  
2.41 ± 0.34  

 
1.97 ± 0.16  
2.29 ± 0.31  

 
2.14 ± 0.23  
2.05± 0.31  

 
2.12 ± 0.19  
2.06 ± 0.26  

*, CF (unit less)  
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reported by Ibrahim and Omar [21] in the Nile 
River at Assiut governorate in Clarias gariepinus 
muscles, higher than Cr concentration range 
(0.31 – 0.39 mg/kg) reported by Akan et al. [48] 
in River Benue at Nigeria in Tilapia zilli muscles 
and higher than Cr concentration (0.04 mg/kg) 
reported by Squadrone et al. [49] in the Po river 
at Italy  in Silurus glanis muscles. The toxicity 
and associated health effects of Cr depend on its 
chemical speciation, where Cr3+ is an essential 
nutrient metal, while Cr

6+
 penetrates passively 

the gill membranes of fish and concentrates at 
higher levels in various organs and tissues [45, 
50]. Many serious problems in fish as swimming 
deficits, feeding disruption, fin ray erosion, 
ulcerations, and death may appear due to Cr 
exposure [22]. Cr levels detected in the current 
study may be a result of the intensive use of 
fertilizers and manure of the livestock in the 
surrounding agricultural areas [51].  
 

Metal pollution index (MPI) was used to simplify 
the metal load in fish muscles in one value for 
each site during each season. The sequence of 
MPI for the sampling sites follows the order: S5> 
S3> S2> S4> S1 during winter season and S4> 
S3> S2> S5> S1 during summer season as shown 
in table 2. MPI clarifies that the most 
contaminated fish muscles were collected from 
S5 during winter season and S4 during summer 
season, This could be explained by the additive 
effect of the wastes received from the Torrent 
drainage channel (S2 and S3) and other 
contaminated non-pointed sources as the fish 
ponds in the Nile or the sewage discharge from 
the surrounding human population on the water 
quality of the upstream site S1 before it reaches 
S4 and S5. Mahmoud et al. [24], [25] reported 
metals concentrations in the same five sampling 
sites during winter and summer seasons, and 
they found that the Torrent drainage channel (S2 
and S3) showed higher values of salinity than the 
Nile River sites (S4 and S5). Salinity and total 
dissolved solids in the Torrent drainage channel 
may affect the metals bioavailability for fish and 
reduce its accumulation in their tissues. Also 
cations are assumed to reduce toxicity in fish by 
competing with toxic metal ions for binding sites 
on gills or other biological surfaces [52]. 
 

3.3 Bioaccumulation Factor (BAF)  
 

BAF was calculated as the ratio between the 
metal concentrations in fish muscles to the metal 
concentrations in water. The calculated BAF 
results are represented in table 3. The results 

show that all metals have BAF> 1 during winter 
and summer seasons, meaning that all metals 
are bio accumulated in the fish muscles. The 
highest BAF values are obtained for Cu (85.632) 
at S4, for Pb (23.773) at S2, for Zn (1161.914) at 
S1, and for Cr (131.909) at S3 during summer 
season. All BAF values in the sampling sites 
during summer season show higher values than 
those recorded values in winter season except 
for Cr at S5 and for Cu at S1, S3 and S5. Those 
findings are matching with the metals 
accumulation increase in fish muscles at the high 
mountain lakes and arctic lakes due to the 
climate change and temperature increase [53]. 
Ibrahim and Omar [21] reported that the levels of 
metals in muscles tissues from the Nile at Assuit 
governorate increased significantly during 
summer season, due to the increase of 
temperature and fish metabolism. Yancheva et 
al. [54] in Topolnitsa reservoir of Bulgaria found 
that the increase in temperature lead to increase 
in toxicant accumulation in fish tissues, as it 
accelerates the cross of it through the biological 
membranes. 
 

3.4 Correlation Analysis 
  
The Pearson correlation coefficients between 
metals concentrations in the fish muscles and the 
body indices of the sampled fish during winter 
and summer seasons are shown in table 4. 
During winter season, there are positive 
correlations between W/L (r = 0.982, P< 0.001), 
BL/W (r = 0.972, P< 0.01), L/BL (r = 0.996, P< 
0.01), Cu/Pb (r = 0.910, P< 0.01), Cu/Zn (r = 
0.934, P< 0.01), Cu/Cr (r = 0.918, P< 0.01) and 
Pb/Cr (r = 0.962, P< 0.01). During summer 
season, there are positive correlations between 
W/L (r = 0.960, P< 0.01), BL/W (r = 0.976, P< 
0.01), L/BL (r = 0.994, P< 0.01), H/Cu (r = 0.898, 
P< 0.05), and Cu/Pb (r = 0.969, P< 0.01). 
Pearson correlation coefficients indicate that 
there are no relations between metals 
bioaccumulation in the fish muscles from the 
current sampling sites and the fish body indices. 
There are other factors as temperature and metal 
bioavailability that may affect metals 
accumulations in the fish muscles. The positive 
correlation between W, L and BL during winter 
and summer seasons confirmed the relationship 
between growth and weight. The positive 
correlation between different metals accumulated 
in the fish muscles may indicate that they 
originate from the same sources and have the 
tendency to bio accumulate together.  
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Table 2. Average values (±SD) of selected metals and metal Pollution Index (MPI) for fish 
muscles samples (mg/kg dry weight) collected from different study sites (S1 to S5) during 

winter and summer seasons 
 

 S1 S2 S3 S4 S5 
Cu  
W  
S 

 
0.991 ±0.47  
0.292 ±0.018 

 
1.529 ±0.34  
3.798 ±1.65  

 
1.625±0.1  
3.934 ± 0.066  

 
1.034 ±1.36  
5.823 ±0.77  

 
2.138 ± 0.22  
2.032 ± 0.13  

Pb 
W  
S 

 
0.071 ± 0.006  
0.417 ± 0.035  

 
0.093 ± 0.034  
0.737 ± 0.39  

 
0.193 ±0.015  
0.921 ± 0.034  

 
0.095 ± 0.03  
1.082 ±0.077 

 
0.286 ± 0.10  
0.551 ± 0.14 

Zn  
W  
S 

 
10.047 ±6.78  
40.667 ±3.42   

 
14.575 ±2.47  
34.831 ±0.13  

 
12.601 ±8.11  
30.982 ±2.66  

 
11.472 ±2.87  
42.034 ± 0.71  

 
17.403 ± 6.34  
35.678 ± 2.656    

Cr  
W  
S  

 
0.169 ± 0.04  
1.007 ± 0.031 

 
0.185 ± 0.013  
0.742 ± 0.57  

 
0.228 ± 0.022  
1.451 ± 0.35  

 
0.162 ±0.013  
1.216 ±0.025 

 
0.364 ± 0.24  
0.573 ± 0.047 

MPI  
W  
S 

 
0.588  
1.494 

 
0.787  
2.916 

 
0.974  
3.572 

 
0.654  
4.236 

 
1.403  
2.187 

 
Table 3. BAFs of metals concentrations in fish muscles samples collected from the sampling 

sites (S1 to S5) during winter and summer seasons 
 

 S1 S2 S3 S4 S5 

Cu 
W 
S 

 
70.785  
2.374 

 
30.58  
52.027 

 
65.00 
64.492 

 
7.282 
85.632 

 
54.821 
26.737 

Pb 
W 

S 

 
5.071 

9.929 

 
1.1148 

23.773 

 
6.893 

17.377 

 
2.317 

14.427 

 
7.333 

8.348 

Zn 
W 

S 

 
197 

1161.914 

 
51.502 

916.605 

 
69.236 

573.741 

 
10.307 

764.255 

 
457.974 

615.138 

Cr 

W 
S 

 

18.777 
62.938 

 

5.968 
14.84 

 

14.25  
131.909 

 

5.226 
28.279 

 

24.267 
16.371 

 
3.5 Human Health Risk Assessment  
 
The values of hazard quotient (HQ), hazard 
index (HI), and cancer risk (CR) are calculated  
for the five sampling sites for normal and habitual 
fish consumers during winter and summer 
seasons (table 5 and 6). The calculated HQs for 
the four metals during the two studied seasons 
are lower than 1.0 at the two ingestion rates. The 
highest HQs values are recorded at S4 for the 
habitual consumers during summer season with 
values of 0.2961 for Cu, 0.6289 for Pb and 0.285 
for Zn. The only exception is recorded for Cr 
which shows its highest HQ at S3 0.9839. HI for 
the four metals was less than 1.0 at the five 
sampling sites for normal consumers during 
winter and summer seasons and for habitual 

consumers during winter season. HI for all 
sampling sites are higher than 1.0 for the 
habitual consumers during summer season. CRs 
for Pb and Cr are higher than unity 1.0E-06 in the 
five sampling sites for both normal and habitual 
consumers during winter and summer seasons. 
Health risk assessment for the four metals at the 
five sampling sites indicates that the habitual 
consumers may be exposed to non-carcinogenic 
adverse health effects due to the fish muscles 
intensive consumption during summer season 
(Table 5). CR calculations indicate that excessive 
consumption of fish over a long period of time 
from the studied sampling sites may induce 
carcinogenic adverse health effects for both 
normal and habitual fish consumers as shown in 
Table 6. 
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Table 4. Pearson correlation coefficients between weight (W), length (L), body length (BL), 
height (H), condition factor (CF), Cu, Pb, Zn, and Cr, winter season is below the diagonal and 

summer season is above the diagonal 

 

 W L BL H CF Cu Pb Zn Cr 

W 1 0.960
**
 0.976

**
 0.820 0.805 0.744 0.736 -0.689 0.381 

L 0.982** 1 0.994** 0.876 0.623 0.832 0.826 -0.575 0.380 

BL 0.972
**
 0.996

** 
1 0.832 0.647 0.770 0.773 -0.655 0.380 

H 0.728 0.601 0.556 1 0.587 0.898* 0.787 -0.289 0.055 

CF -0.539 -0.669 -0.719 0.150 1 0.375 0.303 -0.728 0.047 

Cu -0.072 -0.090 -0.011 -0.326 -0.270 1 0.969** -0.044 0.412 

Pb 0.081 -0.009 0.046 0.026 -0.026 0.910
* 

1 -0.061 0.617 

Zn -0.384 -0.379 -0.303 -0.602 -0.127 0.934* 0.782 1 -0.075 

Cr -0.161 -0.346 -0.188 -0.126 0.096 0.918
* 

0.962
** 

0.848 1 
*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 
Table 5. Hazard Quotients (HQs) and Hazard Indices (HIs) of fish consumption for both normal 
and habitual consumers from the current sampling sites (S1 to S5) during winter and summer 

seasons 
 

HQ  S1 S2 S3 S4 S5 

Cu  

W      

 

S        

 

 

N  

H 

N  

H 

 

0.011 

0.0504  

0.0033 

0.0149 

 

0.017  

0.0778 

0.0423 

0.1932 

 

0.0181 

0.0826 

0.0438 

0.2001 

 

0.0115 

0.0526 

0.0644 

0.2961 

 

0.0238 

0.1087 

0.0226 

0.1033 

Pb 

W       

 

S         

 

 

N  

H  

N  

H  

 

0.00904 

0.04127 

0.0531 

0.2424 

 

0.0118 

0.0541 

0.0939 

0.4284 

 

0.0246 

0.1122 

0.1173 

0.5353 

 

0.0121 

0.0552 

0.1378 

0.6289 

 

0.0364 

0.1662 

0.0701 

0.3203 

Zn  

W        

 

S         

 

 

N  

H  

N  

H  

 

0.0149 

0.0681 

0.0604 

0.2758 

 

0.0216 

0.0988 

0.0517 

0.2362 

 

0.0187 

0.0854 

0.0460 

0.2101 

 

0.017 

0.0778 

0.0625 

0.285 

 

0.0258 

0.118 

0.053 

0.2419 

Cr  

W       

 

S         

 

 

N  

H  

N  

H 

 

0.0251 

0.1146 

0.1496 

0.6828 

 

0.0275 

0.1254 

0.1102 

0.5031 

 

0.0339 

0.1546 

0.2156 

0.9839 

 

0.0241 

0.1099 

0.1807 

0.8246 

 

0.0541 

0.2468 

0.0851 

0.3885 

HI   

0.06004  

0.27437  

 

0.2664  

1.2159 

 

0.0779  

0.3561  

 

0.2981  

1.3609 

 

0.0953  

0.4348  

 

0.4227  

1.9294 

 

0.0647  

0.2955  

 

0.3746  

2.0346 

 

0.1401  

0.6397  

 

0.2308 

1.054 

W        

 

 

S          

 

N  

H  

 

N  

H 
N, the normal fish consumers with ingestion rate (0.0312 kg/day); H, the habitual fish consumers with ingestion 

rate (0.1424 kg/day); W, winter season; S, summer season 
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Table 6. Cancer Risks (CRs) of the ingestion of Pb and Cr contaminated fish muscles for both 
normal and habitual consumers from the current sampling sites (S1 to S5) during winter and 

summer seasons 
 

  S1 S2 S3 S4 S5 

Pb 

W             

 

 

S             

 

 

N  

H  

 

N  

H  

 

3.8E-3  

1.6E-2  

 

2.2E-2  

9.9E-2 

 

4.8E-3  

2.2E-2  

 

3.9E-2  

1.8E-1  

 

1.0E-2  

4.6E-2  

 

4.8E-2   

2.2E-1 

 

4.9E-3  

2.3E-2  

 

5.7E-2  

2.6E-1 

 

1.5E-2 

6.8E-2  

 

2.9E-2  

1.3E-1  

Cr  

W            

 

 

S 

 

N  

H  

 

N  

H 

 

1.5E-4  

6.9E-4  

 

8.9E-4  

4.1E-3  

 

1.6E-4  

7.5E-4 

 

6.6E-4  

3.0E-3  

 

2.0E-4  

9.3E-4  

 

1.3E-3  

5.9E-3  

 

1.4E-4  

6.6E-4  

 

1.1E-3  

4.9E-3  

 

3.2E-4  

1.5E-3  

 

5.1E-4  

2.3E-3 
N, the normal fish consumers with ingestion rate (0.0312 kg/day); H, the habitual fish consumers with ingestion 

rate (0.1424 kg/day); W, winter season; S, summer season 

 

4. CONCLUSION 
 
The effect of different types of waste water on 
metal load of tilapia fish muscles through all the 
sampling sites during the two seasons was clear 
and proved by calculating MPI, BAF, HQ, and HI. 
At the current study, tilapia fish accumulated 
some metals as Pb and Zn at concentrations 
more than the permissible limits especially in 
summer season. MPI shows that the most 
contaminated fish found to be in S5 during winter 
season and S4 during summer season. Despite 
the low expected public health impacts caused 
by the consumption of each metal separately, 
metals concentration in fish muscles collectively 
may lead to human adverse health effects 
especially on the habitual consumers. People 
consumed fish collected from the sampling sites 
chronically found to be under the cancer risk. 
The cumulative risk of metals and their impacts 
gave an alarming sign for the importance of 
assessment surveys for different water bodies 
and for the current study area. 
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