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Abstract 
 

Estimation of parameters (rate constants) in infectious disease models can be done either through 
literature or from clinical data. This article presents parameter estimation of a disease model from clinical 
data using the numerical integration followed by minimization of the error function. The error function is 
the overall sum of squared distances between the model-fitted points and the corresponding clinical data 
points at certain time points. Numerical integration was done using written Mat lab code using ode15s 
solver because of stiff nature of the disease models. Minimization of the error function was also done 
through a written Mat lab code using Mat lab routine “fmincon”. 
 

 
Keywords: Clinical data; parameter estimation; numerical integration; ordinary differential equation 

(ODE); error function; Mat lab code; minimization; MATLAB routine; fmincon. 
 

1 Introduction 
 
Once a mathematical model for a disease has been built, one of the key areas of the model worth considering 
is the determination of the model parameter values from a clinical data which is known as parameter 
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estimation problem. Different strategies have been proposed for dealing with the parameter estimation 
problem in ODEs given a set of noisy data. However, in this article a numerical method will be used to 
determine parameters in a system of nonlinear equations by minimizing the distance between the clinical 
data points and the computed model –fitted points [1]. 
 

2 Model 
 
The mode to be considered in this article is an age-structured malaria disease model with three infectious 
compartments; that is, infectious infants, infectious adults and infectious pregnant women. The model 
consists humans and adult female Anopheles mosquitoes and has a system of 6 nonlinear differential 
equations which is written below. In this model, infectious individuals between 0 to 5yearsold is known as 
infectious Infants and above 5yearsold who are not pregnant are termed infectious Adults. Infectious 
pregnant women are infectious women carrying fertilized eggs in their bodies. It is period from conception 
to birth. The model is based on the susceptible-infectives (SIS) models of infectious disease epidemiology. 
Therefore, the human population is partitioned into four compartments: susceptible   ( ��  ) , infectious 
infants   ( �� ) , infectious adults   ( ��)  and infectious pregnant women  ( �� )  since the data for these 
compartments are always available at the health directorates of the various malaria endemic countries. The 
mosquito populace is also divided into two compartments namely:  susceptible  ( �� )  and infectious ( �� )  . 
Detailed description of the model   ( 1 )   is given in Table 1 and Table 2. Table 1 consists of state variables 
and Table 2 comprises the parameters (rate constants) to be determined from the clinical data.  State 
variables are the set of variables that are used to describe the mathematical "state" of a disease model and the 
parameters are constants or coefficients of the state variables that have to be determined from the clinical 
data.  State variables are used to represent compartments in the disease models. Therefore, the number of 
state variables is equal to the number of compartments. 
 
Most of the current malaria models we have now, have used literatures values for their simulations. 
Therefore, estimating the parameters in this model will assist mathematical researchers in malaria modelling 
to have true values from clinical data for their simulations.  It will also give true parameters to malaria 
researchers and policy makers so that precise control strategies can be formed to eliminate or control the 
malaria disease.    
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where the initial values are ��(0) = 15   ,   ��(0) = 1.3  ,     ��(0) = 2   ,     ��(0) = 0.1   ,    ��(0) = 20  
and   ��(0) = 10  . 
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Table 1. The state variables for the model 1 
 

State variables Description 

��(�) Number of susceptible humans at time   � . 

��(�) Number of infectious infants at time   �. 

��(�) Number of infectious adults at time  �. 
��(�) Number of infectious Pregnant women at time  �. 
��(�) Number of susceptible mosquitoes at time  �. 
��(�) Number of infectious mosquitoes at time   � . 
��(�) Total human population at time  � . 
��(�) Total adult female Anopheles mosquito population at time   � .  

 
Table 2. The parameters for the model 1 

 
��  Rate of increase for the human population.  Dimension: Humans × Time-1 
��  Per capita birth rate for mosquitoes. Dimensions: Time-1 
��  Density-dependent natural mortality rate for humans. Dimensions: Time-1 
�� Density-dependent natural mortality rate for adult female Anopheles mosquitoes. 

Dimensions: Time-1 
�� Per capita disease-induced mortality rate for infants. Dimensions: Time-1 
�� Per capita disease-induced mortality rate for adults Dimensions: Time-1 
�� Per capita disease-induced mortality rate for pregnant women Dimensions: Time-1 
Λ� Clinical recovery rate for the infants. Dimensions: Time-1 
Λ� Clinical recovery rate for the adults. Dimensions: Time-1 
Λ� Clinical recovery rate for the pregnant women. Dimensions: Time-1 
Φ� Number of bites on infant per female mosquito per unit time.  Dimensions: Time-1 
Φ� Number of bites on adult per female mosquito per unit time.  Dimensions: Time-1 
Φ� Number of bites on pregnant women per female mosquito per unit time.  

 Dimensions: Time-1 
��� Fraction of bites that successfully infect humans 
��� Fraction of bites that successfully infect mosquitoes.   
� Rate of progression from   ��  to   ��  compartment.  Dimensions: Humans × Time-1 
Ω Rate of progression from   ��  to   ��  compartment.  Dimensions: Humans × Time-1 

 

3 Estimation of the Model Parameters 
 
The model is assumed solvable and differentiable with respect to the state variables and the parameters to be 
estimated on the whole domain [1]. To be able to solve the model uniquely and to get derivatives in an 
efficient and numerically stable way, the regularity of the model is also assumed. The numerical solution of 
the model is achieved in two steps. First the model is solved by odel5s solver using Mat lab code to get 
model function values [2,3,1]. 
 
A fitting criterion depending on the state variables and the independent optimization parameters is 
formulated subsequently. The resulting data are then inserted into a standard parameter-estimation code to 
compute the least-squares fit. Upper and lower bounds for the parameters to be estimated should be taken 
into account.  
 
The two parameters  ��  and  ��   can be determined from the demography of a country. 
 
For the example Ghana’s population growth rate is 2.19% (2014 est.) by 2015 IndexMundi. 
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Hence �� =  
2.19

100
 = 0.0219 per year                            

 
Life expectancy for an individual in Ghana is 62.4 years in 2015 by World Health Organization in 3rd 
November, 2016.   
 

 Therefore   �� =
1

62.4
= 0.016 per year                                                  

 
Therefore the model (1) becomes 
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There are 15 parameters left to be estimated from clinical data. In the model (2) above, there are two 
populations, humans and female Anopheles mosquitoes. For the human population, the exact values of 
��  , ��  ,  ��  and  ��  can be calculated from the clinical data. However, the exact values of    ��  and  ��   
cannot be determined, therefore assumed values are used to the variables    ��  and  ��  . To balance the 
effect of overestimation or underestimation of the values of the variables    ��  and  ��    on the model, two 
coefficient parameters   �16 and    �17   are placed on   ��  and  ��  respectively. So that if the assumed 
population sizes are greater than the actual values,  �16   and  �17  can reduce them to the actual values and 
the vice versa if assumed population sizes are less than the actual values. 
 
The clinical data in Table 3 will be used for the parameter estimation. 
 

Table 3. Clinical malaria data 
 

Years  ��  ��  ��  ��  ��  �� 

2000 15,475,505 1,303,685 2,045,843 102,834 20,714,172 10,357,086 

2001 16,248,546 1,316,724 1,728,120 100,036 18,869,280 9,434,640 

2002 16,645,417 966,923 2,173,970 103,192 19,464,510 9,732,255 

2003 16,748,794 1,421,148 2,131,748 105,055 21,947,706 10,973,853 

2004 17,419,477 1,289,874 2,126,159 101,008 21,102,246 10,551,123 

2005 17,584,872 900,000 3,175,705 112,337 25,128,252 12,564,126 

2006 18,086,432 946,946 2,914,402 126,862 23,929,260 11,946,630 

2007 18,086,432 1,239,374 4,145,311 122,068 33,040,518 16,520,259 
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Years  ��  ��  ��  ��  ��  �� 

2008 17,784,946 1,363,920 3,845,506 121,548 31,985,844 15,992,922 

2009 16,629,384 1,875,338 5,067,370 141,068 42,502,656 21,251,328 

2010 16,172,616 2,223,194 5,768,026 153,894 48,870,684 24,435,342 

2011 15,210,099 2,747,162 6,774,978 196,261 58,310,406 29,155,203 

2012 14,904,333 3,095,178 7,342,778 202,271 63,841,362 31,920,681 

2013 15,107,273 3,311,214 7,528,239 217,704 66,342,942 33,171,471 

2014 19,609,450 2,454,620 4,562,437 160,093 43,062,900 21,531,450 

2015 23,549,481 1,244,974 2,501,649 112,898 23,157,126 11,578,568 

2016 23, 464,661 1,463,608 2,947,607 134,403 27,273,708 13,636,854 
 
In order to have easy computation, each data for the two populations is divided by 1000000 and rounded to 
the best possible decimal to make it little bit linear. This results in Table 4. 
 

Table 4. Data for the curve fitting  
 

Years  ��  ��  ��  ��  ��  �� 

2000 15 1.3 2 0.1 20 10 

2001 16 1.3 1.7 0.1 18 9 

2002 17 1 2.2 0.1 20 10 

2003 17 1.4 2.1 0.1 22 11 

2004 17 1.3 2.1 0.1 21 11 

2005 18 0.9 3.2 0.11 25 13 

2006 18 0.9 2.9 0.13 24 12 

2007 18 1.2 4.1 0.12 33 17 

2008 18 1.4 3.8 0.12 32 16 

2009 17 1.9 5.1 0.14 43 21 

2010 16 2.2 5.8 0.15 49 24 

2011 15 2.7 6.8 0.2 58 29 

2012 15 3.1 7.3 0.2 64 32 

2013 15 3.3 7.5 0.22 66 33 

2014 20 2.5 4.6 0.16 43 22 

2015 24 1.2 2.5 0.11 23 12 

2016 23 1.5 2.9 0.13 27 14 
 
Now let us present the 15 parameters by   Ps   and the state variables by    Xs   in the Table 5. 
 

Table 5. Parameters and state variables 
 

�� = �1 ��� = �9 �17 
�� = �2 ��� = �10  
�� = �3 Φ� = �11 ��(�) = �1 
�� = �4 Φ� = �12 ��(�) = �2 
�� = �5 Φ� = �13 ��(�) = �3 
Λ� = �6 � = �14 ��(�) = �4 
Λ� = �7 Ω = �15 ��(�) = �5 
Λ� = �8 �16 ��(�) = �6 

 
The quantities �� =   �1 + �2 + �3 + �4  and   �� = �16�5 + �17�6   
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This results in model   (3)  below  
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       (3) 

 
with the initial value   �1(0) = 15   ,   �2(0) = 1.3   ,     �3(0) = 2   ,     �4(0) = 0.1  , �5(0) = 20   and 
x6(0) = 10. 
 
The equation  (3)  can be simplified as the system of ODE of the form 
 

��

��
= f(�  ,   � ,   �  )  ,   �(��) = ��  and    � ∈   [  ��  ,   �  ]                                                                    (4)   

 

where     
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��
 , ⋯ ,   
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�      ,      � = (�1,   .  .   .  ,   �6)          ���      � = (�1,   .   .   .    ,    �17) .    

 
��  is the initial values of the state variables. 
 
Parameter estimation of the model (4) requires numerical integration of the model (4) followed by 
minimization of the error function. The error function is the overall sum of squared distances between the 
model-fitted points and the corresponding clinical data points at certain time points. The error function can 
be termed the total error of the model. The aim of the error function is to measure the fit to the data. A 
smaller error function value indicates a good fit of the model by the clinical data values. Hence the error 
function can be written using the least squares error [4,5,6,7,1,8,9].  
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The next target is to minimize the error function to obtain the parameter estimates  

 

min
�

�(�)                                                                                                                                                         ( 6 )  

 

subject to equation (4) 

 

Parameter estimation algorithm [10]:  

 

1. Guess initial parameter values. 

2. Using an appropriate ODE solver, solve the model given the current parameter values. Compute the 
solution of the model. 

3. Evaluate   �  using equation (5). 

4. Update parameter values to minimize   �  . This step and the next are usually controlled by an 
optimization package. 

5. Check convergence criteria. If not converged, change guess initial parameter values of   �   and go to 
(2). 

 

The minimization of the model (5) is done by the Mat lab routine “fmincon” which reacquires that the initial 
guess values of    �  should have upper and lower bounds defined on them, that is,   � ≤ � ≤ �  .   � and � 
are vectors. A written Mat lab code with initial state values was used to simulate model( 4 ) After which 
another Mat lab code which import the malaria data from Excel was used to calculate and minimize the error 
function ( �(�) ), and plot the model values and the malaria data. ..The second code containing “fmincon” 
stops when it achieves the minimum total error and displays the parameter values and minimum total error 
[4]. 

 

Description of Mat lab routine “fmincon”  

 

fmincon   attempts to find a constrained minimum of a scalar function of several variables starting at an 
initial estimate. This is generally referred to as constrained nonlinear optimization or nonlinear programming 
[11]. 

 

Syntax 

 

[p, fval] =fmincon( fun , p0, A, b, Aeq, beq, lb, ub ) starts at p0 and attempts to find a minimizer p of the 
function described in fun subject to the inequalities   A ∗ p ≤ b .    p0 can be a scalar, vector, or matrix. 

 

It also minimizes fun subject to the linear equalities   Aeq ∗ p = beq  and   A ∗ p ≤ b . If no inequalities 
exist, set   � = [  ]  and    � = [  ]. 

 

It defines a set of lower and upper bounds on the design variables in   p  ,  so that the solution is always in 
the range    lb ≤ p ≤ ub  . If no equalities exist, set    Aeq = [  ]  and   beq = [  ]  . If    p(i)  is unbounded 
below, set lb(i) = −Inf   and   p(i)  is unbounded above, set   ub(i) = Inf .  

 

If the specified input bounds for a problem are inconsistent, the output   p  is p0 and the output   fval  is   [  ] . 

 

Components of   p0  that violate the bounds   lb ≤ p ≤ ub  are reset to the interior of the box defined by the 
bounds. Components that respect the bounds are not changed. There are other several syntaxes for  fmincon, 
but the above directly relates to parameter estimation in infectious disease models [4,11]. The results in 
Table 6 were obtained for the parameters in model   (1).   
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Table 6. Estimated parameters 
 

�� = Par(1) = 0.05883 ��� = Par(10) = 0.00535 
�� = Par(2) = 0.05882 Φ� = Par(11) =  0.32437 
�� = Par(3) =  0.01924 Φ� = Par(12) = 0.96144 
�� = Par(4) = 0.19821 Φ� = Par(13) = 0.01405 
�� = Par(5) = 0.5337 � = Par(14) =  0.10349 
Λ� = Par(6) =  0.13908 Ω = Par(15) = 0.01957 
Λ� = Par(7) = 0.16157 � = Par(16) = 11501 
Λ� = Par(8) = 0.16244 � = Par(17) = 142000 
��� = Par(9) =  0.00016  

 

4 Graphs of the Infectious Human Compartments   
  
The graphs below are the curve fitting for the three infectious human compartments. 
 

 
 
After the parameter estimation, Table 3 becomes Table 7 below: 
 

Table 7.  Clinical malaria data after parameter estimation 
 

Years  ��  ��  ��  ��  ��  �� 
2000 15,475,505 1,303,685 2,045,843 102,834 238,233,692,200 1,470,706,212,000 
2001 16,248,546 1,316,724 1,728,120 100,036 217,015,589,300 1,339,718,880,000 
2002 16,645,417 966,923 2,173,970 103,192 223,861,329,500 1,381,980,210,000 
2003 16,748,794 1,421,148 2,131,748 105,055 252,420,566,700 1,558,287,126,000 
2004 17,419,477 1,289,874 2,126,159 101,008 242,696,931,200 1,498,259,466,000 
2005 17,584,872 900,000 3,175,705 112,337 289,000,026,300 1,784,105,892,000 
2006 18,086,432 946,946 2,914,402 126,862 275,210,419,300 1,696,421,460,000 
2007 18,086,432 1,239,374 4,145,311 122,068 379,998,997,500 2,345,876,778,000 
2008 17,784,946 1,363,920 3,845,506 121,548 367,869,191,800 2,271,004,864,000 
2009 16,629,384 1,875,338 5,067,370 141,068 488,823,046,700 3,017,688,576,000 
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Years  ��  ��  ��  ��  ��  �� 
2010 16,172,616 2,223,194 5,768,026 153,894 562,061,736,700 3,469,818,564,000 
2011 15,210,099 2,747,162 6,774,978 196,261 670,627,979,400 4,140,038,826,000 
2012 14,904,333 3,095,178 7,342,778 202,271 734,239,504,400 4,532,736,702,000 
2013 15,107,273 3,311,214 7,528,239 217,704 763,010,175,900 4,710,348,882,000 
2014 19,609,450 2,454,620 4,562,437 160,093 495,266,412,900 3,057,465,900,000 
2015 23,549,481 1,244,974 2,501,649 112,898 266,330,106,100 1,644,156,656,000 
2016 23, 464,661 1,463,608 2,947,607 134,403 313,674,915,700 1,936,433,268,000 

 

Susceptible mosquito   ( ��)   and infectious mosquito   ( ��)  populations for each year have been estimated 
through the parameter estimation.  Next, we consider the interpretation of the parameters in the model  (1) . 
 

5 Interpretation of Parameters Results 
 
Interpretation of the parameters are given in Table 8. 
 

Table 8. Interpretation of results 
 

Parameter Source Interpretation 
�� = 0.0219 Population growth rate per 

annum: 2.19% (2014 est.). 
2015 IndexMundi 

Rate of increase for the human population 
per annum   

�� = 0.05883 Fitted Rate of increase for the mosquito 
population per annum   

�� =
1

62.4
= 0.016 

Life expectancy for an 
individual in Ghana is 62.4 
years in 2015 by World Health 
Organization in 3rd November, 
2016. 

Natural death rate per annum for humans 

�� = 0.05882years 
= 0.05882 × 365.25days 

= 21.484days 

Fitted Life expectancy for adult female 
Anopheles Mosquito is approximately 
22 days. 

�� = 0.01924 Fitted Disease death rate per annum for infants 

�� = 0.19821 Fitted Disease death rate per annum for adults 

�� = 0.5337 Fitted Disease death rate per annum for pregnant 
women 

Λ� = 0.13908years 
= 0.13908 × 365.25days 
= 50.8 days 

Fitted The recovery rate could vary based on the 
gametocyte, and it may take an average of 
50 . 8 days for the parasite to be cleared 
from bloodstream after treatment for 
infants   

Λ� = 0.16157years 
= 0.16157 × 365.25days 

= 59.0 days 

Fitted The recovery rate could vary based on the 
gametocyte, and it may take an average of 
59  days for the parasite to be cleared 
from bloodstream after treatment for 
adults.   

Λ� = 0.16244years 
= 0.16244 × 365.25days 

= 59 . 3 days 

Fitted The recovery rate could vary based on the 
gametocyte, and it may take an average of 
59.3  days for the parasite to be cleared 
from bloodstream after treatment for 
pregnant women.   

��� = 0.00016 Fitted Fraction of bites that successfully infect 
humans 
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Parameter Source Interpretation 
��� = 0.00535 Fitted Fraction of bites that successfully infect 

mosquitoes.   

 Φ� = 0.32437 Fitted The number of bites on infants per 
mosquito per day.  

 Φ� = 0.96144 Fitted The number of bites on adults per 
mosquito per day.  

 Φ� = 0.01405 Fitted The number of bites on pregnant women 
per mosquito per day.  

� = 0.10349 Fitted Rate of progression from   ��  to 
  ��  compartment 

Ω = 0.01957 Fitted Rate of progression from   ��  to 
  ��  compartment . 

 

6 The Mean Squared Error 
 
The Mean Squared Error is a measure of how close a fitted line is to data points. For every data point, you 
take the distance vertically from the point to the corresponding y value on the curve fit (the error), and 
square the value. Then you add up all those values for all data points, and divide by number of points minus 
two. The squaring is done so values do not cancel positive values. The smaller the Mean Squared Error, the 
closer the fit is to data. The MSE has the units squared of whatever is plotted on the vertical axis [12]. 
  
The Mean-Squared Error (MSE) of the curve fitting is 
 

RMSE = �
 13.592

49
= √0.2774 = 0.5267                                                                                           

 

7 Conclusion 
 
The estimation of  parameters of model (1) was done through the combination numerical integration of the 
model followed by optimization technique using Mat lab routine “  fmincon “ .  A Mat lab code was written 
which imports the clinical data from Microsoft Excel, simulates the differential equations, calculates and 
minimizes the total error, displays the parameter values and plots the model and clinical data values. The 
researcher hopes the estimated parameters will assist malaria elimination worldwide and also inform policy 
makers about the key parameters in their planning. The Mean Squared Error(MSE) of the curve fitting is 
0.5267. 
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