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Abstract

The dispersion of a solute matter in the magneto-hydrodynamic peristaltic pumping of an
incompressible couple stress fluid with wall effects has been studied. The mean effective
coefficient of dispersion on simultaneous homogeneous, heterogeneous chemical reaction has
been obtained through long wavelength assumption and condition of Taylor’s limit. The
impacts of penetrating parameters on the mean effective dispersion coefficient have been
examined through the graphs. It is found that wall constraints and amplitude ratio favor the
scattering, while couple stress and magnetic field constraints resist the scattering during pumping.
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1 Introduction

Peristalsis of non-Newtonian liquids has received more attention in recent years in physiological
sciences and engineering. In the fluid mechanics point of view, peristaltic creeping is described by
dynamic interaction of liquid stream by the movement of stretchy boundaries. In this connection it
falls in the field of moving boundary problems in applied mathematics or FSI problems in science
and engineering. In the view of its importance, some workers ([1] - [3]) have investigated the
peristaltic transport of various fluids under different circumstances.

Couple stress fluids are fluids consisting of rigid, randomly oriented particles suspended in a viscous
medium, such as blood, lubricants containing small amount of high polymer additive, electro-
rhelogical fluids and synthetic fluids. It is seen that couple stress fluid behavior are exceptionally
useful in understanding various mechanical and physiological procedures. The couple stress model
introduced by Stokes [4] has distinct features. The main feature of couple stresses is to introduce a
size dependent effect. These fluids are able to describe blood, suspension fluids, and various types
of lubricants. Such studies clarify the behavior of rheological complex liquids. Some studies on
peristaltic transport of couple stress fluid have been reported in references ([5] - [8]). The effects
of wall on Poiseuille flow with peristalsis have been examined by Mittra and Prasad [9]. After this
study, few investigators have explored the wall effects on different fluids with peristalsis ([10] - [14]).

Magnetohydrodynamic (MHD) peristaltic flow nature of liquid is especially imperative in physio-
logical and mechanical procedures. In the existence of magnetic field, many fluids posses an
electrically conducting nature, which is an important aspect of the physical situation in the flow
problems of magnetohydrodynamics. It is useful for tumor treatment, MRI (Magnetic Resonance
Imaging) scanning, blood pumping, reduction of bleeding during surgeries, targeted transportation
of drugs, and so on. Magneto-therapy is an essential application to human body. This heals
the diseases like ulceration, inflammations and diseases of uterus. Some researchers [15]−[17]
have explored the magneto hydrodynamic character of non-Newtonian liquids through different
circumstances. They discussed the effects of magnetic field, permeability, micropolar, couple stress,
and wall parameters.

Dispersion of a solute describes the spread of particles through random motion from regions of higher
concentration to regions of lower concentration. Dispersion plays a crucial task in physiological
systems. For example, distribution of drugs in the human body, chyme transport and other
applications like environmental pollutant transportation, chromatographic separation, the mixing
and transport of drugs or toxic substances in physiological structures [18]. The basic theory on
dispersion was first proposed by Taylor,[19] investigated theoretically and experimentally that the
dispersion of a solute is miscible with a liquid flowing through a channel. Several workers [20]−[24]
have investigated the dispersion of a solute in viscous fluid, under different limitations. Furthermore,
some investigators [25]−[35] extended this analysis to non Newtonian fluids.

Existing information on the topic witnessed that an analytical treatment of creeping sinusoidal
flow and dispersion of a MHD couple stress fluid with chemical reaction and wallproperties has
been never reported. Motivated from the reported literature, we have investigated the wall and
chemical effects on the creeping sinusoidal stream and dispersion of a MHD couple stress fluid. The
investigative expression for mean effective dispersion coefficient has been obtained. The effects of
different values of penetrating parameters are discussed in detail through graphs.The present issue
might be appropriate for the treatment on intestinal disorder, gallstones in gallbladder without
surgery.

2 Formulation of the Problem

Consider the magneto-hydrodynamic couple stress fluid with peristalsis in the 2- dimensional
channel. Fig. 1 depicts the wave shape.
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Fig. 1. Geometry of the problem

The wave shape is given by the subsequent condition ([5]):

Y = ±h = ±
[
d+ a sin

2π

λ
(X − ct)

]
, (2.1)

where, the half width of the channel is d, the wavelength of the peristaltic wave is λ, the amplitude
of the wave is a, and the wave speed is c.

The relating flow conditions (Mekheimer [15]) of the current issue are:

∂U
∂X +

∂V
∂Y = 0, (2.2)

ρ

[
∂

∂t
+ U ∂

∂X + V ∂

∂Y

]
U = − ∂p

∂X + µ∇2U − η
′
∇4U − σB2

0U , (2.3)

ρ

[
∂

∂t
+ U ∂

∂X + V ∂

∂Y

]
V = − ∂p

∂Y + µ∇2V − η
′
∇4V, (2.4)

where ∂2

∂X2 + ∂2

∂Y2 = ∇2, ∇2∇2 = ∇4, the constant associated with couple stress fluid is η′, the fluid
density is ρ, the viscosity coefficient is µ, the velocity components in the X , Y direction is U , V,
the pressure is p and the magnetic field is B0.

Referring (Mittra-Prasad [9]), the condition of the flexible wall movement is specified as:

L(h) = p− p0, (2.5)

where, the movement of the stretched membrane by the damping force is L and is intended by the
subsequent equation:

L = −T ∂2

∂X 2
+m

∂2

∂t2
+ C

∂

∂t
. (2.6)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the membrane tension
is T .

Neglecting the body couples and body strengthens, under long - wavelength theory conditions (2.2)
to (2.4) yield as:

∂U
∂X +

∂V
∂Y = 0, (2.7)

− ∂p

∂X + µ
∂2U
∂Y2

− η′ ∂
4U

∂Y4
− σB2

0U = 0, (2.8)
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− ∂p

∂Y = 0. (2.9)

The allied border conditions are

U = 0,
∂2U
∂Y2

= 0, at Y = ±h. (2.10)

It is presumed that p0 = 0 and the channel walls are inextensible; therefore, the straight displacement
of the wall is nil and only lateral movement takes place, and

∂

∂X L(h) = µ
∂2U
∂Y2

− η′ ∂
4U

∂Y4
− σB2

0U = 0, at Y = ±h, (2.11)

where
∂

∂X L(h) = ∂p

∂X = P ′ = −T ∂3h

∂X 3
+m

∂3h

∂X∂t2
+ C

∂2h

∂X∂t
. (2.12)

Solving the conditions (2.8) and (2.9) with (2.10) and (2.11) we obtain

U(Y) = − 1

σB2
0

(
∂p

∂X

)[
A′

1cosh(m
′
1Y) +A′

2cosh(m
′
2Y) + 1

]
, (2.13)

where, m′
1 =

√
µ
2η′

(
1 +

√
1− 4η′σB2

0
µ2

)
, m′

2 =

√
µ
2η′

(
1−

√
1− 4η′σB2

0
µ2

)
.

The mean speed is specified as:

Ū =
1

2h

∫ h

−h

U(Y)dY. (2.14)

Conditions (2.13) and (2.14) yield as:

Ū = − 1

σB2
0

(
∂p

∂X

)[
A′

1

m′
1h

sinh(m′
1h) +

A′
2

m′
2h

sinh(m′
2h) + 1

]
. (2.15)

Utilizing Ravikiran-Radhakrishnamacharya [30], the liquid speed is given by the condition:

UX = U − Ū . (2.16)

Conditions (2.13), (2.15) and (2.16) yield as:

UX = − 1

σB2
0

(
∂p

∂X

)[
A′

1 cosh(m
′
1Y) +A′

2 cosh(m
′
2Y)− A′

1

m′
1h

sinh(m′
1h)−

A′
2

m′
2h

sinh(m′
2h)

]
,

(2.17)

where
A′

1 =
(m′

2)
2

[(m′
1)

2−(m′
2)

2] cosh(m′
1h)

, A′
2 =

−(m′
1)

2

[(m′
1)

2−(m′
2)

2] cosh(m′
2h)

,

P ′ = −T ∂3h
∂X3 +m ∂3h

∂X∂t2
+ C ∂2h

∂X∂t
.

2.1 Heterogeneous-homogeneous chemical reactions with diffusion

It is assumed that a solute diffuses and simultaneously undergoes a first order irreversible chemical
reaction in peristaltic pumping of a couple stress fluid in a channel under isothermal conditions.
Alluding Taylor [19] and Gupta-Gupta [22], the diffusion equation for the concentration C of the
material for the current issue is

∂C
∂t

+ U ∂C
∂X = D ∂2C

∂Y2
− k1C. (2.18)
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Here, the rate constant of first order chemical response is k1, the molecular diffusion coefficient is
D and liquid concentration is C.

The dimensionless quantities are specified as:

η =
Y
d
, ξ =

(X − Ūt)
λ

,H =
h

d
,P =

d2

µcλ
P ′, θ =

t

t̄
, t̄ =

λ

Ū
,M =

√
σB2

0d
2

µ
. (2.19)

For the regular estimations of physiologically essential parameters of this issue, it is normal that
Ū≈C (Ravikiran-Radhakrishnamacharya [30]).

To proceed further, we use Ū≈C, in condition(2.18) and the conditions (2.12), (2.17), (2.18) are
nondimensionalized as:

P = −ϵ
[
−E3(2π)

2 sin(2πξ) + (E1 + E2)(2π)
3 cos(2πξ)

]
, (2.20)

UX = − 1

σB2
0

∂p

∂X [A1 cosh(m1η) +A2 cosh(m2η) +A3] , (2.21)

∂2C
∂η2

− k1d
2

D C =
d2

λDUX
∂C
∂ξ

, (2.22)

where m1 = m′
1d =

√
γ2

2

(
1 +

√
1− 4M2

γ2

)
, m2 = m′

2d =

√
γ2

2

(
1−

√
1− 4M2

γ2

)
,

the amplitude ratio is ϵ
(
= a

d

)
, the rigidity is E1

(
= − T d3

λ3µc

)
, the stiffness is E2 =

(
mcd3

λ3µ

)
,

the viscous damping force in the wall is E3 =

(
cd3

µλ2

)
, the couple stress constraint is γ

(
= d

√
µ

η′

)
and the magnitic field constraint is M

(
= B0d

√
σ

µ

)
.

The dispersion with first- order irreversible chemical response occur in the mass of the liquid and
at the channel walls. Referring Chandra-Phlip [26], the wall conditions are specified as

∂C
∂Y + fC = 0 at Y = h = [a sin

2π

λ
(X − Ūt) + d], (2.23)

∂C
∂Y − fC = 0 at Y = −h = −[a sin

2π

λ
(X − Ūt) + d]. (2.24)

Condition (2.19), (2.23) and (2.24) yields as:

∂C
∂η

+ βC = 0 at η = H = [ϵ sin(2πξ) + 1], (2.25)

∂C
∂η

− βC = 0 at η = −H = −[ϵ sin(2πξ) + 1], (2.26)

where the heterogeneous response rate constraint is β = Fd, relating to catalytic response at the
dividers.

Utilizing conditions (2.25) and (2.26), the primitive of (2.22) is obtained as:

C(η) = − d2

λD
1

σB2
0

∂C
∂ξ

∂p

∂X

[
A4 cosh(m1η) +A5 cosh(m2η) +A6 cosh(αη) +A7

]
. (2.27)
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The volumetric flow rate Q is specified as

Q =

∫ H

−H
CUXdη. (2.28)

Using conditions (2.21) and (2.27) in (2.28), we obtain

Q = −2
d6

λµ2D
∂C
∂ξ

G(ξ, ϵ, α, β, E1, E2, E3,M, γ), (2.29)

where

G(ξ, ϵ, α, β,E1, E2, E3,M, γ) = − P2

M4

[
A1A4

2
B1 +

A2A5
2

B2 + (A1A5 +A2A4)B3 +A1A6B4

+A2A6B5 + (A1A7 +A3A4)B6 + (A2A7 +A3A5)B7 +A3A6B8 +A3A7H
]
,

A1 = (m2)
2

[(m1)2−(m2)2] cosh(m1H)
, A2 = −(m1)

2

[(m1)2−(m2)2] cosh(m2H)
,

A3 = −(m2)
2 sinh(m1H)

m1H[(m1)2−(m2)2] cosh(m1H)
+ (m1)

2 sinh(m2H)

m2H[(m1)2−(m2)2] cosh(m2H)
,

A4 = (m2)
2

[(m1)2−(α)2][(m1)2−(m2)2] cosh(m1H)
, A6 = A3L1 −A4L2 −A5L3,

A5 = −(m1)
2

[(m2)2−(α)2][(m1)2−(m2)2] cosh(m2H)
, A7 = −A3

α2 ,

L1 = β
α2(α sinh(αH)+β cosh(αH)

, L2 = (m1 sinh(m1H)+β cosh(m1H))
(α sinh(αH)+β cosh(αH))

,

L3 = (m2 sinh(m2H)+β cosh(m2H))
(α sinh(αH)+β cosh(αH))

, B1 = 2m1H+sinh(2m1H)
2m1

,

B2 = 2m2H+sinh(2m2H)
2m2

, B6 = sinh(m1H)
m1

, B7 = sinh(m2H)
m2

, B8 = sinh(αH)
α

,

B3 = m1 sinh(m1H) cosh(m2H)−m2 cosh(m1H) sinh(m2H)

[(m1)2−(m2)2]
,

B4 = m1 sinh(m1H) cosh(αH)−α cosh(m1H) sinh(αH)

[(m1)2−(α)2]
,

B5 = m2 sinh(m2H) cosh(αH)−α cosh(m2H) sinh(αH)

[(m2)2−(α)2]
, α =

√
k1
D d.

Looking at condition (2.29) with Fick’s law of scattering, the dispersing coefficient D∗ was computed
to such an extent that the solute disperses near to the plane moving with the typical speed of the
flow and is specified as

D∗ = 2
d6

µ2DG(ξ, ϵ, α, β,E1, E2, E3,M, γ). (2.30)

The mean of G is Ḡ and is attained as

Ḡ =

∫ 1

0

G(ξ, ϵ, α, β, E1, E2, E3,M, γ)dξ. (2.31)

3 Outcomes and Discussion

The expression for Ḡ(ξ, ϵ, α, β,E1, E2, E3,M, γ) as shown in equation (2.31) has been obtained by
numerical integration using the software MATHEMATICA and the domino effects are presented
through graphs. It may ensure that E1, E2 and E3 cannot be zero all together.
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Fig. 2. Illustration of Ḡ for γ when
ϵ = 0.2, α = 1.0, M = 5.5, E1 = 0.1,

E2 = 0.0, E3 = 0.06

Fig. 3. Illustration of Ḡ for γ when
ϵ = 0.2, β = 5.0, M = 5.5, E1 = 0.1,

E2 = 4.0, E3 = 0.06

Fig. 4. Illustration of Ḡ for γ when
α = 1.0, β = 5.0, M = 5.5, E1 = 0.1,

E2 = 4.0, E3 = 0.00

Fig. 5. Illustration of Ḡ for M when
ϵ = 0.2, α = 1.0, γ = 6.0, E1 = 0.1,

E2 = 0.0, E3 = 0.06

Fig. 6. Illustration of Ḡ for M when
ϵ = 0.2, β = 5.0, γ = 6.0, E1 = 0.1,

E2 = 4.0, E3 = 0.06

Fig. 7. Illustration of Ḡ for M when
α = 1.0, β = 5.0, γ = 6.0, E1 = 0.1,

E2 = 4.0, E3 = 0.00
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Fig. 8. Illustration of Ḡ for E1 when
ϵ = 0.2, α = 1.0, M = 5.5, γ = 6.0,

E2 = 0.0, E3 = 0.0

Fig. 9. Illustration of Ḡ for E1 with
ϵ = 0.2, β = 5.0, M = 5.5, γ = 6.0,

E2 = 0.0, E3 = 0.06

Fig. 10. Illustration of Ḡ for E1 when
α = 1.0, β = 5.0, M = 5.5, γ = 6.0,

E2 = 4.0, E3 = 0.00

Fig. 11. Illustration of Ḡ for E2 when
ϵ = 0.2, α = 1.0, M = 5.5, γ = 6.0,

E1 = 0.1, E3 = 0.00

Fig. 12. Illustration of Ḡ for E2 when
ϵ = 0.2, β = 5.0, M = 5.5, γ = 6.0,

E1 = 0.1, E3 = 0.06

Fig. 13. Illustration of Ḡ for E2 when
α = 1.0, β = 5.0, M = 5.5, γ = 6.0,

E1 = 0.1, E3 = 0.06
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Fig. 14. Illustration of Ḡ for E3 when
ϵ = 0.2, α = 1.0, M = 5.5, γ = 6.0,

E1 = 0.1, E2 = 4.0

Fig. 15. Illustration of Ḡ for E3 when
ϵ = 0.2, β = 5.0, M = 5.5, γ = 6.0,

E1 = 0.1, E2 = 4.0

Fig. 16. Illustration of Ḡ for E3 when α = 1.0, β = 5.0, M = 5.5, γ = 6.0, E1 = 0.1,
E2 = 4.0

The effects of the couple stress constraint (γ) and magnetic field constraint (M) on the scattering
coefficient (Ḡ) are depicted in Figs. 2-7. It is observed that Ḡ descends with an increase in couple
stress constraint (γ) (Figs. 2-4). Increase in couple stress constraint leads to lessen the pressure on
the flow of fluid which descends the fluid velocity, as a result dispersion may reduce. This finding
agrees with the conclusion of Alemayehu-Radhakrishnamacharya [28]. Figures 5-7 depicts that Ḡ
descends with an increase in magnetic field constraint (M). Increase in magnetic field constraint
leads to drop in the fluid velocity and as a result dispersion diminishes. This finding agrees with
the conclusion of Ravikiran-Radhakrishnamacharya [30].

The impacts of the rigidity constraint (E1) of the wall on the dissipating coefficient (Ḡ) are
illustrated in Figs. 8-10. It is experiential that Ḡ ascends monotonically with an expansion in
E1 in the following cases: (a) no stiffness in the wall (E2 = 0) and perfectly elastic channel wall
(E3 = 0) (Fig. 8); (b) no stiffness in the wall (E2 = 0) and dissipative wall (E3 ̸= 0) (Fig. 9)
and (c) stiffness in the wall (E2 ̸= 0) and perfectly elastic wall (E3 = 0) (Fig.10). It is noticed
from the figures 11-13 that the mean effective dispersion coefficient increases with stiffness in the
wall for the cases perfectly elastic wall (E3 = 0) (Fig. 11) and dissipative wall (E3 ̸= 0) (Fig. 12
and 13). Figures 14 -16 shows that dispersion coefficient increases as the viscous damping force
increases. This understanding might be true that increment in the flexibility of the channel walls
help the stream moment which causes to enhance the dispersion. Furthermore, Ḡ ascends with an
increment in the amplitude ratio (ϵ) (Figs. 4, 7, 10, 13 and 16). As already known, increment in
the amplitude ratio is the expansion in the amplitude of the wave across the channel and this cause

9
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to increase the fluid velocity within the channel and consequently dispersion may enhance. This
outcome concurs with that of [23] and [30].

It is seen that Ḡ descends with an increase in the homogeneous compound response rate constraint
(α) (Figs. 3, 6, 9, 12, and 15). Also, it is noticed from the figures 2, 5, 8, 11, and 14 that the
scattering diminishes with heterogeneous substance response rate constraint (β), and the decrease
in the effective scattering coefficient is sharp in a section near to the wall. This agrees with
chemical point of view because the reactions which affect diffusion happen only at the surface
for heterogeneous substance response. This implies that heterogeneous substance response tends to
decrease the scattering of the solute.

4 Conclusions

The effects of magnetic constraint (M), couple stress constraint (γ), amplitude ratio (ϵ), homogeneous
response rate (α), heterogeneous response rate (β), rigidity (E1), stiffness (E2), damping characteristic
(E3) of the wall on scattering coefficient (Ḡ) have been inspected for peristaltic pumping of a couple
stress fluid. It is of great importance for the movement of blood in artery, bolus in esophugus, bile
in bile duct and chyme in small intestine of the digestive system.

• It is seen that the concentration profile (Ḡ) rises with an increase in amplitude ratio and wall
constraints.

• It is noticed that concentration profile (Ḡ) descends with rise in heterogeneous response rate,
homogeneous response rate, couplse stress and magnetic field constraints.

• Finally, rigidity (E1), stiffness (E2), damping force (E3) of the wall and amplitude ratio (ϵ) favour
the dispersion, while couple stress constraint (γ) homogeneous response rate constraint (α) and
heterogeneous response rate constraint (β) resist the dispersion.
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