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Abstract 
 

We present some cusp forms on the full modular group 1Γ , using the properties of eigenfunctions, 

nonanalytic Poincare series and Hecke operators ��. Further, the Fourier coefficients of cusp forms fTn  

on 1Γ  are given in terms of Dirichlet series associated to the Fourier coefficients of cusp form � of 
weight k. 
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1 Introduction 
 
Let k be a positive integer and denote by Sk  the space of cusp forms and by kM  the space of modular forms 

of weight k on the full modular group 1Γ . We shall use H  to denote the upper half plane, C/  for the set of 

complex numbers.  
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Let kMff ∈',  such that f  or 'f  is a cusp form. The Petersson scalar product is defined by  
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in [1]. Where iyx +=τ ,
2y

dxdy
dV = and K is a fundamental domain for the action of  1Γ on H. 

 
In [2, p. 115],  nonanalytic Poincare series is defined by  
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and υ is a multiplier system (MS) for 1Γ  in the weight k. The number κ is determined from υ by 
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.  Eventually z can be thought of as an arbitrary complex number, 

but in order to guarantee absolute convergence of the double series (1) we assume initially that Rez>2-k. 

Uniform convergence of the series of absolute values implies that )|( zG τν  is holomorphic (in the variable 

z) in the half-plane Rez>2-k and, as a function of ∈τ H, it satisfies the transformation formula,     
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In [2, p.118], the Fourier expansion of )|( zG τν is given  by  
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cn cnAwZ υν  is Selberg’s Kloosterman zeta-function and 
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In [2, p.125], the function )|( zF τν  is defined by 

 
Fν(τ | z)=y z/2 Gν(τ | z)                                                                                                                         (4) 

 

as a function of τ and z. Where iyx +=τ . It follows from (2) that, )|( zF τν  satisfies the transformation 

formulae,  
 

Fν(Mτ | z)=υ(M)(cτ+d)k Fν(τ | z) 
 

By the Fourier expansion (3) of )|( zG τν  and from (4), we obtain the Fourier expansion of )|( zF τν  at 

the cusp point ∞  of the form  
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where the Fourier coefficients )(1 na  and )(2 na  depend upon z. Hence, )|( zF τν  is a modular form of 

weight k and MS υ.  
 
In [2, p. 125], the following lemma is given.  

 

Lemma 1.1. Suppose ν+κ >0, Rez>2-k and f(τ) is a cusp form of weight k and MS υ on 1Γ .  Then,   
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For n=ν+κ ,  we shall write  Fk-t,n(τ | z) instead of  Fν(τz). Thus, we have    
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In [3], the Hecke operator nT  is defined on kM  by the equation  
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for a fixed integer k and any n=1,2,… 
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Theorem 1.2. If kMf ∈  and has the Fourier expansion  
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then fTn  has the Fourier expansion 
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for n=1,2,… 
 
A nonzero function  � satisfying a relation of the form ��� = �(�)� for some complex scalar �(�) is called 
an eigenfunction (eigenform) of the operator ��, and the scalar �(�) is called an eigenvalue of ��. If � is an 
eigenfunction for every Hecke operators �� , � ≥ 1, then � is called a simultaneous eigenfunction. Since 
dim�� = 1, for � = 12,16,18,20,22 ��� 26, each �� has eigenfunction in �� for each of these values of k. 
The respective cusp forms ∆, ∆��, ∆��, ∆��, ∆���  ��� ∆��� are eigenfunctions for each ��. Where ∆(�) =
��

 (�) − 27� 
�(�), ��(�) = 60��(�), � (�) = 140��(�) and ��(�) = ∑ (% + ��)'�

((,�))(�,�)  [3].  
 
Hecke found a remarkable connection between each modular form with Fourier series 
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and the Dirichlet series  
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formed with the same coefficients (except for a(0)). If � ∈ 1��  then �(�) = 2(��) if f is a cusp form, and 
�(�) = 2(���'�) if � is not a cusp form. Therefore, the Dirichlet series in (6) converges absolutely for 
3 = 45(,) > � + 1 if � is a cusp form, and for 3 > 2� if � is not a cusp form. For cusp forms, it has been 

shown that �(�) = 2 7��'8
9:;< for every = > 0  [3]. 

 
In [3], the following theorem is given. 
 
Theorem 1.3. If � is modular and bounded in H then � is constant. 
 
In [4], W. Kohnen proved the following theorem using analytic Poincare series and the properties of inner 
product.  
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Theorem 1.4. The function  
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In [5], Min Ho Lee obtained the Fourier coefficients of Siegel cusp form >?∗ � in terms of Dirichlet series of 
Rankin type associated to the Fourier coefficients of Siegel cusp forms f and g.  
 
In [6], author proved the following theorems, using the nonanalytic Ponicare series and the properties of 
inner product. 
 

Theorem 1.5. Let k be an integer with k>2. Let )(1 τg  be a modular function with respect to 1Γ  which is 

analytic on H and kSf ∈)(τ . Then the function, for H∈τ  and 45A > 2 − �,  
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Theorem 1.6. Let k be an integer with k>2. Let )(1 τg  be a modular function with respect to 1Γ  which is 

analytic on H and kSf ∈)(τ . Then the function 
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for pn =  and ,...2,1, =pm  and *′+,?8,�(� − 1) is given by (7).  

This paper is a continuation of previous work [6]. In this paper, some cusp forms of integer weight on 1Γ  are 

obtained , using   nonanalytic Poincare series and the properties of eigenfunction. Further, we will write the 

Fourier coefficients of cusp forms fTn  on 1Γ  in terms of Dirichlet series associated to the Fourier 

coefficients of cusp form � of weight k. Here, we follow the method of W. Kohnen [4], who obtained a 
similar result using analytic Poincare series.  
 
For several recent results concerning Modular forms, we refer the reader to [7-18].  
 

2 The Main Results 
 
Firstly, we start by the following theorem: 
 

Theorem 2.1. Let k be an integer with k>2 and kSf ∈)(τ . If �(�) is an eigenfunction for all ��, then the 

function, for ∈τ H and 45A > 2 − �,  
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for pn =  and ,...2,1, =pm  , *+(� − 1) is the Dirichlet series and �(�) is an eigenvalue of ��.  

 

Proof. Let kSf ∈)(τ and k an integer with k>2. Let kkp SST →: be a Hecke operator. Since �(�) is an 

eigenfunction for all ��, using Lemma 1.1 and from Petersson scalar product, we obtain 
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where �B�̅, �, DE is the nth Fourier coefficient of � ̅w.r.t. the variable ixe π2 . Using the Fourier expansion of f, 
we obtain 
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for pn =  and ,...2,1, =pm  Where F(,) = G HI'�5'J�H,∞

�  45(,) > 0. This completes the proof. 

 
The proof of the following Theorem is similar to that of  Theorem 2.1 and use Theorem 1.4. 
 

Theorem 2.2. Let k be an integer with k>2 and kSf ∈)(τ . If �(�) is an eigenfunction for all ��, then the 

function 
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is a cusp form of weight k on 1Γ . Where  
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for pn =  and ,...2,1, =pm   

 
Now suppose that ��is a modular function with respect to F� which is bounded in H. Then, by Theorem 1.3, 
��(�) is constant. Let ��(�) = 1. Thus, we can give the following corollaries which are special cases of 
Theorems 1.5 and 1.6, respectively. Their proofs are similar to that of Theorem 2.1. 

 

Corollary 2.1. Let k be an integer with k>2. Let )(1 τg  be a modular function with respect to 1Γ  which is 

bounded in H and kSf ∈)(τ . Then the function, for H∈τ and 45A > 2 − �,  
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is a cusp form of weight k on 1Γ . Where 
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for pn =  and ,...2,1, =pm  

 

Corollary 2.2. Let k be an integer with k>2. Let )(1 τg  be a modular function with respect to 1Γ  which is 

bounded in H and kSf ∈)(τ . Then the function 
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is a cusp form of weight k on 1Γ . Where  
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3 Numerical Examples 
 
Example 1. Let �(�) = )()( 14 ττ G∆ . Since the function ∆(�)���(�) is a cusp form of weight 26 and  from 
(8) and (9), we have 
 

)25(

)
2

25(2

)4()(!25
),()( 2

252

14 f

z
z

pn Ln
z

n
nGTam

+

+Γ
=∆= πλγ . 

 
and 
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as the Fourier coefficients of 14GTn∆ , respectively.  

 
Example 2. Let �(�) = ∆(�). Since the discriminant function ∆(�) is a cusp form of weight 12 and by (10) 
and (11), we get 
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as the Fourier coefficients of ∆nT , respectively. 

 

4 Conclusion 
 
Some cusp forms on the full modular group are obtained, using the properties of nonanalytic Poincare series, 

eigenfunctions and inner product. Further, the Fourier coefficients of cusp forms fTn  on 1Γ  are given in 

terms of Dirichlet series associated to the Fourier coefficients of cusp form � of weight k. For example, one 

of these Fourier coefficients is )1(),( 1 −= − kLnnfTa f
k

p . 

 
The open problem: What are the applications of these Fourier coefficients in Representation Theory ?  
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