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Abstract

In this paper, we obtain a common Caristi-type fixed point theorem for two single valued
mappings in the setting of cone metric spaces. Further, we derive some consequences and a
coupled fixed point theorem for two mappings without the need of the monotonicity assumption.
Our work is supported by different examples.
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1 Introduction

In 1972, the celebrated variational principle of Ekeland [1] for approximate solutions of non-convex
minimization problems has appeared for the first time. It has received a great deal of attention and
has been applied to numerous problems in several fields [2, 3]. It is a useful tool to solve problems
in optimization, optimal control theory, game theory, nonlinear equations and dynamical systems
(see [4, 5, 2, 3, 6] ). There have appeared subsequently many extended and generalized versions of
that principle as seen in the references [7, 8, 9, 10, 11].

In [12, 13], the mathematician Caristi proved a result which is one of the most important generalization
of Banach principle [14] for maps of a complete metric space into itself. And it is a variation and
equivalent to the well known ε-variational principle of Ekeland [1, 2, 3]. In the literature, there
have appeared also many extensions and equivalent formulations of Caristi’s fixed point theorem
(see [15, 16, 17, 18, 19, 20] and references therein).

The study of common fixed points of mappings satisfying certain contractive conditions is one of
the main concerns of researchers over the last few decades [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].
In 1976, Jungck [32], proved a common fixed point theorem for commuting maps, generalizing the
Banach contraction principle. Although, these results require the continuity of one of the two maps
involved. Sessa [33] introduced the notion of weakly commuting maps. Jungck [34] invented the
term compatible mappings in order to generalize the concept of weak commutativity and showed
that weakly commuting maps are compatible but the converse is not true. Pant [35] defined R-
weakly commuting maps and proved common fixed point theorems, assuming also the continuity
of at least one of the mapping. While Kannan [36] proved the existence of a fixed point for a map
that can have a discontinuity in a domain, however the maps involved in every case were continuous
at the fixed point. Jungck [37, 38] defined a pair of self mappings to be weakly compatible if they
commute at their coincidence points.

In 2007, Huang and Zhang [39] introduced the notion of cone metric spaces as a generalization
of metric spaces. They introduced the concept of convergence in cone metric spaces via the
interior of the cone and obtained some fixed point theorems for contractive mappings. Authors
in [40, 41, 39, 42, 43] obtained fixed point theorems on cone metric spaces under assumption that
the cone is normal. Also, the authors in [44, 45, 46] proved fixed point results under assumption
that the cone is regular.

In [47], Cho and Bae gave an extension of Caristi’s theorem in the setting of complete cone metric
spaces, and they proved that this result and Ekeland variational principle are equivalent.

Following this direction, in this paper, we obtain a common Caristi-type fixed point theorem for two
single valued mappings in the setting of cone metric spaces. Further, we derive some consequences
and a coupled fixed point theorem for two mappings without the need of the monotonicity assumption.
We give some examples to support our work.

2 Preliminaries

For the convenience of the reader we repeat the relevant material from [47] without proofs, thus
making our exposition self-contained.

Let E be a topological vector space. A subset P ⊂ E is called a convex cone if :

1. P + P ⊂ P

2. for every λ > 0, λP ⊂ P

3. P ∩ (−P ) = {θ}, where θ denotes the zero of E.
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It is well-known that a convex cone P ⊂ E generates a partial-ordering on E (i.e. a reflexive,
anti-symmetric and transitive relation) by

x ≼ y ⇔ y − x ∈ P.

Definition 2.1. A cone P is strongly minihedral if every upper bounded nonempty subset A of E,
supA exists in E. Dually, a cone P is strongly minihedral if every lower bounded nonempty subset
A of E, inf A exists in E.

Definition 2.2. A strongly minihedral cone P is continuous if, for any bounded chain (xα)α∈Γ we
have

inf
α∈Γ

∥xα − inf {xα; α ∈ Γ}∥ = 0

and
sup
α∈Γ

∥xα − sup {xα; α ∈ Γ}∥ = 0.

Throughout this paper, assume that (E, ∥.∥) is normed vector space and P is a convex cone in E.

Definition 2.3. Let X be a nonempty set and δ : X × X → E a mapping satisfying for all
x, y, z ∈ X :

(i) θ ≼ δ (x, y) and δ (x, y) = θ if and only if x = y,

(ii) δ (x, y) = δ (y, x),

(iii) δ (x, z) ≼ δ (x, y) + δ (y, z).

Then δ is called a cone metric on X and (X, δ) is called a cone metric space.

For x, y ∈ E, x≪ y stand for y − x ∈ int (P ), where int (P ) is the interior of P .
In this paper, we use the concept of regularity to obtain our results.

Definition 2.4.

1. A sequence (xn)n of a cone metric space (X, δ) converges to a point x ∈ X if for any
c ∈ int(P ), there exists N ∈ N such that for all n > N , δ(xn, x) ≪ c. Denoted by
lim

n→∞
xn = x or xn → x.

2. A sequence (xn)n of a cone metric space (X, δ) is Cauchy if for any c ∈ int(P ), there exists
N ∈ N such that for all n,m > N , δ(xn, xm) ≪ c.

3. A cone metric space (X, δ) is called complete if every Cauchy sequence is convergent.

Lemma 2.1. Let (X, δ) be a cone metric space over a cone P in E. Then one has the following.

1. Int(P ) + Int(P ) ⊂ Int(P ) and λInt(P ) ⊂ Int(P ), λ > 0.

2. If c≫ θ, then there exists γ > 0 such that ∥b∥ < γ implies b≪ c.

3. For any given c≫ θ and c0 ≫ θ there exists n0 ∈ N such that
c0

n0
≪ c.

4. If (an) , (bn) are sequences in E such that an → a, bn → b and an ≼ bn for all n ≥ 0, then
a ≼ b.

Definition 2.5. A function φ : X −→ E is called lower semi-continuous if, for every sequence
(xn)n ⊂ X converging to some point x ∈ X and satisfying φ (xn+1) ≼ φ (xn) for all n ∈ N, we have
φ (x) ≼ lim inf φ (xn) := sup

n∈N
inf
m≥n

φ (xm).
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Definition 2.6. Let (X, δ) be a cone metric space. A mapping T : X −→ X is sequentially
continuous if for each sequence (xn) which converge to x ∈ X we have (Txn)n is convergent in X
and lim

n→∞
Txn = Tx.

In [47], Cho and Bae gave an extension of Caristi’s theorem in the setting of a complete cone metric
space over a strongly minihedral and continuous cone. In the sequel we will need the following
result.

Theorem 2.2 (Cho-Bae [47] ). Let (X, δ) be a complete cone metric space such that P is strongly
minihedral and continuous. And, let T : X −→ X be a mapping satisfying for each x in X

δ (x, Tx) ≼ φ (x)− φ (Tx) , (2.1)

where φ : X −→ P is lower semi continuous, then T has a fixed point.

3 Main Results

Theorem 3.1. Let (X, δi) be a complete cone metric space (i = 1, 2) such that P is strongly
minihedral and continuous cone. Let T, S : X −→ X be two mappings, and f, g : X −→ R+ be two
functions such that for some ε > 0{

sup {f (x) | x ∈ X, φ (x) 6 infz∈X φ (z) + ε} <∞
sup {g (x) | x ∈ X, φ (x) 6 infz∈X φ (z) + ε} <∞ , (3.1)

where φ : X −→ P is lower semi continuous.
Suppose that for each (x, y) ∈ X2 we have{

δ1 (x, Tx) ≼ f (x) (φ (x)− φ (Sy))
δ2 (y, Sy) ≼ g (y) (φ (y)− φ (Tx))

, (3.2)

then there exists x̄ ∈ X such that x̄ = T x̄ = Sx̄.

Proof. Let ε > 0 and put

X1 =

{
x ∈ X | φ (x) ≼ inf

z∈X
φ (z) + ε

}
and

α = max

{
sup
z∈X1

f (z) , sup
z∈X1

g (z)

}
<∞

We note that X1 is nonempty set and since φ is lower semi continuous function, then X1 is a closed
subset of X, so X1 is a complete subset.

Let ψ (x, y) = α (φ (x) + φ (y)) and ρ ((x, y) , (z, t)) = δ1 (x, z)+ δ2 (y, t) for all x, y, z, t in X1, using
the inequalities (3.2) we define a single valued mapping L : X1 × X1 −→ X × X by L1 (x, y) =
(Tx, Sy) such that

ρ ((x, y) , (u, v)) ≼ ψ (x, y)− ψ (u, v) . (3.3)

Let X2 =
{
(x, y) ∈ X2

1 | ψ (x, y) ≼ inf(z,t)∈X2
1
ψ (z, t) + ε

}
, the same reasoning applied to (X2, ρ)

shows that is non-empty complete subset of X2 (note that ψ is also lower semi continuous) and it
is stable by the mapping L (x, y) = (Tx, Sy) i.e. L (X2) ⊆ X2, indeed for all (x, y) ∈ X2 using the
inequality (3.3) we get

ψ (L (x, y)) ≼ ψ (x, y) ≼ inf
(z,t)∈X2

1

ψ (z, t) + ε
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and thus L (x, y) ∈ X2, so L is a self map of X2.

By Theorem 2.2, there exists (x, y) ∈ X2 such that

L (x̄, ȳ) = (x̄, ȳ) ⇔ T x̄ = x̄ and Sȳ = ȳ

We get by the second inequality of (3.2)

δ2 (x̄, Sx̄) ≼ α (φ (x̄)− φ (T x̄)) = 0,

which completes the proof.

Theorem 3.2. Let (X, δ) be a complete cone metric space such that P is strongly minihedral and
continuous, T and S two self mappings of X. If there exist functions φ and ψ from X into P such
that for all x in X {

δ (x, Tx) ≼ φ(x)− φ(STx)
δ (x, Sx) ≼ ψ(x)− ψ(TSx)

(3.4)

where φ ◦S and ψ are lower semi continuous, then T and S admit at least one common fixed point.

Proof. The first inequality of (3.4) implies that

δ(Sx, TSx) ≼ φ(Sx)− φ(STSx)

for all x ∈ X, then

δ(x, TSx) ≼ δ(x, Sx) + δ(Sx, TSx)

≼ ψ(x)− ψ(TSx) + φ(Sx)− φ(STSx).

We put ϕ (x) = ψ(x) + φ(Sx), hence

δ(x, TSx) ≼ ϕ(x)− ϕ(TSx),

so by Theorem 2.2 the mapping TS has a fixed point, that is, there exists x̄ such that TSx̄ = x̄.
Using the second inequality of (3.4) we get

δ(x̄, Sx̄) ≼ ψ(x̄)− ψ(TSx̄) = 0

which implies that Sx̄ = x̄ and since TSx̄ = x̄ we have T x̄ = x̄, the proof is completed.

Example 3.1. Let X =

[
0,

1

2

]
endowed by the following cone-distance

δ (x, y) =

(
|x− y| , |x|+ |y|

2

)
and the cone P =

{
(x, y) ∈ R2/x ≥ 0, y ≥ 0

}
. Let T , S, φ and ψ be as follows :

Tx = x2, Sx = x3

and
φ (x) =

(
6
√
x− x, 6

√
x− x

)
, ψ (x) = 2φ (x) .

It is clear that φ ◦ S is lower semi continuous.

Note that for each x ∈

[
0,

1

2

]
we get

{
x5 (2− x)6 ≤ 1

x5 (3 + x)6 ≤ 26
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which implies that {
x− x2 ≤ 6

√
x− x

x+x2

2
≤ 6

√
x− x

⇔ δ (x, Tx) ≼ φ (x)− φ (STx)

in the same manner we obtain{
x− x3 ≤ 2 ( 6

√
x− x)

x+x3

2
≤ 2 ( 6

√
x− x)

⇔ δ (x, Tx) ≼ ψ (x)− ψ (STx) .

then for all x ∈

[
0,

1

2

]
we have

{
δ(x, Tx) ≼ φ(x)− φ(STx)
δ(x, Sx) ≼ ψ(x)− ψ(TSx)

thus, all assumptions of Theorem 3.2 are satisfied and T0 = S0 = 0.

Corollary 3.1. Under the assumptions of Theorem 3.2 with ρ : X×X −→ P is a mapping satisfies
for all (x, y) ∈ X2 ρ (x, y) = θ ⇒ x = y and, for all x ∈ X{

δ(x, Tx) ≼ φ(Sx)− φ(STx)
ρ(x, Sx) ≼ φ(x)− φ(Tx)

(3.5)

then T and S admit a common fixed point.

Proof. Put ϕ (x) = φ(x) + φ(Sx) for all x in X, by (3.5) we have

δ(x, Tx) ≼ ϕ(x)− ϕ(Tx)

Theorem 2.2 shows that T has a fixed point x̄ in X, it follows from the second inequality of (3.5)
that Sx̄ = x̄, which completes the proof.

Corollary 3.2. Let (X, δ) be a complete cone metric space such that P is strongly minihedral and
continuous, T and S are two self mappings of X and ρ : X ×X −→ P a mapping satisfying for all
(x, y) ∈ X2 ρ (x, y) = θ ⇒ x = y.

If there exist two mappings φ and ψ from X into P with only φ is lower semi continuous such that
for all x ∈ X {

δ(x, Tx) ≼ φ(x)− ψ(Sx)
ρ(x, Sx) ≼ ψ(Sx)− φ(Tx)

(3.6)

Then T and S have a common fixed point in X.

Proof. By assumptions on φ and ψ we get for all x ∈ X :

φ (Tx) ≼ ψ (Sx) ≼ φ (x)

and by the first inequality of (3.5) we have δ(x, Tx) ≼ φ(x) − φ(Tx) for all x ∈ X, then Theorem
2.2 states that T has at least one fixed point in X, set T x̄ = x̄ thus Sx̄ = x̄; indeed

ρ(x̄, Sx̄) ≼ ψ(Sx̄)− φ(T x̄)

= ψ(Sx̄)− φ(x̄)

≼ ψ(Sx̄)− ψ(S̄x)

≼ θ,

the proof is completed.
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Theorem 3.3. Let (X, δ) be a complete cone metric space such that P is strongly minihedral and
continuous, ρ a mapping of X ×X into P such that for all (x, y) ∈ X2: ρ (x, y) = θ ⇒ x = y and
T , S two sequentially continuous self mappings of X, if there exist two functions φ and ψ from X
to P such that for all x ∈ X {

δ(x, Tx) ≼ φ(Sx)− φ(STx)
ρ(x, Sx) ≼ ψ(x)− ψ(Tx)

(3.7)

then T and S admit at least one fixed point.

Proof. Let x ∈ X and define a sequence {xn}n by xn+1 = Tnx. By the first inequality of (3.7) we
get for all n ∈ N :

δ (xn, xn+1) ≼ φ (Sxn)− φ (Sxn+1)

i.e. {xn}n is a Cauchy sequence, since X is a complete cone metric space, {xn} converges to some
x̄ in X. Note that T and S are sequentially continuous i.e. limTxn = limSxn = t for some t ∈ X
then limSTxn = Tt and limTSxn = St, since limTxn = limxn = x̄ = t we get

limSTxn = limSxn = T x̄ = x̄

so by the second inequality of (3.7), Sx̄ = x̄, which completes the proof.

We give an application of Theorem 3.1 in the setting of coupled fixed point theorems without
monotonicity.

Definition 3.1. An element (x, y) ∈ X × X is called a coupled fixed point of the mapping F :
X ×X −→ X if x = F (x, y) and y = F (y, x).

Theorem 3.4. Let (X, δi) be a complete cone metric space (i = 1, 2) such that P is strongly
minihedral and continuous, F,G : X ×X −→ X two single valued mappings. If there exists a lower
semi continuous function φ : X −→ P such that{

δ1 (x, F (x, y)) ≼ φ (x)− φ (G (x, y))
δ2 (y,G (x, y)) ≼ φ (y)− φ (F (x, y))

(3.8)

for each (x, y) ∈ X ×X. Then there exists (x, y) ∈ X ×X such that x = F (x, y) and y = G (x, y).

Proof. We define a mapping L : X × X −→ X × X by L (x, y) = (F (x, y) , G (x, y)) and let
ψ (x, y) = φ (x) + φ (y) and ρ ((x, y) , (z, t)) = δ1 (x, z) + δ2 (y, t) for all x, y, z, t in X. Using (3.8)
we get for each (x, y) ∈ X2

ρ ((x, y) , L (x, y)) ≼ ψ (x, y)− ψ (L (x, y))

by Theorem 2.2, there exists (x, y) ∈ X ×X such that

(x, y) = L (x, y) = (F (x, y) , G (x, y))

that is

x = F (x, y)

y = G (x, y)

If we drop the condition that φ is lower semi continuous, and replace it by the mapping x 7−→
δ (Sx, Tx) is lower semi continuous we get the following result.

7
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Theorem 3.5. Let (X, δ) be a complete cone metric space such that P is strongly minihedral and
continuous, T and S two self mappings of X with TX ⊆ SX and φ : X −→ P an arbitrary mapping.
If x 7−→ δ (Sx, Tx) is lower semi continuous such that for all x in X

max{δ(x, Tx), δ(x, Sx)} ≼ φ(Sx)− φ(Tx) (3.9)

then T and S have a common fixed point.

Proof. Let x0 be an arbitrary element of X, we define a sequence {yn}nas follows: since TX ⊆ SX
there exists x1 ∈ X such that

Tx0 = Sx1 = y0

then there exists x2 ∈ X such that
Tx1 = Sx2 = y1

so on until define yn by induction : Txn = Sxn+1 = yn. Set ψ = 2φ, and by (3.9) we get for all n
in N⋆

δ (Sxn, Txn) ≼ δ(xn, Txn) + δ(xn, Sxn)

≼ ψ(Sxn)− ψ(Txn)

which implies that δ (yn−1, yn) ≼ ψ(yn−1) − ψ(yn) so {yn}n is a Cauchy sequence, then converges
to x ∈ X, hence

limTxn = limSxn = lim yn = x̄

and

δ (Sx̄, T x̄) ≼ lim inf δ (Sxn, Txn)

≼ lim inf (ψ(Sxn)− ψ(Txn)) = θ

thus Sx̄ = T x̄, and by (3.9) Sx̄ = T x̄ = x̄.

Example 3.2. Let X = L∞ [0, 1], and let E = R2 and P = {(x, y)|x, y ≥ 0}. We define δ :
X ×X −→ P by

δ (h, k) =
(
∥h− k∥∞ , ∥h− k∥1

)
and take δ1 = δ2 = δ. Then (X, δ) is a complete cone metric space, and P is strongly minihedral
and continuous (see [48]).

We define T : X −→ X and S : X −→ X by Th = 1
2
h and Sk = 3

4
k. Since T and S are continuous

and so δ we have x 7−→ δ (Sx, Tx) is lower semi continuous.

And we define a mapping φ : X −→ P by

φ (h) = 2
(
∥h∥∞ , ∥h∥1

)
For any h ∈ X it is clear that

max

{(
1

2
∥h∥∞ ,

1

2
∥h∥1

)
,

(
1

4
∥h∥∞ ,

1

4
∥h∥1

)}
=

(
1

2
∥h∥∞ ,

1

2
∥h∥1

)
and

φ(Sh)− φ(Th) = 2

(
1

4
∥h∥∞ ,

1

4
∥h∥1

)
=

1

2

(
∥h∥∞ , ∥h∥1

)
hence for each h ∈ X

max{δ(h, Th), δ(h, Sh)} ≼ φ(Sh)− φ(Th)

Thus, all conditions of Theorem 3.5 are satisfied and T, S have a common fixed point h(x) = 0.

8
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4 Conclusion

In this article, motivated by Cho and Bae [47], we established some common fixed point theorems in
the framework of cone-metric spaces with respect to strongly minihedral and continuous cone. The
presented theorems can be considered as a new direction to prove common fixed point theorems
using Caristi-Type mapping in cone metric spaces. We applied the above stated results to obtain a
coupled fixed point theorem for two single valued mappings.
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