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1 Introduction

Stochastic differential equations (SDEs) are widely utilized for mathematical models in many ways
such as finance, biology, mechanics, ecology, chemistry and so on [1, 2, 3, 4, 5, 6, 7]. Due to most of
the SDEs cannot be solved explicitly, numerical approximations became to be an important tool for
studying them. Here we consider numerical integration of stochastic differential equations (SDEs)
in the Itô sense of the following form:

dx(t) = f(x(t))dt+ g(x(t))dw(t), t ∈ [0, T ], (1.1)

with initial data x(0) = x0 ∈ Rd w(t) is a one-dimensional standard Wiener process and the
functions f, g : Rd 7→ Rd. Due to advantages of the split-step method in flexibility and stability of
dealing with stiffness, we introduce the split-step theta-Milstein (SSTM) approximation{

yn = xn + θf(yn)∆ + (1− θ)f(xn)∆,
xn+1 = yn + g(yn)∆wn + 1

2
L1g(yn)(|∆wn|2 −∆),

(1.2)

where the parameter θ ∈ [0, 1], ∆ = T/N is a stepsize, N ∈ N, for a scalar differential function φ,
L1φ = ∇φg and ∆wn = w(tn+1)− w(tn) denotes the increment of Brownian motion.

In recent years, some Milstein schemes have been widely used to solve stochastic differential
equations. The explicit Milstein method [8] is strongly convergent with order one, but in the mean-
square sense, the explicit Milstein scheme generally does not converge to the exact solution of the
SDEs with superlinearly growing drift coefficient. So Wang and Gan [9] introduced a tamed version
of the Milstein scheme for SDEs with commutative noise, and in that paper, they obtained strongly
convergent with order one in the non-globally Lipschitz conditions on the diffusion coefficient. In
[10], Higham, Mao and Szpruch proposed a new Milstein type scheme for simulating stochastic
differential equations (SDEs) with highly nonlinear coefficients, and analyzed multi-level Monte
Carlo simulations for mean-reverting financial models with polynomial growth in the diffusion
term. Nevertheless, the mean square stability analysis of Milstein methods is focused on linear
SDEs [10, 11, 12], and there exists a bit number of results on stability analysis for nonlinear SDEs.

In this paper, the convergence and mean-square stability of the SSTM-method for nonlinear SDEs
are studied. The organization of the paper is the following. In the next section, uniform boundedness
of pth moments is obtained. We also introduce some notations and assumption of Eq.(1) in this
section. The strong convergence order of SSTM-scheme is established in Section 3. In Section 4,
the mean square stability of scheme (1.2) is presented. Finally, several interesting examples will be
given to illustrate the theory.

2 Uniform Boundedness of the pth Moment

Throughout this paper, we use the following notations. Let (Ω,F , P ) be a probability space with a
filtration {Ft}t≥0, which satisfies the usual conditions (increasing and right continuous, F0 contains
all P -null sets). The Brownian motion w(t) is defined on (Ω,F , P ). We let | · | denote both the
Euclidean norm in Rn. If x is a vector, its transpose is denoted by xT and the inner product is
denoted by ⟨x, y⟩ = xT y for x, y ∈ Rd. We use C to denote a generic positive constant independent
of the stepsize ∆ and may vary from place to place.

We make following assumption to ensure the existence and uniqueness of the global solution of the
SDEs (1.1).

2



Teng et al.; ARJOM, 2(3), 1-11, 2017; Article no.ARJOM.30465

Assumption 1. There exist constants K, µ, δ such that for any x, y ∈ Rd

|f(x)− f(y)|2 ≤ K|x− y|2,
|g(x)− g(y)|2 ≤ µ|x− y|2,
|f(x)|2 ∨ |g(x)|2 ≤ K

′
(1 + |x|2),

|L1g(x)− L1g(y)|2 ≤ δ|x− y|2.

(2.1)

Remark 2.1. From Assumption 1, one easily deduce that

|xT f(x)| ∨ |f(x)|2 ∨ |g(x)|2 ∨ |L1g(x)|2 ≤ α+ β|x|2, x ∈ Rd, (2.2)

where

α := 2|f(0)|2 ∨ 2|g(0)|2 ∨ 2|L1g(0)|2 and β := (K +
1

2
) ∨ 2K ∨ 2µ ∨ 2δ. (2.3)

Definition 2.1. (See [13].)The solution x(t) ≡ 0 of the system (1.1) in Rd is said to be p-stable
(p > 0), if

sup
t≥0

E|x(t)|p → 0. (2.4)

When p = 2, it is usually said to be mean-square stable.

Definition 2.2. Assume that the conditions (2.1)C(2.4) hold. For a given stepsize ∆, a numerical
method is said to be mean-square stable if for initial data x0 the numerical solution xn produced
by the method satisfies

lim
n→∞

E[x2
n] = 0. (2.5)

Lemma 2.1. Suppose that f : Rd 7→ Rd satisfies (2.2) and (2.3). If ∆ < min{1, 1/(4β)}, then the
xn and yn produced by (1.2) satisfy

E[y2
n] ≤ 5E[x2

n] + C, (2.6)

where 0 ≤ n ≤ N and C is a positive constant.

Proof. It follows from (1.2) that

yn = xn + (θf(yn) + (1− θ)f(xn))∆. (2.7)

Squaring both sides of (2.7), we obtain

|yn|2 = |xn|2 + θ2∆2|f(yn)|2 + (1− θ)2∆2|f(xn)|2 + 2θ∆xT
nf(yn)

+2(1− θ)∆xT
nf(xn) + 2θ(1− θ)∆2⟨f(yn), f(xn)⟩.

(2.8)

Using the inequality xT y ≤ |x|2 + |y|2, then

|yn|2 ≤ |xn|2 + θ2∆2|f(yn)|2 + (1− θ)2∆2|f(xn)|2 + θ∆(|xn|2 + |f(yn)|2)
+(1− θ)∆(|xn|2 + |f(xn)|2) + θ(1− θ)∆2(|f(yn)|2 + |f(xn)|2).

(2.9)

Then, by ∆ < 1, 0 ≤ θ ≤ 1 and (2.2), we derive that

|yn|2 ≤ (1 + ∆)|xn|2 + (1 +∆)θ∆(α+ β|yn|2) + (1− θ)(1 + ∆)∆(α+ β|xn|2)
≤ (2 + 2β∆)|xn|2 + 2β∆|yn|2 + 4α∆.

(2.10)
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Taking expectation on both sides of (2.10), we receive

E[|yn|2] ≤ (2 + 2β∆)E[|xn|2] + 2β∆E[|yn|2] + 4α∆.

Note that the assumption of 2β∆ ≤ 1/2, we take maximum on the left hand of the above inequality
and then obtain (2.6).

Theorem 2.1. Let xn and yn be produced by (1.2). Assume that f , g : Rd 7→ Rd satisfy (2.2) and
(2.3). If ∆ < min{1, 1/(4β)}, then

max
0≤i≤n

E[|xi|p] ≤ C, max
0≤i≤n

E[|yi|p] ≤ C, (2.11)

where C are positive constants.

Proof. It follows from (1.2) that

xn+1 = yn + g(yn)∆wn +
1

2
L1g(yn)(|∆wn|2 −∆). (2.12)

Squaring both sides of (2.12), we obtain

|xn+1|2 = |yn|2 + |g(yn)∆wn|2 + 1
4
|L1g(yn)(|∆wn|2 −∆)|2

+⟨g(yn)∆wn, L
1g(yn)(|∆wn|2 −∆)⟩

+2⟨yn, g(yn)∆wn + 1
2
L1g(yn)(|∆wn|2 −∆)⟩.

(2.13)

Using the inequality xT y ≤ |x|2 + |y|2, then

|xn+1|2 ≤ |yn|2 + 2|g(yn)∆wn|2 + 1
2
|L1g(yn)(|∆wn|2 −∆)|2

+2⟨yn, g(yn)∆wn⟩+ ⟨yn, L1g(yn)(|∆wn|2 −∆)⟩, (2.14)

which implies

|xn+1|2 ≤ |y0|2 + 2
n∑

i=0

|g(yi)|2|∆wi|2 + 1
2

n∑
i=0

|L1g(yi)|2(|∆wi|2 −∆)2

+2
n∑

i=0

⟨yi, g(yi)∆wi⟩+
n∑

i=0

⟨yi, L1g(yi)(|∆wi|2 −∆)⟩.
(2.15)

Recall the elementary inequality: if x1, ..., xn ≥ 0, p ≥ 1, and n is a positive integer, then(
n∑

i=1

xi

)p

≤ np−1
n∑

i=1

xp
i . (2.16)

Form Equation (2.16), we therefore have

|xn+1|p

5p−1 ≤ |y0|2p + 2p
(

n∑
i=0

|g(yi)|2|∆wi|2
)p

+

∣∣∣∣ n∑
i=0

⟨yi, L1g(yi)(|∆wi|2 −∆)⟩
∣∣∣∣p

+2p
∣∣∣∣ n∑
i=0

⟨yi, g(yi)∆wi⟩
∣∣∣∣p + 2−p

(
n∑

i=0

|L1g(yi)|2(|∆wi|2 −∆)2
)p

.
(2.17)

Now, we will estimate terms Equation (2.17) separately. From [14], we have

E

(
sup

0≤k≤n

k∑
i=0

|g(yi)|2|∆wi|2
)p

≤ C + C∆
n∑

i=0

E[|yi|2p], (2.18)

E

[
sup

0≤k≤n

∣∣∣∣∣
k∑

i=0

yT
i L

1g(yi)(|∆wi|2 −∆)

∣∣∣∣∣
p]

≤ C + C∆

n∑
i=0

E[|yi|2p], (2.19)
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E

[
sup

0≤k≤n

∣∣∣∣∣
k∑

i=0

yT
i g(yi)∆wi

∣∣∣∣∣
p]

≤ C + C∆

n∑
i=0

E[|yi|2p] (2.20)

and

E

(
sup

0≤k≤n

k∑
i=0

|L1g(yi)|2(|∆wi|2 −∆)2
)p

≤ C + C∆

n∑
i=0

E[|yi|2p]. (2.21)

Combining (2.18)-(2.21) with (2.17) yields

E
[

sup
0≤k≤n+1

|xk|2p
]
≤ C + C∆

n∑
i=0

E
[
sup

0≤k≤i
|yk|2p

]
. (2.22)

From Lemma 2.1, we deduce that

E
[

sup
0≤k≤n+1

|xn|2p
]
≤ C + C∆

n∑
i=0

E
[
sup

0≤k≤i
|xk|2p

]
. (2.23)

Using the discrete-type Gronwall inequality and noting that (n+ 1)∆ ≤ T give

E
[

sup
0≤k≤n+1

|xn|2p
]
≤ C. (2.24)

This together with (2.6) gives the desired assertion (2.11).

3 Convergence of the SSTM-method

Lemma 3.1. Suppose that f : Rd 7→ Rd satisfies (2.2) and (2.3). If ∆ < min{1, 1/(4β)}, then the
xn and yn produced by (1.2) satisfy

E[|xn − yn|2] ≤ C∆2, E[|xn+1 − yn|2] ≤ C∆, (3.1)

where 0 ≤ n ≤ N and C is a positive constant.

Proof. From (1.2) we have

yn − xn = θf(yn)∆ + (1− θ)f(xn)∆.

Hence, it follows from the inequality 2ab ≤ a2 + b2 and 0 ≤ θ ≤ 1 that

|yn − xn|2 ≤ 2∆2(|f(yn)|2 + |f(xn)|2)
≤ 2∆2(α+ β|yn|2 + α+ β|xn|2).

(3.2)

Taking expectation on both sides of the above inequality, and using the estimate (2.11) in Theorem
2.1. We have

E[|xn − yn|2] ≤ C∆2. (3.3)

It follows from (1.2) that

xn+1 − yn = g(yn)∆wn +
1

2
L1g(yn)(|∆wn|2 −∆).

Squaring on both sides, we have

|xn+1 − yn|2 ≤ 2|g(yn)∆wn|2 + 1
4

∣∣L1g(yn)(|∆wn|2 −∆)
∣∣2

≤ 2(α+ β|yn|2)|∆wn|2 + 1
4
(α+ β|yn|2)(|∆wn|2 −∆)2.

Taking expectation and using (2.11), we have

E[|xn+1 − yn|2] ≤ C∆. (3.4)

5



Teng et al.; ARJOM, 2(3), 1-11, 2017; Article no.ARJOM.30465

The proof of the following lemma is similar to that of Theorem 4.1 in [15].

Let δn+1 := x(tn+1)− x̃n+1, εn+1 := x(tn+1)− xn+1, where

ỹn = x(tn) + ∆((1− θ)f(x(tn)) + θf(ỹn)),
x̃n+1 = ỹn + g(ỹn)∆Wn + 1

2
L1g(ỹn)(|∆wn|2 −∆).

Lemma 3.2. Let Assumption 1 hold and the local error of the SSTM-method (1.2) satisfies

max
0≤n≤N−1

|E[δn+1]| ≤ C∆p1 , as ∆ → 0

and
max

0≤n≤N−1
(E[δ2n+1])

1/2 ≤ C∆p2 , as ∆ → 0

where p2 ≥ 1/2 and p1 ≥ p2 + 1/2. Then the estimate

max
1≤n≤N

(E[ε2n])1/2 ≤ C∆p2−1/2

holds, where the constant C is independent of ∆ but dependent on the length of the time interval
T and initial segment.

According to the definitions of ỹn and x̃n+1, we have E[yn|xn = x(tn)] = E[ỹn] and E[xn+1|xn =
x(tn)] = E[x̃n+1].

Now we can prove the mean-square convergence of the STM-method.

Theorem 3.1. Suppose that f , g : Rd 7→ Rd satisfy conditions (2.2) and (2.3). Let x(t) be the
exact solution of Eq.(1.1) and xn be the approximate solution produced by the SSTM-method (1.2).
Then there exists a positive constant C such that

max
1≤n≤N

E[|x(tn)− xn|2] ≤ C∆, ∆ → 0.

Proof. Define the θ-Milstein Scheme ([10]) as follows

xM
n+1 = xn + θf(xn+1)∆ + (1− θ)f(xn)∆ + g(xn)∆wn +

1

2
L1g(xn)(|∆wn|2 −∆).

Due to Theorem 4.1 in ([10]), then there exists constant C, which may vary at each line, such that

E|δn+1|2 = E
(
|x(tn+1)− xn+1|2|xn = x(tn)

)
≤ 2E

(
|x(tn+1)− xM

n+1|2|xn = x(tn)
)
+ 2A1

≤ C∆2 + 2A1,

A1 = E
(
|xM

n+1 − xn+1|2|xn = x(tn)
)

= E(|∆θ(f(xn+1)− f(yn)) + (g(xn)− g(yn))∆wn

+ 1
2
(L1g(xn)− L1g(yn))((∆wn)

2 −∆)|2|xn = x(tn))
≤ 3∆2E

(
|f(xn+1)− f(yn)|2|xn = x(tn)

)
+3∆E

(
|g(xn)− g(yn)|2|xn = x(tn)

)
+3∆E

(
|L1g(xn)− L1g(yn)|2|xn = x(tn)

)
≤ 3K∆2E

(
|xn+1 − yn|2|xn = x(tn)

)
+3µ∆E

(
|xn − yn|2|xn = x(tn)

)
+3δ∆E

(
|xn − yn|2|xn = x(tn)

)
≤ C∆3.

(3.5)
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Inequality (3.5) is easy to be checked by the Assumption 1 and Lemma 2. Then

|E[δn+1]| = |E[x(tn+1)− xn+1|xn = x(tn)]|
≤ |E[x(tn+1)− xM

n+1|xn = x(tn)]|+A2

≤ C∆3/2 +A2,

(3.6)

where
A2 = |E[xM

n+1 − xn+1|xn = x(tn)]|
≤ (E[(xM

n+1 − xn+1)
2|xn = x(tn)])

2

≤ C∆3/2,

(3.7)

which follows from the inequality |E[x]| ≤ E|x| ≤ (E[x2])1/2. Due to Lemma 3.1, we obtain
max1≤n≤N E[(xn − x(tn))

2|x0 = x(t0)] = O(∆)), the Theorem 3.1 is obtained.

4 Mean Square Stability of the SSTM-method

In this section, we focus on the nonlinear stability of schemes (1.2). To this end, we first assume
that f(0) = g(0) = 0, and then from (2.1)-(2.3), we obtain

|f(x)|2 ≤ K|x|2, |g(x)|2 ≤ µ|x|2, |L1g(x)|2 ≤ δ|x|2. (4.1)

Theorem 4.1. Assume that the condition (4.1) hold. If there exists a positive constants λ > µ
such that for all x ∈ Rn,

2xT f(x) ≤ −λ|x|2. (4.2)

Then for any ∆ ≤ ∆∗ = λ−µ
(1−θ)K+1/2δ

, the SSTM-method is mean-square stable.

Proof. It follows from (1.2) that

yn − θf(yn)∆ = xn +∆(1− θ)f(xn).

Squaring both sides of the above equality, we have

|yn|2 − 2θ∆yT
n f(yn) + ∆2θ2|f(yn)|2 = |xn|2 + 2∆(1− θ)xT

nf(xn) + ∆2(1− θ)2|f(xn)|2

and
|yn|2 ≤ |xn|2 + 2θ∆yT

n f(yn) + 2∆(1− θ)xT
nf(xn) + ∆2(1− θ)2|f(xn)|2. (4.3)

Taking expectation on both side of (4.3), it follows from conditions (4.1) and (4.2) that

E[|yn|2] ≤ E[|xn|2]− θ∆λE[|yn|2]−∆(1− θ)λE[|xn|2] + ∆2(1− θ)2KE[|xn|2]. (4.4)

It follows from (1.2) that

xn+1 = yn + g(yn)∆wn +
1

2
L1g(yn)(|∆wn|2 −∆). (4.5)

Squaring both sides of (4.5) and takeing expectation, we obtain

E[|xn+1|2] = E[|yn|2] + E[|g(yn)∆Wn|2] + 1
4
E[|L1g(yn)(|∆wn|2 −∆)|2]

+2E[⟨yn + 1
2
L1g(yn)(|∆wn|2 −∆), g(yn)∆wn⟩]

+E[yT
nL

1g(yn)(|∆wn|2 −∆)].
(4.6)

Noting that xn is Ftn -measurable at mesh point tn. So

E[|g(yn)∆wn|2] = ∆E[|g(yn)|2],
E[|L1g(yn)(|∆wn|2 −∆)|2] = 2∆2E[|L1g(yn)|2],
E[⟨yn + 1

2
L1g(yn)(|∆wn|2 −∆), g(yn)∆wn⟩] = 0,

E[yT
nL

1g(yn)(|∆wn|2 −∆)] = 0.
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Then it follows from the (4.6) that

E[|xn+1|2] = E[|yn|2] + ∆E[|g(yn)|2] +
1

2
∆2E[|L1g(yn)|2].

We can induce from the above equality that

E[|yn|2] ≤ E[|xn+1|2]. (4.7)

Form the condition (4.1), we deduce that

E[|xn+1|2] ≤ E[|yn|2] + µ∆E[|yn|2] +
1

2
δ∆2E[|yn|2]. (4.8)

Applying the inequality (4.8) to the first term of the right side of (4.4), we obtain

E[|yn|2] ≤ E[|yn−1|2] + θ∆(−λE[|yn|2]) + ∆(1− θ)(−λE[|xn|2])
+∆2(1− θ)2KE[|xn|2] + µ∆E[|yn−1|2] + 1

2
δ∆2E[|yn−1|2]

= E[|yn−1|2] + θ∆(−λE[|yn|2]) + ∆(1− θ)(−λE[|xn|2])
+∆2(1− θ)2KE[|xn|2] + θ∆µE[|yn−1|2] + (1− θ)∆µE[|yn−1|2]
+ 1

2
θ∆2δE[|yn−1|2] + 1

2
(1− θ)∆2δE[|yn−1|2].

By the estimation (4.7), it is obtained that

E[|yn|2] ≤ E[|yn−1|2] + θ∆(−λE[|yn|2]) + ∆(1− θ)(−λE[|xn|2]
+∆2(1− θ)2KE[|xn|2] + θ∆µE[|yn−1|2] + (1− θ)∆µE[|xn|2]
+ 1

2
θ∆2δE[|yn−1|2] + 1

2
(1− θ)∆2δE[|xn|2].

Namely

E[|yn|2]− E[|yn−1|2] ≤ θ∆(−λE[|yn|2] + (µ+ 1
2
∆δ)E[|yn−1|2])

+∆(1− θ)(−λ+∆(1− θ)K + µ+ 1
2
∆δ)E[|xn|2].

(4.9)

Summation of (4.9) over n from n = 1 gives

E[|yn|2] + ∆(1− θ)(λ−∆(1− θ)K − µ− 1
2
∆δ)

n∑
i=1

E[|xi|2]

+θ∆(λ− µ− 1
2
∆δ)

n∑
i=1

E[|yi|2]) ≤ (1 + (µ+ 1/2∆δ)θ∆)E[|y0|2].
(4.10)

Let ∆∗ = λ−µ
(1−θ)K+1/2δ

. For ∆ ≤ ∆∗, the condition λ−∆(1− θ)K − µ− 1
2
∆δ ≥ 0 hold. Then the

series
∑

E(yi)2 and
∑

E(xi)
2 are bound to be convergent. So we obtain that

lim
n→∞

E[x2
n] = 0. (4.11)

Remark 4.1. The conditions in Theorem 4.1 are not optimal because the SSTM method may still
be stable for some stepsizes ∆ which are larger than ∆∗.

5 Numerical Examples

In this section, we compare computational efficiency and stability properties of the split-step theta
Milstein scheme, (θ, σ)- Milstein scheme [10] and the tamed Milstein scheme [9]. In order to estimate
the rate of convergence we proceed with numerical experiments for the following SDEs. We focus
on root mean-square errors (

E|x(T )− xN |2
)1/2

< ε, (5.1)

8



Teng et al.; ARJOM, 2(3), 1-11, 2017; Article no.ARJOM.30465

where ε > 0, N = T/∆ and the expectation is approximated by computing sample average over
2000 paths. We choose a simple scalar equation{

dx(t) = −x(t)dt+ x(t)dw(t), t ∈ [0, T ]
x(0) = 1.

(5.2)

By some estimation we arrive at K = µ = δ = 1, λ = 2. From Fig.1, we observe that SSTM
scheme is consistent with strong order of convergence equal to one. As expected, the SSTM scheme
gives an error that less than the other two models. Fig.2 illustrates the mean square stability of
numerical solution obtained by the SSTM method when ∆ = 1.5, θ = 0. But we can see that the
tamed Milstein scheme is unstable for equal stepsize. In this case, the restriction on stepsize ∆ of
mean square stable SSTM method is less than that of the tamed Milstein scheme.
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6 Conclusion

In this work, we have examined the mean square stability of the SSTM-scheme for SDEs under the
local Lipschitz condition for the drift and diffusion coefficients. We have proved that SSTM-method
is convergent with order 1 in mean-square sense. Numerical tests verify the relationship that theory
predicts between the parameter θ and the step size h for mean-square stability of the SDEs.
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