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Abstract 
 

A Mathematical model of ( , , , , , , )u d sS E I I I R D is presented to study the dynamical spread of Ebola in 

the population. Existence of the Local Stability of the disease–free equilibrium (DFE) was investigated 

via the threshold parameter (Reproduction number0R ) obtained using the next generation matrix 

technique. The result shows that the DFE is asymptotically stable at Reproduction number less than unity

0( 1)R < . Reasonable sets of values for the parameter in the model were compiled from existing 

literatures and Sensitivity analysis indices 0R around the baseline parameter value were computed, which 

shows that the most sensitive parameter to 0R  is the recruitment rate π  followed by the rate at which 

exposed individuals are isolated due to contact tracingσ . Furthermore, the numerical computation of 0R  

gave a value of 0.16, and numerical simulation was obtained which illustrates the effect of control 
parameters on the various compartments of the model. 
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1 Introduction 
 
Ebola Haemorrhagic fever now known as Ebola virus disease (EVD) named after the river in Democratic 
Republic of Congo (formerly Zaire), is a severe often fatal illness in human [1,2]. The first two simultaneous 
outbreak of Ebola appeared in 1976 in Nzara Sudan, and in Yambuku, Democratic Republic of Congo [1,3]. 
The latter was in a village which was located near the Ebola River, from which the disease takes its name. It 
is a virulent filo virus that is known to affect humans and primates. It is 1 of 3 members of the filovirdae 
family (filo virus), along with genus Marburg virus and genus Cueva virus. Ebola virus comprises of 5 
distinct species namely: Bundibugyo Ebola Virus (BDBV), Zaire Ebola virus (EBOV), Reston Ebola Virus 
(RESTV), Sudan Ebola Virus (SUDV) and Taiforest Ebola Virus (TAFV). BDBV, EBOV, and SUDV have 
been associated with large EVD outbreak in Africa, whereas RESTV and TAFV have not. The RESTV 
species found in Philippines and China Republic can infect humans, but no illness or death in humans from 
the species has been reported till date except BDBV. EBOV and SVDV have the same number of mortality 
rate [4,5].  
 

Ebola can be introduced into human population through close contact with the secretions, blood, organs or 
other bodily fluids of infected animals. Infection has been documented through the handling of infected 
chimpanzees, gorillas, fruit bats, monkeys, forest antelope and porcupines found ill or dead in the rainforest 
in Africa. It then spread in the community through human to human transmission, with infection resulting 
from direct contact with the blood, secretions, organs or other bodily fluids of infected people, and indirect 
contact with environments contaminated with such fluids [1,4]. The incubation period of this deadly disease 
is 2 – 21days and infectious period is 4 -10 days [6]. Ebola symptoms includes “sudden onset of high fever 
greater than 38.6 degree Celsius or 101.5 degree Fahrenheit, fatigue, muscle pain, stomach pain, diarrhea 
sore throat, abdominal pain, unexplained hemorrhage and headache”. If not managed well, this then rapidly 
progresses to vomiting of blood, rash, symptoms of impaired Kidney and Liver function, and in some cases 
it leads to both internal and external bleeding [4,7]. Most infected individuals die within 10days of their 
initial infection [8]. Burial ceremonies in which mourners have direct contact with the body of the deceased 
person can also play a role in the transmission of Ebola [2,3,9]. 
 

The recent 2014 outbreak in West Africa reported that about 30% of infections were caused by a contact 
with the dead bodies that recently died of Ebola disease [2,10,11]. The number of dead bodies who recently 
died because of Ebola disease is related to the rate of the infection because of its burial process [2,10]. 
 

The threat posed by Ebola virus in human population initiated and prompted this research work to develop 
an epidemiological model that incorporated the dead individuals, infected undetected, infected detected and 
isolated individuals and to look into the Sensitivity analysis of the model. 
 

2 Model Formulation 
 

A dynamical system consisting ordinary differential equation is used to construct the Ebola disease model in 

this article. We assume that the human population is divided into seven (7) compartments namely: 

susceptible (S) exposed (E), Infected undetected (Iu), Infected detected (Id), Infected isolated (Is), Recovered 

(R), and death individuals (D). The govern model is given by the system of differential equations below: 
 

 

(1) 
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3 Analysis of the Model 
 
3.1 Disease free equilibrium (DFE) 
 
At equilibrium, (1) is set to be equal to zero.  
 

That is: 0u d sdI dI dIdS dE dR dD

dt dt dt dt dt dt dt
= = = = = = =                                  (2) 

 
The disease free equilibrium is obtained as: 
 

( , , , , , , ) ,0,0,0,0,0,0u d sS E I I I R D
π
µ

 =  
 

                                                                            (3) 

 
Table 1. Description of parameter of the model 

 
Parameters Description 
π  Recruitment rate 

2β  Contact rate with undetected infected 

2β  Contact rate with detected infected 
 

3β  Contact rate with dead bodies 

µ  Natural death rate 
σ  The rate at which exposed individuals are isolated due to contact tracing 
κ  Progression rate of individuals in exposed stage to active Ebola 
ω  Endogenous reactivation rate 

1γ  
Detection rate for infected undetected Individuals 

2γ  
The rate at which Infected detected individuals are isolated 

uδ  
Disease – induced death rate for undetected individuals 

dδ
 

Disease – induced death rate for detected individuals 
 

sδ
 

Disease – induced death rate for isolated infected individuals 

α
 

Recovery rate of isolated individuals 

θ  
Burial rate 

 
 

3.2 Basic reproduction number 
 
Basic reproduction number plays a very important role in describing the qualitative analysis of the 

mathematical model of infectious disease. The basic reproduction number ( 0R ) measures the average 

number of secondary infected individual generated in his or her infectious period in the population of 

Susceptible [4]. It is known that if 0 1R < , then the disease dies out and spread whenever it exceeds unity i. 

e 0( 1)R < . Using the Next generation matrix techniques, the non–negative matrix F of the new infection 

terms (Transmission) and the non – singular matrix V of the other remaining transfer terms (Transition) are 

given by 1FV − : 
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Where: 
 

31 20 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

F

β πβ π β π
µ µ µ

 
 
 
 

=  
 
 
 
                     

1

2 3

1 4

2 5

0 0 0 0

0 0 0

0 0

0 0

0 u d s

P

P P

V P

P

ωκ γ
σ γ

δ δ δ θ

 
 − 
 = − −
 − − 
 − − − 

                   (4) 

 

Where: 1 2 3 1 4 2 5( ), (1 ) , ( ), ( ), ( )u d sP P P P Pσ κ µ ω κ γ δ µ γ δ µ δ α µ= + + = − = + + = + + = + +
 

 

The basic reproduction number, 1
0 ( )R FVρ −= , is the spectral radius of  the  product 1FV − . Hence, for 

the model (1), we arrive at: 
 

( )1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 3 2 4 5 3 2 5 3 1 2 3 1 2
0

1 3 4 5

d s s u d sP P P P P P P P P P P P P P P P P P
R

P P P P

π β θ κωθ β θ β γ κω β δ κω β δ γ σ β δ β δ β δ γ β δ γ γ
µ θ

+ + + + + + + +
=

 

 
 

Fig. 1. The schematic illustration of the model 
 
3.3 Local stability of the model 
 
Using the basic reproduction number obtained for the model (1), we analyze the stability of the equilibrium 
point in the following result. 
 

Theorem:  The disease – free state, is locally asymptotically stable if 0 1R <  and unstable if 0 1R > . 

 
Proof: The Jacobian matrix of the system (1) evaluated at the disease – free equilibrium point, obtained as 
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31 2

31 2
1

2 3

1 4

2 5

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0u d s

P

P PJ

P

P

β πβ π β πµ
µ µ µ

β πβ π β π
µ µ µ

ωκ γ
σ γ

α µ
δ δ δ θ

 − − − − 
 
 − 
 

− − =
 − 
 −
 

− 
 − 

                             (5) 

 
Where:  

 

1 2 3 1 4 2 5( ), (1 ) , ( ), ( ), ( )u d sP P P P Pσ κ µ ω κ γ δ µ γ δ µ δ α µ= + + = − = + + = + + = + +
 

 

We need to show that all the eigenvalues of J  are negative. The eigenvalues of the matrix J  are the roots 
of the characteristic equation 
 

7 6 5 4 3 2
5 71 2 3 4 6 0r r r r r r rλ λ λ λ λ λ λ+ + + + + + + =                (6) 

 
Where 
 

ir  (for 1,2...6i = ) are representative of some expressions 

 

1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 37 d s sP P P PP P P PP P PPr πβ θ πκωθ β πθ β γ πκω β δ πκω β δ γ πσ β δ= + + + + + +         

12 4 5 3 2 5 3 1 2 3 1 2 3 4 5u d sP P P P P P P P P Pπ β δ π β δ γ π β δ γ γ µθ+ + −  

 
Employing the Descartes’ rule of signs [11], which states that all roots of polynomial (6) have negative real 

part and distinct, if and only if the coefficient ir are negative for 1,2,3,4,5,6,7i = . 

 

Hence, it is locally Asymptotically stable if 7 0:r <
 

 
Such that:  
 

1

1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 3

2 4 5 3 2 5 3 1 2 3 1 2 3 4 5

0
d s s

u d s

P P P P P P P P P P P P

P P P P P P P P P P

πβ θ πκωθ β πθ β γ πκω β δ πκω β δ γ πσ β δ
π β δ π β δ γ π β δ γ γ µθ

+ + + + + + 
< + + −    

(7) 

 
Further simplification in terms of reproduction number yields 
 

( )1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 3 2 4 5 3 2 5 3 1 2 3 1 2

1 3 4 5

1d s s u d sP P P P P P P P P P P P P P P P P P

PP P P

π β θ κωθ β θ β γ κω β δ κω β δ γ σ β δ β δ β δ γ β δ γ γ
µ θ

+ + + + + + + +
<  

(8) 
 

Equation (8) implies 0 1R <
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Therefore, all the eigenvalues of the Jacobian matrix J  have negative real parts when 0 1R < , hence the 

disease-free equilibrium point is locally Asymptotically stable. 
 

Table 2. Baseline parameters and values used in simulation 
 

Parameters Values Reference 

1β  0.000118 Assumed 

2β  0.000118 Assumed 

3β  0.000118 Assumed 

µ  0.02 [4] 

σ  0.2 [4] 

κ  0.6 [4] 

ω  0.03 [4] 

1γ  0.12 [4] 

2γ  0.12 [4] 

uδ  0.937 [6] 

dδ  0.937 [6] 

sδ  0.937 [6] 

α  0.225 Assumed 

θ  0.8 [4] 

 

4 Sensitivity Analysis 
 
It is necessary to conduct an investigation to determine how sensitive the threshold quantity basic 
reproduction number is with respect to its parameters, this will facilitate us to know which of the parameters 

causes most reduction and most high impact on the reproduction number 0R . This analysis tells us how 

crucial and important each of the parameter is to the disease transmission, and this will helps the public 
health authorities in focusing on a well posed intervention strategy for preventing and controlling the spread 
of the disease in the population. The normalized forward sensitivity index of the reproduction number with 
respect to its parameter is computed. 
 
Definition: If a variable ‘c’ depends differentiably on a parameter ‘w’, then the normalized forward 

sensitivity index of ‘c’ with respect to ‘w’ is denoted by cX , which is defined as: 

 

c

c w
X

w c

∂=
∂

 

 

As we have explicit formula for 0R , an analytical expression for the sensitive of 0R  is derived as 
 

0 0

0

R
w

R w
X

w R

∂= ×
∂

                               (9) 
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The maple code was used to generate the Sensitivity index and the results obtained are given in Table 3 
below: 
 

Table 3. Sensitivity index of the basic reproduction number 0R
 

 

 Parameter Sign Value 
1 π  + 1 
2 

1β  + 0.24 

3 
2β  + 0.034 

4 
3β  + 0.415 

5 µ  - -0.54 
6 σ  - -0.61 
7 κ  + 0.679 
8 ω  - -0.068 
9 

1γ  - -0.246 

10 
2γ  - -0.005 

11 
uδ  - -0.12 

12 
dδ  - -0.028 

13 
sδ  + 0.019 

14 α  - -0.176 
15 θ  - -0.117 

 
The positive sign of the sensitivity index of the basic reproduction number to the model parameters indicates 
that an increase (or decrease) in the value of each parameter in this category will leads to increase (or 
decrease) in the basic reproduction number of the disease, likewise the negative sign of the sensitivity index 
of the basic reproduction number to the model parameters indicates that an increase (or decrease) in the 
value of each parameter in this category will leads to decrease (or increase) in the basic reproduction number 
of the disease in the population. Thus, the index table above reveals that the most Sensitive parameter of our 
Reproduction number is the recruitment rate ( )π and the rate at which exposed individuals are isolated due 

to contact tracing( )σ . 
 

5 Numerical Results and Discussion 
 
In this phase, we study numerically the expression/behaviour of the system (1) employing some of the 
parameter values compatible with Ebola [4], [10] as given in Table 2 and by considering the initial 

conditions, (0) 1000,S =  (0) 500,E =  (0) 300,uI =  (0) 250,dI =  (0) 150,sI =  (0) 100,R =  

(0) 20.D =  
 
The numerical simulations are evaluated using the Rungi – Kutta order 4 embedded in mathematical 
software (Maple 18).  
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Fig. 2. The graph of exposed population against time where: 

1 2 3500, 0.000118, 0.000118, 0.000118, 0.02, 0.2...0.8, 0.6, 0.03,π β β β µ σ κ ω= = = = = = = =

1 20.12, 0.12, 0.937, 0.937, 0.937, 0.225, 0.8u d sγ γ δ δ δ α θ= = = = = = =
 

 

 
 

Fig. 3. The graph of Infected Undetected  population against time where: 

1 2 3500, 0.000118, 0.000118, 0.000118, 0.02, 0.2, 0.6, 0.03,π β β β µ σ κ ω= = = = = = = =

1 20.12...0.72, 0.12, 0.937, 0.937, 0.937, 0.225, 0.8u d sγ γ δ δ δ α θ= = = = = = =  
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Fig. 4. The graph of infected detected  population against time where: 

1 2 3500, 0.000118, 0.000118, 0.000118, 0.02, 0.2, 0.6, 0.03,π β β β µ σ κ ω= = = = = = = =

1 20.12, 0.12...0.72, 0.937, 0.937, 0.937, 0.225, 0.8u d sγ γ δ δ δ α θ= = = = = = =  
 

6 Conclusion 
 
This paper presented and analyzed an epidemic model of ( , , , , , , )u d sS E I I I R D  for Ebola virus disease to 

gain more insight into the dynamical spread of the disease in the population. The results of the analysis are 
highlighted as follows: 
 

(i) The research shows the existence of the disease free. 
(ii)  The disease free equilibrium of the model is locally asymptotically stable when the reproduction 

number is less than unity i.e. 0( 1)R < . 

(iii)  Sensitivity analysis reveals that the most sensitive parameter to the basic reproduction number R0 is 
the recruitment rate π , followed by the rate at which exposed individuals are isolated due to 
contact tracing .σ  

 
Numerical simulation shows the effects of the control parameters on some of the various compartment of the 
model. Fig. 2 shows the effect of σ  in the exposed population. It shows that when the isolation of Exposed 
individual is sufficiently large, it reduces the exposed individuals and increases the isolated individuals 

tremendously, while Fig. 3 shows the effect of 1γ on the infected undetected population. It shows that when 

the detection rate of undetected individuals due to contact tracing is very low, the infected undetected 
individuals increases tremendously which will cause the total amount of infected individuals to increase in 

that population.
 
Fig. 4 shows the effect of 2γ  on the infected detected population. It shows that the higher 

the rate at which infected detected individuals move to isolated individuals due to isolation techniques, the 
lower would be the infected detected individuals in the population. 
 

7 Further Research 
 
The basic reproduction number computed (0.16) is low; still the virus is fast spreading in the countries in the 
world. This calls for a further in-depth study on the Bifurcation analysis which will place a sensory that 

reducing the reproduction number 0R  is not enough to show that the virus will be contained. 
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