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Abstract

Duffing oscillator (or Duffing Equation) is one of the most #igant and classical nonlinear ordinary
differential equations in view of its diverse applicatiamscience and engineering. This paper attempts
to study some applications of Duffing oscillator anslbadevelop an alternative computational method
that may be used to simulate it. In developing the computdtimethod for simulating the Duffing
oscillator, power series was adopted as the basis dmnaiith the integration carried out within a orje-
step interval. The computational method developed was dpplisome modeled Duffing oscillators and
from the results obtained; it is evident that the method dpeedlis computationally reliable.

Keywords: Chaos; damping; Duffing oscillator; nonlinear; simulations.

2010 AM S subject classification: 65L05, 65L06, 65D30.

1 Introduction

Over the recent decades, many physical phenomena havenbdeled using nonlinear ordinary differential
equations. One of these equations, called the Duffing dsciltas received remarkable attention due to its
classical applications in sciences, engineering and hiolodgs named after a German electrical engineer
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Georg Duffing in 1981. Given its characteristic of ostitin and chaotic nature, many scientists are inspired
by this nonlinear differential equation since it replicas@silar dynamics in our natural world. Duffing
oscillator occurs as a result of the motion of a bodyjestied to a nonlinear spring power, linear sticky
damping and periodic powering. Oscillations of mechdrggatems under the action of a periodic external
force can be revealed using Duffing oscillator, [1].

This paper presents the applications and computationalations of Duffing oscillators given by the form;

y' O +ny' (@+uy)+yy (9= f(9 (1)
with initial conditions,
y(0)=a,y'(0)=5 )

wheren7, i,y, aand B are real constants anfi(t) is a real-valued function.

Numerous works have focused on the development of efficientodeefior simulating Duffing oscillators.

These methods include; Laplace decomposition method [@hrted Adomian decomposition method [3],
memetic computing [4], differential transform method, [Bjodified differential transform method [6],

improved Taylor matrix method [7], variational iteratiomtimod [8,9], modified variational iteration method
[10], trigonometrically fitted Obrechkoff method [11], amonbers.

In this paper, we shall study some applications of Duffisgjliators most especially in damping and chaos
theory and also develop an alternative computational metbrodirhulating the Duffing equations. It is
expected that this method will be more efficient and contipmialy reliable than the existing ones.

2 Applications of Duffing Oscillator

It is important to note that the Duffing oscillator isienple model that shows different types of oscillations
such as chaos and limit cycles. The terms associatedheigystem in equation (1) represents;

y'(t) : small damping
1]: ratio (coefficient) of viscous damping (it contrtie size of damping)

1y(t) + yy* (1) : nonlinear restoring force acting like a hard spring (withcontrolling the
size of stiffness ang/ controlling the size of nonlinearity)
f (t) : small periodic force

2.1 Damping

Duffing oscillators are routinely associated with dampimgphysical systems. Damping is an influence
within or upon oscillatory system that has the effectesfucing, restricting or preventing its oscillation.
Damping is produced by processes that dissipate the entmgg sn the oscillation. Examples include
viscous drag in mechanical systems, resistance in @hectoscillators, and absorption and scattering of
light in optical oscillators. Damping not based on eneo3g lcan be important in other oscillating systems
such as those that occur in biological systems. The dampegysftem can be described as being one of the
following;

- Overdampedthe system returns (exponentially decays) to equilibriutinont oscillating

- Critically dampedthe system returns to equilibrium as quickly as possiliteowt oscillating

- Underdampedthe system oscillates (at reduced frequency comparec tonttamped case) with
the amplitude gradually decreasing to zero

- Undampedthe system oscillates at its natural resonant frequency
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As a practical example, consider a door that uses a dpricigse the door once open. This can lead to any
of the above types of damping. If the door is undampedi]liswing back and forth forever at a particular
resonant frequency. If it is underdamped, it will swiragk and forth with decreasing size of the swing until
it comes to a stop. If it is critically damped, therwitl return to closed as quickly as possible without
oscillating. Finally, if it is overdamped, it will returto ‘closed’ without oscillating but more slowly
depending on how overdamped it is.

2.2 Chaostheory

Chaos theory is one of the most significant achievementerdinear science, [12]. The Duffing oscillator is
also routinely associated with mathematical chaotic Wieharhese chaotic behaviors exist in many natural
systems such as weather and climate, [13]. It alsarscgpontaneously in some systems with artificial
components, such as road traffic. Chaos theory has afptis in several disciplines including meteorology,
sociology, environmental sciences, etc. According to [&HAgos is “is a periodic long-term behavior in a
deterministic system that exhibits sensitive dependencamitial condition(s)”. Although there is no set
definition of chaos, mathematicians agree that therettae® properties that must exist in a dynamical
system in order to be classified as chaotic:

e It must have periodic long-term behavior meaning that thatiso of the system settles into an
irregular patter a§ — o . The solution does not repeat or oscillate in a periodic manne

» It is sensitive to initial conditions. This means that amyall change in the initial condition can
change the trajectory, which may give a significantly défe long-term behavior.

e It must be “deterministic’ which means that the irregubehavior of the system is due to the
nonlinearity of the system, rather than outside forces.

Thus, Duffing oscillators find applications in Chaosdtye which is the field of study in mathematics that
studies the behavior of dynamical systems that are highigitsve to initial condition(s) - a response
popularly referred to as the butterfly effect. Small défece in initial conditions (such as those of rounding
errors in numerical computation) yields widely diverging ouates for such dynamical systems, rendering
long-term prediction impossible in general [15]. This happeamen though these systems are deterministic,
meaning that their future behavior if fully determinedtbgir initial conditions, with no random elements
involved, [15].

The theory was summarized by [16] &h&aos: when the present determines the future, but the appatexi
present does not approximately determine the flture

In general, the challenge with chaotic systems, as ibdesctby [17], is that computation errors are
progressively increased without bounds.

3 Derivation of the M ethod

In this section, a discrete block method of the form,
AOYD =% Hey'+ Rd Y+ Apty,) ¥01 ®
i=0

is derived for the global solution of problem of the for8) fn the intervaI[Xn,Xnﬂ] . The initial

assumption is that the solution on the interfl)q, Xn+1] is locally approximated by the basis function
(approximate solution),

r+s-1

y(®=> 7, )
j=0
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where I'J- are the real coefficients to be determinéd,s the number of interpolation point§, is the

number of collocation points anll= X — X, is a constant step-size of the partition of the interval

[a,,B] which is given bya =X, < X < X%, <...< X_,< X = f3.

In this research, we assume that the polynomial (4) npasts through the interpolation points
13 _ _ _ 1 :

(Xn+s, Yo S),S:E,Z and the interpolation pomtéxnﬂ, fw),r =0 Z 1 and we require that the

following (r +S) equations must be satisfied:

S x =y, =22 (5)
e j h+s 2'4

r+s—l_ ) i 1

Z i(] _1)TJXJ_2 = fn+r = O[Zjl (6)
=

The (r +S) undetermined coefficientsj are obtained by solving the system of nonlinear equa(®ns
and (6) using Gauss elimination method. This gives a continyduiglinear multistep method of the form;

L 113

y(X):al(t)y 1+a3(t)y st i ZIBJ(I) Lj +lBk(D f1+k s k=== @)

3 ™35 ™ = 424

The coefficients®; , &5, By, B4, 5.3, are given by;

2 4 4 2 4
a (t)=3-4
2
a,(t)=4t-2
¥
,80('[)—1152 (409@° - 153667+ 22400- 16060+ 5866 930 b
ﬂl(t)_—ﬁmoga6 1382¢°+ 16640 7680+ 964 189) (8)
,81('[)— (409&6 12286+ 121@0- 3840~ 302 201)
ﬂs(t)——ﬁmoga6 1075F°+ 89@0— 2560+ 142 39)

— 6 5 —

A= 0(4096 9216°+ 7040 - 1920+ 66 9)
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wheret =XT, Yorj = Y(t, + jh) is the numerical approximation to the analytic solutit, . ;)
and y,., = f,., = £((+ ), Y(t,+ J0), y(t,+ 1) i the approximation /" (t,.,).

The continuous method (7) is then solved for the independent sokititime grid points to give the
continuous block method:

L (jh)™ 113
y(t :z y( )+ I Za(t) n+J+ak n+k | k=—,—,— 9)
=~ ml 4°2'4
. : 13,
The coefficientsg;, | = O(Zj 1 gives,
Uo(t)——o(32t6—1205+ 175"~ 126+ 45)
1
o, (t) =-—(64° - 218°+ 260' - 120°
10 el )
7,(t) == (32° - 98° + 95* - 30?) (10)
>0 15

o, (t) = —i(64t6 -168°+ 140° - 40°)
3 45

ag,(t) = 10(326 72%+ 55° - 15)

We then evaluate (9) &t= %(%Jl to give the method of the form (3) where,
T T
Vi = |:yn+l Yo Y.s y"”} Yn = {y:_)l APERAP %)}
4 2 4 2 4

T T
I:(Ym) = |:f +l f +1 f 3 fn+1:| ! f(yn) = |:f 1 f 1 f 3 fn:|
ey oM ey -3 5y

1000
0100
0010
0001

A is a 4x 4 identity matrix given byA® =

Wheni =0:
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0001
0001 4
o001 oo 0-%
©“loooa &7 3
0001 00 O'Z
0001
(3 47 29 -7
128 3840 5760 7680
i -1 1 -1
b, = 10 48 90 480
17 27 3 -9
640 1280 128 2560
4 1 4 0
15 15 45
Wheni =1;
00 o 22t
2880
0001 59
0001 00 0 =
6= d, =
0001 0o o 2
0001 320
00 0o L
90
4 Analysis of the Method

In this section, we shall analyze the basic propertieseofnttthod.

4.1 Order of accuracy and error constant

[ 323

1440
31

51

160
16

45

367
23040
53
1440
147

2560

90

-11
120
1
15
9
40
2
15

According to [18], the linear operator associated with therdte block method (3) is defined as;

L{y(t):h}:A“’Yn‘i’—iHexz)— R d T Y+ (YD)

53 -19 ]
1440 2880
1 -1
90 360
21 -3
160 320
16 7
45 90 |
(11)

Assuming thaty(t) is sufficiently differentiable, we write the terms inlflas a Taylor series expansion
about the point to obtain the expression;
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L{y®:h=¢yd+chy(}+ ch y(Or+.+ ch ¥+ ¢ W ROt g # () (12

where the constant coefficiengs, p=0,1,2,.. are given by;

(13)

C_kl.q_l g1 _953
0 eI R

The block method (3) is said to be of uniform accuraterofd, if P is the largest positive integer for

which Eo 261 =_Cz = :_Cp :_Cp+1= 0,_Q3+2¢ _O Ep+2 is called the error constant and the local
truncation error of the method is given by;
toek = Cproh(P? YP2(1) + O HP?) (14)

It has therefore been established from our computationstitbablock method (3) has coefficients lof
given byCo=C=C=G= G= G= G=0, implying that the order’p:[5 55 qT and the

. . - 7 —eql K
error constant is give bg :[6.4789< 100 15504 10 2.4523 0 3.1002 6J]o.

4.2 Consistency

The hybrid block method (3) is consistent since it hagropi=5>1. According to [19], consistency
controls the magnitude of the local truncation error coneahiéit each stage of the computation.

4.3 Zer o-stability

Definition 4.1 [19]: The block method (3) is said to be zero-stable, ifrtugs Z; S = 12,....K of the first
characteristic polynomiajo(z) defined by p(2) = det(zA” - g) satisfies|ZS| <1 and every root

satisfying|Zs| =1 have multiplicity not exceeding the order of the diffe@ngquation. Moreover, as

h - 0,0(2)= 27*(z 1y, where {{ is the order of the matriceA” and .
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For our method,

1000/ [000
0100 |000
0010/ 000
0001 |000

(15)

p(2) =

Therefore,p(z)= ] — 0 =2z =2 = 2=0, 7Z=1 Hence, the hybrid block method is zero-staltle.

is important to note that the main consequencesas-gtability is to control the propagation of #weor as
the integration proceeds.

4.4 Convergence

The hybrid block method is convergent since itaesistent and zero-stable.
Theorem 4.1[20]

A linear multistep method is convergent if and afiyis stable and consistent.
4.5 Region of absolute stability

Definition 4.2 [21]

Region of absolute stability is a region in the ptem Z plane, wherez = A h. It is defined as those values
of Z such that the numerical solutions yf' = —A'y satisfy y; — 0 as j — oo for any initial condition.

In determining the stability polynomial of our meth the boundary locus method will be adopted. This

gives;
AW =t wo Lt e L g 1123
3686400 4915200 1474560 2211840

—h“(ﬂw3 31 V\/‘J—hz[ 5 +—5§é/\fj+ w-2 w

(16)

9216 92160 192

The stability region is shown in Fig. 1.

Fig. 1. Stability region of the method
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The stability region in the Fig. 1 is A-stable.

5 Implementation, Numerical Experiments and Discussion of Results

5.1 Implementation

The hybrid block method (3) was derived using thee&ific Work Place 5.5 was used to derive theridyb
block method and also to compute the stability poiyial of the method. The method was implemented on
Duffing oscillators with the aid of MATLAB 2015a ggramming language. The stability region was also
plotted using MATLAB.

5.2 Numerical experiments

Three important Duffing equations that find apgiicas in science and engineering in terms of modeli
damp and chaotic systems shall be considered. Efieoch developed in this research shall be impleatkent
on these problems and the results obtained shaflobgpared with those of the existing methods. The
following notations shall be used in the Tableohel

ESS-End point absolute errors obtained in [11].

EBM-Absolute error in [7].

ETG-Absolute error in [5].
Problem 5.1:

Consider the following undamped Duffing oscillatdithe form;

y () + y()+ y' () = BeosQt (17)
with initial conditions,

y(0)=a,y'(0)=0 118
where,

a =0.20042672806B = 0.002= 1.

The exact solution to the problem is

y(t) = i A;.Cod(2+1)Q 1Y) (19)

where,

ALA ~ 1 0.000000000374,0.000000000000

Source: [11].

{A, A, A,,} _ {0.200179477536,0.0024946143, 0.0000003144})
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Problem 5.2:

Consider the undamped Duffing oscillator,

y"(t)+3y(t)+ 2y’ (1) = cost ) sin(2

with the initial conditions,
y(0)=0,y'(0)=1
The exact solution is given by,
y(t) =sin(t)
Source: [7].

Problem 5.3:

Consider the damped Duffing oscillator,

y O+ y O+ y()+ Y () =cos (t)- sint;

whose initial conditions are,
y(0)=1,y'(0)=0
The exact solution is given by,

y(t) =cos )

Source: [5].

(20)

(21)

(22)

(23)

(24)

(25)

Table 1. Comparison of the end-point absolute errorsin [11] with that of the new method developed

for Problem 5.1

h Error ESS

M 8.813783e-013 1.81e-010
500

M 1.114692-01Z 8.02¢-01z
1000

M 2.953554-01z 5.52¢012
2000

M 2.339406e-012 7.28e-012
3000

M 1.859929e-012 6.99e-012
4000

M 1.328992e-012 6.65e-012
5000

Note: M =10in Table 1 above

10
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Table 2. Showing theresultsfor problem 5.2 in comparison with the absoluteerrorsin [7]

t Exact solution Computed solution Error EBM Timels
0.1000 0.0998334166468282 0.0998334166471306 34824213 3.603424e-07 0.0917
0.2000 0.1986693307950612 0.1986693307955197 44884013 1.020596e-05 0.0926
0.3000 0.2955202066613396 0.2955202066612664 77886314 2.357701e-05 0.0930
0.400C 0.38941834230865! 0.38941834230695! 1.692257-01z 9.788940-07 0.093¢
0.5000 0.4794255386042030 0.4794255385996061 4/B@6@12 1.601644e-05 0.0940
0.600C 0.56464247339503! 0.56464247338628! 8.754997-01z 3.106965-05 0.094¢
0.7000 0.6442176872376910 0.6442176872237844 16380811 8.5059594-06 0.0950
0.8000 0.7173560908995227 0.7173560908799302 14989211 2.193132e-05 0.0955
0.900( 0.78332690962748. 0.78332690960228  2.519718-011 3.183986-05 0.096(
1.0000 0.8414709848078964 0.8414709847778973 21989911 3.225774e-05 0.0965

Table 3. Showing theresultsfor problem 5.3 in comparison with the absolute errorsin [5]

t Exact solution Computed solution Error ETG Timels
0.1000 0.9950041652780257  0.9950041652770839 R288013 1x107° 0.1275
0.200C 0.98006657784124. 0.98006657783192( 9.320766-01z g@x10%° 0.128¢
0.3000 0.9553364891256060 0.9553364891018900 20381611 7x10° 0.1290
0.400C 0.92106099400288! 0.92106099396040. 4.248379-011 4x10?° 0.129¢
0.5000 0.8775825618903728 0.8775825618264685 62280811 5x10?° 0.1301
0.6000 0.8253356149096783  0.8253356148233559 &36\B2211 1.7x10% 0.1307

0.7000 0.7648421872844885 0.7648421871762232 15382610 1 06x 10° 0.1312
0.800( 0.69670670934716! 0.69670670921864: 1.285219-01C 3.99x 10% 0.131¢
0.9000 0.6216099682706645 0.6216099681244809 134€1810 1.273x 10” 0.1324
1.0000 0.5403023058681398 0.5403023057074929 16886410 3599« 10 0.1330

5.3 Discussion of results

We implemented the hybrid block method developedhwee modeled Duffing oscillators and from the
results obtained in Tables 1, 2 and 3, it is obwithat the new method developed is more efficiesut the
existing ones with which we compared our results.

6 Conclusion

We have studied some applications of Duffing oatlls and also developed a computational method for
solving such problems using the power series ajpiate solution. The method developed was consistent
convergent, zero-stable and A-stable. This papenetbre recommends the use of this method for rsglvi
not only Duffing oscillators but second order naghr (and linear) differential equations of thenfdd).
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