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ABSTRACT 
 

In this paper we discussed the unsteady flow of an incompressible electrically conducting viscous 
fluid in a rotating porous media, with a variable pressure gradient and in the presence of hall 
current. We have considered three different cases, like impulsive change, cosine and sine 
oscillations of pressure gradient. It is found that, the rotational and Lorentz forces are having 
significant effect on velocity profile in the presence of pressure gradient and hall current. The 
physical significance of various dimensionless parameter’s are discussed analytically and 
numerically on velocity distribution and frictional force.  
 

 
Keywords: MHD flows; unsteady flows; rotating channels; Hall current effects; pressure gradient; 

impulsive change; cosine oscillations and sine oscillations. 
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NOMENCLATURES 
 
u :  The component of the velocity along  the z - axis 
w :  The component of the velocity along  the x - axis  

  :  Fluid density 

 k  :  Permeability of the porous medium,  
 :  Applied magnetic field,  

 :  Coefficient of kinematic viscosity,  
 :  Magnetic permeability,   

P :  Fluid pressure 
h :  Distance between the plates  
E  :  Electric field vector 
 J :  Current density vectors  

 :  The cyclotron frequency 

 :  The electrical conductivity of the fluid,  
H  :  The magnetic field intensity vector, 
 Q :  The velocity vector,  

 :  Electron collision time,  

 :  Hartmann number,  

 :  Darcy parameter (Permeability parameter), 

 :  Rotation parameter,  
 :  Reynolds number and  
 :  Non-dimensional pressure gradient 

 :  Laplace transform of  

 
1. INTRODUCTION  
 
MHD flow can be used to study, assess and 
calculate the positions and velocities with respect 
to a fixed frame of reference, applying its 
magnetic field. The dynamics of geo-physics as a 
field of study has become a vital branch of fluid 
dynamics owing to the enormous work being 
carried to explore the atmosphere. MHD has 
extended its influence even on the studies 
launched in the area of astrophysics, where it                   
is used to study the celestial occurrences                       
like solar storms or even the dynamics                      
working on the stellar, solar structures and                      
the matter present between one planets                       
and the other and between one star and                         
the other. Hide and Roberts [1], gave an 
explanation for the observed continuation and 
secular variation of the geomagnetic field. Also 
Dieke [2] discussed an important in the                      
solar physics mixed up in the sunspot 
development. 
 
A phenomenon (It was discovered by Edwin Hall 
in 1879) that occurs when an electric current 
moving through a conductor is exposed to an 
external magnetic field applied at a right angle, in 
which an electric potential develops in the 

conductor at a right angle to both the direction of 
current and the magnetic field. The Hall effect 
was a direct result of Lorentz forces acting on the 
charges in the current, and was named after 
American physicist Edwin Herbert Hall (1855-
1938). Hall current effect is also indispensable 
when the fluid is an ionized gas with low density 
or we are applying the high range of magnetic 
field. Because the electrical conductivity of the 
fluid will then be a tensor and a Hall current                     
is provoked. Which is likely to be central                          
in many engineering situations has been 
discussed by Sutton and Sherman [3]. The Hall 
effects on the flow of ionized gas between 
parallel plates under uniform transverse 
magnetic field have been premeditated by Sato 
[4]. Nanda and Mohanty [5] considered the 
hydromagnetic rotating channel flows. Datta and 
Jana [6] presented the Hall effects on unsteady 
Couette flow. 
 
Hall effects on hydromagnetic convective                     
flow through a channel with conducting walls is 
given by Datta and Jana [7], they discussed the 
flow nature with non-dimensional parameters. 
Mandal et al. [8] have studied the combined 
effects of rotation and Hall current on steady of 
MHD Couette flow. Mandal et al. [9] discussed 
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the effects of Hall current on MHD Couette flow 
between thick arbitrarily conducting plates. 
Ghosh [10] has analysed the unsteady 
hydromagnetic flow in a rotating channel with 
oscillating pressure gradient. Nagy et al. [11] 
discussed the effects of Hall currents and 
rotational force on Hartmann flow under general 
wall conditions. Kanch et al. [12] discussed the 
Hall Effect on unsteady Couette flow under 
boundary layer approximations. Effects of Hall 
current on MHD Couette flow in a rotating system 
with arbitrary magnetic field have been examined 
by Ghosh [13]. Hall effects on MHD plasma 
Couette flow in a rotating atmosphere have been 
discussed by Ghosh and Pop [14], they 
concluded that the hall current is significant            
effect on the velocity field. Ghosh [15] has                    
been investigated the Hall effects on an                       
MHD Couette flow in a rotating system with 
uninform magnetic field. Hall effects on the 
hydromagnetic convective flow through a rotating 
channel under general wall conditions have been 
discussed by Guria and Jana [16]. Attia [17] 
studied the ion-slip effects on unsteady Couette 
flow with heat transfer under exponential 
decaying pressure gradient. Seth et al. [18] have 
discussed the Hall effects on oscillatory 
hydromagnetic Couette flow in a rotating     
system. Hall effects on an MHD flow in a                   
rotating channel partially filled with a porous 
medium have been examined by Chauhan                     
and Rastogi [19] and Chauhan and Agrawal [20]. 
Jha and Apere [21] discussed the combined 
effects of Hall current and ion-slip current on 
unsteady MHD Couette flow in a rotating        
system. Guchhait et al. [22] have studied                     
the combined effects of Hall current and rotation 
on unsteady Couette flow in a porous channel. 
Das et al. [23] studied Hall effects on MHD 
Couette flow in rotating system. Ghara et al. [24] 
have studied the effects of Hall current and                 
ion-slip on unsteady MHD Couette flow. Also 
Seth et al. [25] investigated the effects of Hall 
current and rotation on unsteady MHD                 
Couette flow in the presence of an inclined 
magnetic field. 
 
Chauhan and Agrawal [26] studied the Hall 
effects on MHD Couette flow in a channel 
partially filled with a porous medium into a 
rotating system. Sarkar et al. [27] have examined 
the combined effects of Hall currents and rotation 
on steady hydromagnetic Couette flow. Nadeem 
et al. [28] discussed the numerical solutions of 
peristaltic flow of a Newtonian fluid under the 
effects of magnetic field and heat transfer in 
porous concentric tubes. Nadeem and Akbar [29] 

discussed the influence of heat transfer and 
variable viscosity in vertical porous annulus with 
peristalsis. Nadeem et al. [30] have investigated 
the influence of heat and mass transfer on 
Newtonian bio-magnetic fluid of blood flow 
throughout a tapered porous artery with a 
stenosis. Akbar and Nadeem [31] discussed the 
simulation of variable viscosity and Jeffrey fluid 
model for blood flow through a tapered artery 
with a stenosis. Akbar and Nadeem [32] 
presented the analytical and numerical analysis 
of Vogel's model of viscosity on the peristaltic 
flow of Jeffrey fluid. Das and Jana [34] discussed 
Hall current effects on unsteady MHD flow of 
viscous incompressible electrically conducting 
fluid through a porous channel in a rotating 
system with variable pressure gradient. Krishna 
and Irfan [36] investigated the unsteady MHD 
flow of Maxwell fluid through a porous medium in 
Rotating parallel plate channel and then 
extended taking hall current into account by 
Krishna and Irfan [35]. Krishna and Neeraja [37] 
discussed Hall currents on MHD flow of a couple 
stress fluid bounded by a porous bed in a planar 
channel on the lower half in occurrence of 
inclined magnetic field. Syamala Sarojini et al. 
[38] thrash out the effect of hall current on 
hydromagnetic flow of a couple stress fluid all the 
way through a porous medium in a channel in 
effect of inclined magnetic field. Raju et al. [39] 
have been studied the hall current effects on 
unsteady MHD three dimensional flow of a 
couple stress fluid through a porous medium in 
parallel plate channel. Recently, Krishna and 
Prakash [40] discussed the hall current effects on 
unsteady hydromagnetic flow in a parallel plate 
channel rotating bounded by porous bed at the 
lower half. Recently, the performance of 
unsteady non-Darcian magnetohydrodynamic 
fluid flow over an impulsively started vertical 
porous surface was investigated by Motsa and 
Animasaun [41]. Animasaun [42] discussed the 
dynamics of unsteady magnetohydrodynamic 
convective fluid flow with radiation and 
thermophoresis of particles past a vertical porous 
plate moving through a binary mixture in an 
optically thin environment. Hooman et al. [43] 
discussed based on slip flow at pore level a 
theoretical model is presented to predict the gas 
permeability and thereby the overall pressure 
drop for flow through a porous medium. 
Turkyilmazoglu [44] obtained explicit analytical 
solutions for the flow of a viscous hydromagnetic 
fluid due to the rotation of an infinite disk in the 
presence of an axial uniform steady magnetic 
field with Hall effects and porosity. Malvandi et al. 
[45] discussed MHD mixed convection in 
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a vertical annulus filled with Al2O3–water nano- 
fluid considering nanoparticle migration. Tavakoli 
et al. [46] study aimed at examining the cooling 
effect of a finned Capillary-Driven heat pipe with 
forced convective heat transfer on an electronic 
board with known heat flux. Also, the effects of 
size and number of fins on the heat transferred 
from the electronic board were studied for 
different power inputs. Mohidul Haque [47] 
discussed a numerical study of thermal diffusion 
effect on a mixed convective heat and mass 
transfer transient flow along a stretching                
sheet with constant heat and mass fluxes is 
completed under the action of a uniform 
magnetic field.  
 
Motivated from the above studies, in this paper, 
we have considered the unsteady flow of an 
incompressible electrically conducting viscous 
fluid in the course of porous medium in a rotating 
system with pressure gradient as a variable and 
taking hall current into account. 
  

2. FORMULATION AND SOLUTION OF 
THE PROBLEM 

 
We have consider the unsteady flow of an 
incompressible electrically conducting viscous 
fluid in the course of porous medium in a rotating 
system between two infinitely long horizontal 
parallel walls separated by a distance h with 
pressure gradient as a variable and taking hall 
current into account. We choose a Cartesian 
frame of reference with the x-axis along the 
channel wall at y = 0. The physical configuration 
of the problem is as shown in Fig. 1. A uniform 
transverse magnetic field H0 is applied 
perpendicular to the channel walls. Since the 
channel walls are infinite in extent and the flow is 
unsteady, the physical variables are the function 
of y and t only. The unsteady boundary layer 
equations for the flow through a loosely porous 
medium along x and z-directions in a                   
rotating frame of reference using Brinkman 
model are 
 

0 2
2

e z o
2

μ J Hu u 1 p u
v w u

t y ρ x ky


 



   
      

   
 (1) 

 

0 2
2

e x o
2

μ J Hw w w
v u w

t y ky


 



  
    

  
    (2) 

 
The initial and boundary conditions are 
 

0 0 0 0u ,w , t , y h                          (3) 

hyytvvwu  and0,0,,0,0
0

 (4) 

 
The generalized Ohm's law comes essentially 
from the momentum equation of motion for the 
electron fluid. Its derivation can be found in some 
plasma physics books. It can be written, on 
taking Hall currents into account and neglecting 
ion-slip and thermo-electric effect, as (Cowling 
[33]) 
 

) ( )e e
e

0

ω τ
J ( J H σ E μ q H

H
                  (5) 

 

 
 

Fig. 1. Physical Geometry of the problem 

 
The right hand side is the electric field in the 
moving frame. The first term on the left hand side 
comes from the electron drag on the ions. The 
second term is the Hall term and has to do with 
the idea that electrons and ions can decouple and 
move separately. The magnetic Reynolds number 
assumed small, so that the induced magnetic 
field effect is negligible in comparison with 
applied magnetic field. The electron atom 
collision frequency is relatively high as compared 
to the ion collision frequency, due to this the 
electron pressure gradient is neglected but, Hall 
Effect remains present. The relation 0.H   for 
magnetic field implies

0yH H  constant, every- 

where in the fluid. Further, the equation of the 
conservation of the current density is 0.J  , 

gives yJ   constant. This constant is zero since 

0yJ   at the plates which are electrically non-

conducting. Thus 0yJ   everywhere in the flow. 

Since the induced magnetic field is neglected, 

Maxwell's equation becomes 0E    which 

implies 0xE

y





and 0zE

y





. That is

xE = constant 

and zE = constant everywhere in the flow.  In 

view of the above assumption, the equation (5) 
gives 
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x z e 0J m J σμ H   w                            (6) 

 

z x e 0J m J σμ H u                           (7) 

 

We solve the equations (6) and (7), and get  

0
2
( )

1

e
x

σμ H
muJ w

m
 


            (8) 

 

0
2
( )

1

e
z

σμ H
J u mw

m
 


             (9) 

 
On Making use of (8) and (9), the momentum equations (1) and (2) along x- and z-directions become 
 

2 2
0

0 2
2 ( )

ρ(1 )

2
e

2

σμ Hu u 1 p u
v w u mw u

t y ρ x ky m


 

   
       

    
                                                    (10)  

 
2 2

0
0 2 2

2 ( )
ρ(1 )

2
eσμ Hw w w

v u w- mu w
t y ky m


 

  
    
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                                                                 (11)  

 
We introduce the non-dimensional variables 

 
2 2

2 2

* * * * * * * *x y uh wh qh t h ph
x , y , u ,w , q , t , , p

h h h

 


    
         

 
Making use of non-dimensional variables, the equations (10) and (11) becomes to (dropping asterisks) 

 
2 2

2
2 2

2 ( )
1

u u u M
Re K w f ( t ) u mw Du

t y y m

  
      

   
                                                           (12) 

  
2 2

2

2 2
2 ( )

1

w w w M
Re K u w mu Dw

t y y m

  
     

   
                                                                     (13) 

 
Where  

2 2 2
2 0eσμ H h

M
ρ

 is The Hartmann Number,  

 e em     the Hall Parameter, 

2

k
D

h
   the Darcy Parameter (Permeability Parameter), 

2 2
2 h

K



  the Rotation Parameter,  

0v h
Re


   the Reynolds Number And  

1 p
f(t)

ρ x


 


 the Non-Dimensional Pressure Gradient. 

  
Corresponding non-dimensional initial and boundary conditions are 

 
10,0,0,0  ytwu                                                                                (14) 

 

1and0,0,0,0  yytwu                                                                      (15)  
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Combining equations (12) and (13), Let and 1q u iw i    , we get the momentum equation in 

terms of complex velocity q where, u is the velocity along the x-direction and w is the velocity along 
the z-direction, is given as   
 

2 2
2

2
2

1

q q q M
Re f ( t ) iK D q

t y imy

   
           

                                                      (16) 

 
The initial and boundary conditions are 
 

0 0 0 1q , t , y                                                                                                        (17) 

 
0 0 0 and 1q , t , y y                                                                                                    (18) 

 
 Taking the Laplace transform of the equation (16), we have 
  

2 2
2

2
2

1

d q d q M
Re iK D q f ( s )

dy imdy

 
       

                                                      (19) 

 
The transformed boundary conditions are  
 

(0 ) 0 and (1 ) 0q ,s , q ,s                                                                                              (20) 

 
The solution of the equation (19) subjected to the boundary conditions (20) are given by 
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2
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Where   is the frequency of oscillations;

0
P ,

1P and 
2P are real constants. Taking the inverse 

Laplace transforms to the equation (21), and we obtain the solution for the complex velocity q as,  
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In the equation (23), the lower sign is valid for  
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2 . The equation (23) represents the velocity of the fluid in the general case. 

Now we shall consider the following special cases. 
 

2.1 Velocity Distribution for Impulsive Pressure Gradient 
 
In this case 021  PP , then the equation (23) reduces to    
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2.2 Velocity Distribution for Cosine Oscillations of Pressure Gradient 
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2.3 Velocity Distribution for Sine Oscillations of Pressure Gradient 
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For the impulsive change of pressure gradient, the non-dimensional shear stresses at the wall 0y  

are given by 
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For the cosine oscillations of pressure gradient, the non-dimensional shear stresses at the wall 0y  

are given by 
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For the sine oscillations of pressure gradient, the non-dimensional shear stresses at the wall 0y  

are given by 
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3. RESULTS AND DISCUSSION 
 

We have considered the unsteady flow of an 
incompressible electrically conducting viscous 
fluid in the course of porous medium in a rotating 
system with pressure gradient as a variable and 
taking hall current into account. We have 
computed three different cases based on our 
study of impulsive change, cosine and sine 
oscillations of pressure gradient. In this aspect, 
we have analytically and computationally solved 
the decisive equations by applying Laplace 
transform technique. It has been successfully 
established that the flow behavior is determined 
owing to the mutual influence of coriolis force 
and hydromagnetic force on each other under 
the purview or monitoring of pressure gradient 
and hall current. The flow governed by the non-
dimensional parameters for the velocity 
components u and w with different values of 
magnetic parameter M, Hall parameter m, 
rotation parameter K, Reynolds number Re, D 
the permeability parameter, frequency parameter 
  and phage angle t   in Figs. (2-39). Figs. 
(2-11) represent the velocity profiles for impulsive 
pressure gradient; (12-25) represent the velocity 
profiles for cosine oscillations of pressure 
gradient, where as the Figs. (26-39) represent 
the velocity profiles for sine oscillations of 
pressure gradient. Here we observe that, all the 
profiles are on negative sides for w. Negative 
velocity just means velocity in the opposite 
direction than what would be positive. This will 
attained only with effect pressure gradient in 
pertinent directions of the flow field.  

We have perceived from Figs. (2, 12 and 26) that 
the velocity component u enhances with add to 
Hartmann number M with the impulsive change 
of pressure gradient, and The velocity 
component w less for the cosine oscillations of 
while it raises with impulsive change and sine 
oscillations with an augment in magnetic 
parameter M, given in Figs. (3, 13 and 27). As 
expected due to the fact that the application of 
transverse magnetic field results to a resistive 
type force (called Lorentz force) similar to drag 
force and upon increasing the values of magnetic 
parameter, the drag force increases which leads 
to the deceleration of the flow. It is seen from 
Figs. (4, 14 and 28) that the primary velocity u 
increases with an increase in Hall parameter m 
for sine oscillations of the pressure gradient while 
it reduces for the impulsive change and cosine 
oscillations of the pressure gradient. Hence, we 
conclude that an increase in Hall parameter 
reduces the Lorentz force in x-direction and 
motion of the fluid particles is reinforced in that 
direction. Figs. (5, 15 and 29) shows that the 
secondary velocity w increases for the cosine 
and sine oscillations of the pressure gradient 
while it decreases for impulsive change of the 
pressure gradient with an increase in Hall 
parameter m. As reported in numerous MHD 
studies, this velocity component is a result of the 
Hall current effects. It is seen from Figs. (6, 7, 16, 
17, 28 and 29) that the primary velocity u and the 
secondary velocity w decreases for cosine 
oscillations of the pressure gradient, while 
primary velocity u increases and w reduces 
throughout the fluid region with an increase in 
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rotation parameter K for impulse change, the 
reversal behaviour is observed for sine 
oscillations of the pressure gradient. The rotation 
parameter defines the relative magnitude of the 

Coriolis force and the viscous force in the 
regime; therefore it is clear that high magnitude 
Coriolis forces are counter-productive for the 
primary flow. 

 

 
 

Figs. 2 and 3. The velocity profiles for u and w against M with
10,1.0,1,2Re,2,1 0  PtmKD  

 

 
 

Figs. 4 and 5. The velocity profiles for u and w against m with 
10,1.0,2,2Re,2,1

0
 PtMKD  

 

 
 

 Figs. 6 and 7. The velocity profiles for u and w against K with
10,1.0,2,2Re,1,1 0  PtMmD
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Figs. (8, 18 and 32), we noticed that the primary 
velocity u decreases with an increase in 
Reynolds number Re for the impulsive                 
change, while it increases with an increase in 
Reynolds number Re for cosine oscillations of 
the pressure gradient, the magnitude of the 
velocity component w enhances initially for 

2.0y  and then gradually reduces for 

14.0  y  with an increase in Reynolds      

number Re for sine oscillations of the pressure 
gradient. 
 

From the Figs. (9, 19 and 33) it is observed that, 
the secondary velocity w increases for the 
impulsive change while it decreases for sine 
oscillations of the pressure gradient with an 
increase in Reynolds number Re. Similarly, the 
magnitude of the velocity component w 
enhances initially for 2.0y  and then gradually 

reduces for 12.0  y  with an increase in Re 

with cosine oscillations. It is noticed from the 
Figs. (10, 20 and 34) that, the primary velocity u 
amplify with an increase in permeability 
parameter D for the impulsive change, cosine 
and sine oscillations. Likewise from Figs. (11, 21 
and 35) that the secondary velocity w reduces 
with an increase in permeability parameter D for 
sine oscillations while it raises for impulsive 
change and cosine oscillations. The primary 

velocity u increases with   for cosine 
oscillations, whereas the velocity u develops for 

6&4,2  and then experiences retardation 

for 8 , sine oscillations given Figs. (22 and 
36). It is also observed from the Figs. (23 and 
37), the magnitude of the secondary velocity w 
diminishes for the sine oscillations while u 
enhances for 6&4,2  and then experiences 

retardation for 8  with cosine oscillations 

with raise in frequency parameter .  

 

 
 

Figs. 8 and 9.  The velocity profiles for u and w against Re with
10,1.0,1,2,2,1 0  PtmMKD  

 

 
 

Figs. 10 and 11. The velocity profiles for u against D with 
10,1.0,1,2,2,2Re 0  PtmMK  
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Finally we have noticed from Figs. (24 and 38) 
that, the magnitude of the primary velocity u 
decreases with an increase in phase angle t  

for both cosine and sine oscillations of the 
pressure gradient. From Figs. (25 and 39), we 
noticed that the magnitude of the secondary 
velocity w diminishes for cosine oscillations of 
the pressure gradient while it raises for sine 
oscillations of the pressure gradient with increase 

in phase angle t . The magnitudes of the 

velocities for cosine are more effective than sine 
oscillations of the pressure gradient. The best 
results are obtained to compare with Das et al. 
[23, 24 & 34]. The results are coincide with Das 
and Jana [34] when 0D, m .  Hall effect and 

variable pressure gradient shown the impact on 
the primary and secondary velocity of the fluid 
flow and verified for m tends to zero. 

 

 
 

Figs. 12 and 13. The velocity profiles for u and w against M with
5,1.0,4/,2,1,2Re,2,1 21  PPttmKD   

 

 
 

Figs. 14 and 15. The velocity profiles for u and w against m with
5,1.0,4/,2,2,2Re,2,1

21
 PPttMKD   

  

 
 

Fig. 16 and 17. The velocity profiles for u and w against K with         
5,1.0,4/,2,2,2Re,1,1 21  PPttMmD   
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Figs. 18 and 19. The velocity profiles for u and w against Re with 
5,1.0,4/,2,1,2,2,1

21
 PPttmMKD   

 

 
 

Figs. 20 and 21. The velocity Profiles for u and w against D with 
5,1.0,4/,2,1,2,2,2Re 21  PPttmMK   

 

 
 

Figs. 22 and 23. The velocity Profiles for u and w against   with                                                    
5,1.0,4/,1,2,1,2,2Re

21
 PPttmMDK   

 

 
 

Figs. 24 and 25. The velocity profiles for u and w against t  with
5,1.0,2,1,2,2,2Re

21
 PPtmMK   
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The non-dimensional shear stresses x  and z  

have been calculated at the wall ( 0y ) due to 

the primary and the secondary flows are 
presented in Tables (1-3) and computationally 
discussed with reference to governing 
parameters. We notice that the shear stresses 

x  and z  due to the primary and secondary 

flow at the wall 0y  reduce for the impulsive 

change, cosine and sine oscillations of the 
pressure gradient with raise in M. The shear 

stress x  due to the primary flow at the wall 

0y  reduces for both impulsive change and 

cosine oscillations while it enhances for sine 
oscillations of the pressure gradient with raise in 
hall parameter m. The magnitude of the shear 

stress z  due to the secondary flow at the wall 

0y  increases for the impulsive change, 

cosine and sine oscillations of the pressure 
gradient with an augment in m. The magnitude of 

the shear stress x  due to the primary flow 

diminishes for the impulsive change and cosine 
oscillations. Also it enhances for sine oscillations 
of the pressure gradient with add to in K or D. It 

is found that the shear stress z  decreases for 

both impulsive change and cosine oscillations of 
the pressure gradient while it increases for sine 
oscillations of the pressure gradient with an 
increase in K and D. The magnitude of the shear 

stress x  reduces for small values of magnetic 

parameter M and then it enhances for the 
impulsive change, cosine and sine oscillations of 
the pressure gradient with an increase in Re. The 

magnitude of the shear stress z  enhances for 

both impulsive change and cosine oscillations of 
the pressure gradient while it decreases for sine 
oscillations of the pressure gradient with an 

increase in Re. The shear stress x  enhances 

for small values of M and then it decreases                   
for cosine and sine oscillations of the               
pressure gradient with a raise in frequency 
parameter  .  

 

 
 

Figs. 26 and 27. The velocity profiles for u and w against M with                   
5,1.0,4/,2,1,2Re,2,1 21  PPttmKD   

 

 
 

Figs. 28 and 29. The velocity profiles for u and w against m with                         
5,1.0,4/,2,2,2Re,2,1

21
 PPttMKD   
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The shear stress z  enhances for small                 

values of magnetic parameter M and                          
then it decreases for cosine oscillations                       
while opposite nature for sine oscillations                      
of the pressure gradient with an increase in  . 

The shear stress x  diminishes for both               

cosine and sine oscillations with increment in 

phase angle t . The shear stress z  decreases 

for cosine oscillations and increases for                   
sine oscillations for enhancement in phase angle

t .  

 

 
 

Figs. 30 and 31. The velocity profiles for u and w against K with          
5,1.0,4/,2,2,2Re,1,1 21  PPttMmD   

 

 
 

Figs. 32 and 33. The velocity profiles for u and w against Re with       
5,1.0,4/,2,1,2,2,1

21
 PPttmMKD   

 

 
 

Figs. 34 and 35. The velocity profiles for u and w against D with                     
5,1.0,4/,2,1,2,2,2Re

21
 PPttmMK   
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Figs. 36 and 37. The velocity profiles for u and w against   with         
5,1.0,4/,1,2,1,2,2Re

21
 PPttmMDK   

 
Table 1. The shear stresses at the wall 0y  with impulsive pressure gradient 

 

M m K Re D 
x

  
z  

2 1 2 2 1 0.920545 0.566585 
5 1 2 2 1 0.755471 0.510225 
8 1 2 2 1 0.544854 0.478845 
2 2 2 2 1 0.844758 0.655482 
2 3 2 2 1 0.744855 0.685956 
2 1 4 2 1 0.901254 0.522142 
2 1 6 2 1 0.887459 0.500214 
2 1 2 4 1 0.785540 0.788548 
2 1 2 6 1 0.678801 0.966569 
2 1 2 2 2 0.855852 0.704458 
2 1 2 2 3 0.648878 0.800145 

 
Table 2. The shear stresses at the wall 0y  with cosine oscillations of pressure gradient 

 

M m K Re D   t  x
  

z  

2 1 2 2 1 2 4/  0.814025 0.662152 

5 1 2 2 1 2 4/  0.755845 0.622154 

8 1 2 2 1 2 4/  0.681452 0.596655 

2 2 2 2 1 2 4/  0.755845 0.688542 

2 3 2 2 1 2 4/  0.700122 0.665225 

2 1 4 2 1 2 4/  0.722459 0.604252 

2 1 6 2 1 2 4/  0.622546 0.541125 

2 1 2 4 1 2 4/  0.788458 0.725546 

2 1 2 6 1 2 4/  0.688982 0.788544 

2 1 2 2 2 2 4/  0.699885 0.755066 

2 1 2 2 3 2 4/  0.588987 0.822103 

2 1 2 2 1 4 4/  0.998702 0.702254 

2 1 2 2 1 6 4/  1.225473 0.722546 

2 1 2 2 1 2 6/  0.885442 0.622352 

2 1 2 2 1 2 3/  0.745582 0.600214 
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Figs. 38 and 39. The velocity profiles for u and w against t  with

5,1.0,2,1,2,2,2Re 21  PPtmMK   

 

Table 3. The shear stresses at the wall 0y  with sine oscillations of pressure gradient 

 

M m K Re D   t  x
  

z  

2 1 2 2 1 2 4/  0.356636 0.278843 
5 1 2 2 1 2 4/  0.322546 0.255655 
8 1 2 2 1 2 4/  0.299555 0.233652 
2 2 2 2 1 2 4/  0.366526 0.288548 
2 3 2 2 1 2 4/  0.377458 0.299666 
2 1 4 2 1 2 4/  0.388546 0.296585 
2 1 6 2 1 2 4/  0.399658 0.322145 
2 1 2 4 1 2 4/  0.321021 0.222541 
2 1 2 6 1 2 4/  0.301332 0.201145 
2 1 2 2 2 2 4/  0.366525 0.325266 
2 1 2 2 3 2 4/  0.377785 0.350021 
2 1 2 2 1 4 4/  0.255466 0.254025 
2 1 2 2 1 6 4/  0.221455 0.313365 
2 1 2 2 1 2 6/  0.422515 0.352662 
2 1 2 2 1 2 3/  0.333256 0.399685 

 

4. CONCLUSIONS 
 
We have considered the unsteady flow of an 
incompressible electrically conducting viscous 
fluid in the course of porous medium in a rotating 
system with pressure gradient as a variable and 
taking hall current into account. The conclusions 
are made as follows. 
 

1. The velocity component for primary flow 
enhances with increasing M, K and D, and 
reduces with m, Re for the impulsive 
change of pressure gradient.  

2. The velocity component for secondary flow 
enhances with increasing M, Re and D, 
and reduces with m and K for the impulsive 
change of pressure gradient. 

3. The velocity component for primary flow 

increases with increasing Re, D and , 

and reduces with M, m, K and phase angle 
t  for the cosine oscillations of pressure 

gradient. 
4. The velocity for primary flow increases with 

increasing m and D, and reduces with M, K 

and phase angle t  for the sine 

oscillations of pressure gradient. 
5. The magnitude of the velocity for primary 

flow and for secondary flow enhances 
initially and then gradually reduces with an 
increase in Reynolds number Re for sine 
and cosine oscillations of the pressure 
gradient respectively. 

6. The velocity for secondary flow enhances 
with increasing M, m, K and phase angle

t , and reduces with increase in Re, D 

and frequency of oscillation   for the 
impulsive change of pressure gradient. 
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7. The magnitude of x  due to the primary 

flow decreases for the impulsive change 
and cosine oscillations with increment in 
M, m, Re, K and D. For secondary flow it 
reduces for K and M and increases for m, 
Re and D. 

8. Both the stresses enhance with increase in 
m, K and D; and reduce with increase in M 
or Re for sine of the pressure gradient. 

9. The shear stress x  increases for petite 

values of M and then it reduces for cosine 
and sine oscillations of the pressure 
gradient with an increase in frequency 

parameter .  

10. The stress z  enhances and then it 

reduces for cosine oscillations. Whereas it 
initially decreases and then boosts for sine 
oscillations of the pressure gradient with 

an increase in . 
11. Finally, the rotational and Lorentz forces 

are having significant effect on velocity 
profile in the presence of pressure gradient 
and hall current. 
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