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Abstract

Strongly lensed quasar systems with time delay measurements provide “time delay distances,” which are a
combination of three angular diameter distances and serve as powerful tools to determine the Hubble constant H0.
However, current results often rely on the assumption of the ΛCDM model. Here we use a model-independent
method based on Gaussian process to directly constrain the value of H0. By using Gaussian process regression, we
can generate posterior samples of unanchored supernova distances independent of any cosmological model and
anchor them with strong lens systems. The combination of a supernova sample with large statistics but no
sensitivity to H0 with a strong lens sample with small statistics but H0 sensitivity gives a precise H0 measurement
without the assumption of any cosmological model. We use four well-analyzed lensing systems from the state-of-
art lensing program H0LiCOW and the Pantheon supernova compilation in our analysis. Assuming the universe is
flat, we derive the constraint H0=72.2±2.1 km s−1 Mpc−1, a precision of 2.9%. Allowing for cosmic curvature
with a prior of Ωk=[−0.2, 0.2], the constraint becomes = -

+ - -H 73.0 km s Mpc0 3.0
2.8 1 1.

Unified Astronomy Thesaurus concepts: Hubble constant (758); Cosmological parameters (339); Strong
gravitational lensing (1643); Dark energy (351)

1. Introduction

The standard cosmological model of ΛCDM has achieved
great successes in explaining a wide array of cosmological
observations, including the expansion history from distances
of SNe Ia and baryon acoustic oscillations (BAOs), the
cosmic growth history from galaxy surveys, and the cosmic
microwave background (CMB). However, there are some
discrepancies, the clearest of which is the value of the Hubble
constant H0 as measured locally, from SNe Ia calibrated by
Cepheid variable stars (Riess et al. 2019) or the tip of the red
giant branch of stars (Freedman et al. 2019), and as derived
cosmologically, from CMB (Planck Collaboration et al.
2018) or BAOs with or without CMB or indeed any early
universe information (Addison et al. 2018; Cuceu et al. 2019;
Macaulay et al. 2019).

Note that the cosmological estimation of H0 is not a direct
measurement but a derivation as one of a number of
cosmological model parameters. Usually the model assumed
is the ΛCDM when inferring H0. Therefore, the discrepancy
reveals either new physics beyond the standard model or
unknown systematic errors in the observations. To better
understand this tension problem, one may use new cosmolo-
gical approaches to determine H0 model-dependently or even
model-independently. For example, gravitational wave events
from inspiraling compact objects plus their electromagnetic
counterparts are very promising for an alternate local direct
measurement(Abbott et al. 2017).

Strong gravitational lensing systems with time delays offer a
method for cosmological determination of H0 that is partly
direct (time delays are proportional to 1/H0) and partly derived
from a cosmological parameter fit, but independent of both the
local and the early universe. A typical system consists of a

lensed quasar at cosmological distance, lensed by a foreground
elliptical galaxy, forming multiple images of the active galactic
nucleus (AGN) and the arcs of its host galaxy. With years of
monitoring on the AGN light curves, one can measure the time
delay between any two images corresponding to different
paths, due to the geometric and Shapiro effects following the
Fermat principle. The time delay thus depends on both the
geometry of the universe and the gravity field of the lens galaxy
(lensing potential).
With ancillary data to measure the lensing potential, for

example high-resolution imaging, stellar dynamic measure-
ments, and line-of-sight environment measurements, we
can measure the geometry of the universe in terms of the
“time delay distance” DΔt. This is a ratio of three angular
diameter distances, and depends on H0 and also other
cosmological parameters. In this way strong lensing has been
used to determine H0. The lensing program H0LiCOW (Suyu
et al. 2017) with the Hubble Space Telescope can measure
DΔt with several percent precision for each system, from
percent level measurements of both time delays and lens
modeling.
With only four well-measured systems, they constrained H0

with 3% precision in a flat ΛCDM model(Birrer et al. 2019),
and looser precision in other cosmological models where the
dark energy equation of state is allowed to differ from −1. A
more ambitious aim(Suyu et al. 2017) is to measure H0 within
1% uncertainty such that the current tension may be
investigated with high statistical significance. Though the
measured H0 would be very important for the community, it is
worth noting that these measurements rely on assuming certain
cosmological models. In Taubenberger et al. (2019), they found
that the results could be stable with respect to different models
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when combining strong lensing with SNe Ia as another
cosmological probe.6

The Inverse distance ladder method(Aubourg et al. 2015;
Cuesta et al. 2015) provides a more model-independent way to
infer H0. The idea is to anchor the relative distances from SNe
Ia with the absolute distance measurements from other
cosmological approaches. In this work, we propose a model-
independent approach to determining H0 using a Gaussian
process (GP) and by anchoring the SNe Ia with strong lensing.
This combines the strengths of each technique: the large sample
of SNe constrains the individual distances, freeing the smaller
sample of strong lenses to lock down H0 from the distance
ratio. Having H0 determined in this way could be more direct
and informative for understanding the Hubble tension problem
because the results are not biased by any model or parametric
assumption—and are independent of both the local universe
and the very high redshift, early universe. This gives a new
angle on the problem.

We should note that a recent work by Collett et al. (2019)
used SNe Ia and strong lensing to determine H0 by
implementing fourth-order polynomial fitting to the supernovae
data. Comparison of our results will be interesting, especially
because using parametric approaches such as polynomial fitting
to different cosmology data can be prone to issues such as
instabilities (e.g., see Jönsson et al. 2004; Shafieloo et al. 2006;
Shafieloo 2007; Holsclaw et al. 2010a, 2010b, 2011;
Shafieloo 2012; Shafieloo et al. 2012). It is therefore useful
to crosscheck, especially as using model-independent or non-
parametric reconstruction approaches, as we do in this work,
reduces potential bias from the forms of the parametric or
model assumptions.

This Letter is organized as follows. In Section 2 we
introduce the time delay cosmology and the latest lensing
data. Then we combine lensing and SNe Ia to give a model-
independent constraint on H0 in Section 3. We summarize and
make discussions in Section 4. Throughout this Letter, we use
the natural units of c=G=1 in all equations. H0 in units of
km s−1 Mpc−1 will be recovered in the results.

2. Time Delay Distances from Lensing

According to the theory of strong lensing, the time delay
between two images of the AGN is determined by both the
geometry of the universe and the gravity field of the lens galaxy
through

( ) ( )xfD = DDt D , 1t lens

where [( ) ( ) ( ) ( )]q b q q b qf y yD = - - - - +2 2A A B B
2 2

is the difference of Fermat potentials at two images, qA and qB

denote the angular positions of the images, while b denotes the
position of the source (supposing it is unlensed). ψ is the two-
dimensional lensing potential via the Poisson equation
∇2ψ=2κ, where κ is the surface mass density of the lens in
units of critical density Σcrit=Ds/(4π DlDls). Assuming a lens
model, Δf is determined by the parameters xlens therein. DΔt is

the “time delay distance” formed from three angular diameter
distances:

( ) ( )= +DD z
D D

D
1 , 2t l

l s

ls

where l, s stands for lens and source, respectively. Note that
DΔt is primarily sensitive to H0, providing a powerful and
independent way to determine it.
The Δt can be measured by comparing the light curve shift

of the two AGN images. With current techniques and the
quality of the light curves, the precision of Δt can be up to
percent levels (see, e.g., Tewes et al. 2013 among many
others). The upcoming Large Synoptic Survey Telescope
(LSST) will discover thousands of lensed quasars, some of
which will have well-measured light curves. The Time Delay
Challenge(Liao et al. 2015) showed about 400 systems will
have robust time delay measurements with average precision
3%, making time delay cosmography very promising. Mean-
while, the Fermat potentials can be measured by high-
resolution imaging from space telescopes or ground-based
adaptive optics, together with the stellar dynamics and the
structure along the line of sight. The precision of Δf is
comparable with that of Δt, resulting in few percent level
determination of DΔt for each system.
The state-of-art lensing project H0LiCOW aims at measuring

H0 with precision 1% based on a small sample of well-
observed lenses in the near future. Currently, under a flat
ΛCDM model, they get a result with 3% precision including
systematics, from only four lenses: RXJ1131-1231, HE 0435-
1223, B1608+656, and SDSS 1206+4332. Table 1 lists the
lens and source redshifts for these systems. The data from
another two lenses should also be released soon(Chen et al.
2019; Rusu et al. 2019; Wong et al. 2019). The posteriors of
the time delay distances for the four lenses are given in the
H0LiCOW papers and website.7 For the first three of them, the
posterior probability distributions of DΔt are described by
the following analytic fit:

( )
( )

[ ( ) ]

( )

⎧⎨⎩
⎫⎬⎭p l s

l m
s

=
-

-
- -

DP D
x

x1

2
exp

ln

2
,

3

t
D D

D D

D

2

2

where ( )= Dx D 1 Mpct and the parameters (λD, σD, μD) can
be found in Table 3 of Bonvin et al. (2017). For the fourth lens
SDSS 1206+4332, the posterior is given in the form of the
Markov chain Monte Carlo (MCMC; Birrer et al. 2019).
However, as the angular distances depend on the cosmolo-

gical model, the time delay distances also change in different
cosmological models. The value of H0 can then vary
considerably between models. Taubenberger et al. (2019)

Table 1
Lens and Source Redshifts for the Four Strong Lens Systems Ordered by

Distance (see Taubenberger et al. 2019 and the References Therein)

Order Name zL zS

1 RXJ1131-1231 0.295 0.654
2 HE 0435-1223 0.4546 1.693
3 B1608+656 0.6304 1.394
4 SDSS 1206+4332 0.745 1.789

6 One might wonder whether some of this could possibly be due to using JLA
SNe data in some tension with lensing data, such that their combination pulled
in on ΛCDM where all the models considered were similar. Wong et al. (2019)
did find that using Pantheon data increased the spread in the mean H0 value
from flat ΛCDM to flat w0waCDM from 0.6 for JLA to 1.4 for Pantheon, which
is still not significant compared to the uncertainties. 7 http://www.h0licow.org
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claim to achieve stable results for H0, i.e., insensitive to
cosmological model, by using strong lensing to anchor SN Ia
data. However, that analysis was still within a set of
cosmological models. Furthermore, it used the joint light-curve
analysis (JLA) supernovae data, which mildly prefer a dark
energy equation of state > -w 1 (see Figure 16 of Betoule
et al. 2014), while strong lenses mildly prefer w<−1 (Wong
et al. 2019). The combination therefore may lie close to the
cosmological constant w=−1 where the models they consider
are equivalent. Thus, it is useful to try a model-independent
analysis for H0, with the more recent Pantheon supernovae
data set.

3. Methodology and Results

SNe Ia observations led to the discovery of cosmic
acceleration. They are incisive probes of cosmology through
determining the shape of the cosmic distance-redshift relation.
That is, they determine distances in a relative sense, but
the absolute distance is convolved with a combination of the
absolute magnitude of SNe Ia and the Hubble constant. The
SNe data can be combined with (“anchored by”) an absolute
distance probe (for example Cepheid variable stars, the tip of
the red giant branch stars, or gravitational wave sirens in the
local universe) to form an absolute distance probe. In addition,
absolute distance probes at cosmological distances, e.g., strong
lens systems, can anchor SN. This greatly benefits the leverage
of the absolute probe in constraining cosmology because SNe
tend to be much more numerous as well as very good probes of
dark energy properties, mapping a wide range of cosmic
expansion history. Thus the combination of strong lensing time
delays and SNe can determine both H0 and the cosmic
expansion history.

3.1. Data and Method

For the SNe data we use the most recent and largest data set,
the Pantheon compilation (Scolnic et al. 2018). To combine the
Pantheon SNe and the H0LiCOW strong lenses data sets, we
generate a posterior sampling of the H0-independent quantity
H0D

L(z) from the Pantheon data set. To do the posterior
sampling in a manner independent of a cosmological model, we
use GP regression(Holsclaw et al. 2010a, 2010b, 2011;
Shafieloo et al. 2012, 2013). The GP regression used here is
based on the GPHist code (Kirkby & Keeley 2017) first used
in Joudaki et al. (2018). GP regression works by generating a
family of functions over an infinite dimensional function space
as determined by a kernel. We use

( ) ( ) { [ ( ) ( )] ( )} ( )g g sá ñ = - -z z s z s z ℓexp 2 , 4f1 2
2

1 2
2 2

where σf and ℓ are hyperparameters, respectively characterizing
the amplitude of variations with redshift and their correlation
scale. The hyperparameters play important roles for both
physical insight and error control, and must be fit or not fixed.
The priors on the GP hyperparameters are scale-invariant, i.e.,
flat in the log of the hyperparameters. Because the dimension-
ality of the hyperparameters is small, we directly integrate over
the hyperparameters.

We then use GP on the SNe data to generate expansion
histories H(z)/H0 where ( ) ([ ( ) ] [ ( )) ])g =z H z H H z Hln fid

0 0 .
Here ( )H z Hfid

0 is taken to be the best-fit ΛCDM model for
the Pantheon data and serves the role of the mean function for
GP regression. Such prewhitening is standard practice and

extensive tests show the resulting median inference does not
depend on the details of the mean function (Shafieloo et al.
2012, 2013; Aghamousa et al. 2017). With H(z)/H0 in hand,
we can calculate the unanchored SNe luminosity distances

( ) ( ) [ ( ) ]

( )

⎡
⎣⎢

⎤
⎦⎥ò= + W W ¢ ¢-H D z z dz H z H1 sinh ,

5

L
k k

z

0
1 2 1 2

0
0

(where sinh is a complete function valid for all signs of
Ωk) and any corresponding angular diameter distances

( )= +H D H D z1A L
0 0

2 we will need later for the strong
lensing systems, where Ωk=1−Ωtotal is the curvature energy
density in units of the critical density. The likelihood of how
well these SNe distances fit the Pantheon data are then used as
weights in randomly selecting 1000 samples used for DA in the
strong lens analysis.
Example GP curves are shown in Figure 1. The data is dense

and precise enough to provide a well-constrained distance-
redshift relation. The spread is about 2% at z=1, and the GP
is not constrained to follow the input mean function—in fact, it
deviates from it by about 1.5% at z=1. Note that the GP
covers the full range of the strong lensing system redshifts so
there is no extrapolation needed.
To summarize the method for constraining H0:

1. Draw 1000 unanchored luminosity distance curves H DL
0

from the GP fit to the SNe data, and convert to
unanchored angular diameter distances H0D

A;
2. Evaluate the values of each of the 1000 H0D

A curves at
the lens and source redshifts of the four strong lens
systems to calculate 1000 values of H0DΔt for each
system using ( )( )( ) ( )= +DH D z H D H D H D1 ;t l l s ls0 0 0 0

3. Compute the likelihood, for each of the 1000 realizations,
from the H0LiCOW’s DΔt data for each lens system for
many values of H0;

4. Multiply the four likelihoods to form the full likelihood
for each realization, for each value of H0;

5. Marginalize over the realizations to form the posterior
distribution of H0.

Figure 1. Unanchored luminosity distance ( )H D zL
0 reconstructed from the

SNe data is plotted vs. redshift for a representative sample of the 1000 GP
realizations.
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Note that to obtain the angular diameter distance between the
lens and the source we use the standard distance relation
(Weinberg 1972)

( ) ( )

( ) ( ) ( )

= + W +

-
+
+

+ W +

D D z H D

z

z
D z H D

1 1

1

1
1 1 . 6

ls s k l l

l

s
l k s s

2
0

2

2
0

2

Note that for a spatially flat universe one simply
has ( ) ( ) [ ( ) ]/ /ò= + ¢ ¢H D z z dz H z H1L z

0 0 0 and = -D Dls s

[( ) ( )]+ +z z D1 1l s l.

3.2. Results

The final posterior distribution for H0 in the flat universe
case is shown in Figure 2. Our model-independent constraint
is H0=72.2±2.1 km s−1 Mpc−1 (median value plus
the 16th and 84th percentiles around this). This can be
compared to the time delay plus SNe result of Taubenberger
et al. (2019) of -

+73.1 2.2
2.1 km s−1 Mpc−1 within ΛCDM or

73.1±3.0 km s−1 Mpc−1 within w0waCDM, or of Wong
et al. (2019) of -

+73.6 1.8
1.6 km s−1 Mpc−1 and -

+75.0 2.3
2.2

km s−1 Mpc−1, respectively. Note that the first set uses JLA
SNe rather than Pantheon and the second set uses six lens
systems rather than four. In addition, the first set uses DΔt

only, while the second uses the combination of DΔt and Dl.
The main point, however, is that the uncertainties for a
model-independent analysis combining strong lensing time
delays and a wide-ranging distance probe such as supernovae
can be comparable to those assuming a specific model, while
reducing possible bias.

For the case where spatial curvature is included, we set the
flat prior on Ωk=[−0.2, 0.2] as in Taubenberger et al. (2019).
The posterior distribution is shown in Figure 2 also, and the
marginalized distributions give = -

+H 73.00 3.0
2.8 km s−1 Mpc−1

and W = -
+0.07k 0.14

0.09. The weaker constraint is due to the
covariance between H0 and Ωk. While consistent with the flat
universe results, note the posterior distribution is more non-
Gaussian.

When trying to resolve tensions, it is worthwhile checking
for the internal consistency of data combinations used. We
explore first consistency between the time delay distances and
SNe distances, and then consistency within the set of time
delay systems, assuming a flat universe. To check the
consistency between the distances from the SNe reconstruc-
tions and the time delay distances from the strong lenses, we
use the GP fit to the expansion history derived from the SNe
luminosity distances to compute predicted time delay distances
with appropriate zl and zs. As the SNe luminosity distances are
unanchored, the conversion from DH D t0 to DΔt stretches out
the joint contours along this degeneracy. Figure 3 shows the
results of this consistency check. The distances are indeed
consistent, and hence the combination of the two probes is
justified.

3.3. Consistency

One could also evaluate the consistency between the best-fit
time delay distances from the lensing data and the SNe
reconstruction using the best-fit H0 from the combination. For
only four points, a χ2 has limited significance but we can
mention that χ2=2.28, 0.15, 0.80, 0.24 for RXJ1131-1231,
HE0435-1223, B1608+656, SDSS1206+4332, respectively,
for the data plotted with respect to the GP distance relation. We
note that with the systems ordered by increasing time delay
distance, one does see a trend where the lensing data
monotonically climbs higher above the relation predicted by
the SNe sample with distance. For such a small lensing data
sample it is difficult to tell whether this reflects a real
systematic. (Note that Wong et al. (2019) shows another
monotonic trend, in the derived H0, with DΔt, using six strong
lens systems.) It would be interesting as data sets get larger to
study not only the mean H0 derived, but whether any trends
exist, which could potentially point to systematics with
distance (or other physical characteristics) such as line-of-sight
mass corrections or stellar dynamics scale effects.
To avoid assuming any value for H0 to employ the SNe data,

we can also consider ratios of time delay distances, which are
independent of H0. Furthermore, to explore the possibility of
trends we plot these against each other. Rather than show all 15
plots of pair combinations of the six ratios, we show only two
in Figure 4: neighbors— D DD Dt t,1 ,2 versus D DD Dt t,3 ,4, and
extremes— D DD Dt t,1 ,4 versus D DD Dt t,2 ,3.
We see that the data and reconstructed distances are

consistent at the 68.3% confidence level. Most of the apparent
trend with distance seems to be due to the nearest lens,
RXJ1131-1231. This could be simply a statistical fluctuation
but note that Birrer et al. (2016) found that the use of a different
lens galaxy kinematic prior for this system could shift the value
of H0 from it down by 14%. In addition, Chen et al. (2019),
using adaptive optics imaging only, reduced its value of
H0 from 78.2±3.4 km s−1 Mpc−1 to -

+77.0 4.6
4.0 km s−1 Mpc−1

(though not a significant shift).
To explore the potential impact of an outlier, we repeat our

model-independent analysis using only three of the time
delay distances at a time, and investigate whether the
remaining system caused a shift in the final H0 constraint.
Figure 5 shows the results. Removal of RXJ1131-1231 does
indeed have the greatest impact in alleviating tension with the
Planck value of H0, and it was the lens system most in
tension with the SNe reconstruction. Note that as this is the
lowest redshift system, one might expect that the SNe, which

Figure 2. Probability distribution functions (PDFs) of H0 in the cases of flat
and non-flat universes. Note that the solid curves labeled “(this work)” indicate
results from our model-independent method while the dashed curves assumed
ΛCDM using strong lensing only(Taubenberger et al. 2019).
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densely sample those distances, should provide an accurate
result. Finally, we can mention that independent measure-
ment of the time delays themselves shows a small but

interesting effect. The COSMOGRAIL team has been
extremely open and helpful about releasing the lightcurve
monitoring data. Hojjati et al. (2013) used a GP method in

Figure 3. 2D contours of the likelihoods (68.3% confidence level (CL) inner, 95.4% CL outer), and 1D marginalized PDFs (68.3% CL), of the strong lensing time
delay distances (blue) and the posterior sampled distances calculated from the GP reconstruction from SNe (green). The units are Mpc. The major axis of the green
SNe contours corresponds to variation in the value of H0. Systems are ordered by time delay distance from lowest to highest, with DΔt,1: RXJ1131-1231, DΔt,2:
HE0435-1223, DΔt,3: B1608+656, DΔt,4: SDSS1206+4332.

Figure 4. Likelihood contours (68.3% CL inner, 95.4% CL outer) of the ratios of pairs of time delay distances for both the strong lensing data (blue) and the SNe
reconstructions (green). The left panel shows neighbors: the ratio of the smallest two vs. largest two distances. The right panel shows extremes: the ratio of the smallest
to largest vs. middle two distances.
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2013 to measure the time delay from RXJ1131-1231 and
found a value 1.4% larger than COSMOGRAIL’s (still
within 1σ). H0LICOW (S. Suyu 2013, private communica-
tion) kindly put this value into their analysis pipeline and
found this decreased the value of H0 from this system by
1.4%. (The magnitudes do not need to be the same because
changing Δt also changes the lens modeling.) So at least at a
minor level, the values could potentially come into greater
agreement.

4. Conclusion and Discussions

We carry out a model-independent analysis (with no distance
parametrizations or assumptions about any dark energy model)
using GP regression to determine the Hubble constant H0 by
anchoring the Pantheon SNe Ia with time delay distances from
the four publicly released, robust H0LiCOW lenses. The
analysis is done for both flat and non-flat universes.

Furthermore, we explore both the internal consistency of
the time delay systems estimations of H0 and the external
consistency of the time delay distances with the GP expansion
history derived from SNe. This includes new PDFs for H0 for
each lens system in the model-independent analysis. No
statistically significant tensions are found, although there are
some ∼1σ trends that could be checked with future data.

Our model-independent results are H0=72.2±2.1 km s−1

Mpc−1 for a flat universe and -
+73.0 2.8

3.0 km s−1Mpc−1 allowing
curvature. These are consistent with the time delay and time delay
plus SNe results of Wong et al. (2019), Taubenberger et al. (2019),
and Collett et al. (2019), made within specific cosmological models
or with polynomial fitting of the distance relation. Collett et al.
(2019) find = -

+H 74.20 2.9
3.0 km s−1Mpc−1 for a flat universe and

= -
+H 75.70 4.4

4.5 km s−1Mpc−1 allowing for curvature. Despite not
assuming a specific model, the uncertainties in our constraints are
comparable to these, while reducing possible bias. They are also
consistent with local distance measures of H0, lying midway
between Freedman et al. (2019) and Riess et al. (2019). The strong
lensing time delay plus SNe model-independent method looks
quite promising as further data on strong lens time delay systems
becomes available.

For future studies, current surveys like the Dark Energy
Survey (DES; Treu et al. 2018) and the Hyper SuprimeCam
Survey (HSC; More et al. 2017), and the upcoming surveys like
the LSST (Oguri & Marshall 2010) and Euclid and WFIRST
satellites (Petrushevska et al. 2018; Barnacka 2019) will bring
us thousands of lensed quasars and over 100 lensed SNe Ia, a
part of which will have well-measured time delays(Liao et al.
2015). With high-quality ancillary observations, some dozens
of systems will give us time delay distances at percent levels.
Moreover, the angular diameter distances will be well-
measured as well(Jee et al. 2016; Liao 2019). In combination
of these two kinds of distances, the Hubble constant could be
constrained to sub-percent precision. However, at that stage,
systematic errors should be important. Dedicated analysis
should be applied to individual lenses such that the combina-
tions are robust.
Supernovae data will continue to improve as well, playing an

important role as a dense sampler of cosmic expansion history
over a wide range of redshifts. In addition to strong lensing,
further local distance measurements such as gravitational
waves from mergers of binary stars as standard sirens could
join this method and provide strong anchoring ability to model-
independently determine the Hubble constant.
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