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Abstract

An algorithm is provided for the fast and accurate computation of the solution of the Bitsadze equation in the
complex plane in the interior of the unit disk. The algorithm is based on the representation of the solution in
terms of a double integral as it shown by Begehr [1,2], some recursive relations in Fourier space, and Fast
Fourier Transforms. The numerical evaluation of integrals at N? points on a polar coordinate grid by
straightforward summation for the double integral would require O(NZ) floating point operation per point.
Evaluation of such integrals has been optimized in this paper giving an asymptotic operation count of
O(InN) per point on the average. In actual implementation, the algorithm has even better computational
complexity, approximately of the order of O(1) per point. The algorittm has the added advantage of
working in place, meaning that no additional memory storage is required beyond that of the initial data. This

paper is a result of application of many of the original ideas described in Daripa [3].
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1. Introduction

The solutions of many elliptic partial differential equa-
tions represent in terms of singular integrals in the com-
plex plane in the interior of the unit disk, as the nonho-
mogeneous Cauchy-Riemann equations, the Beltrami eg-
uation, the Poisson equation, etc. Then solving these eg-
uations requires computing the values of the singular
integrals. There are two main difficulties in the straight-
forward computation of these integrals using quadrature
rules. Firstly, straightforward computation of each of these
integrals requires an operation count of the orderO(Nz)

per point. This gives a net operation count of O(N*)
for N2 grid points which is computationally very in-
tensive for large N. Secondly, this method also gives
poor accuracy due to the presence of the singularities in
the integrand. Daripa and Co-workers ([3-9]) presented
fast algorithms to solve the singular integrals that arise in
such solutions. By these algorithms evaluation of singu-
lar integrals has been optimized, giving an asymptotic
operation count of O(NZ?InInN) for N? points. More-
over, these algorithms have the added advantages of
working in place, meaning that no additional memory
storage is required beyond that of the initial data.
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In this paper we follow his method to present an algo-
rithm to solve an elliptic partial differential equation
called the Bitsadze equation which define in the unit disk
B(0;1)={z:|z|]<1} in complex plane C for any com-
plex valued function w of complex variables z,Z € B by

2 2
%W i[iﬂij w=f;z=x+iy,x,yeC (1)

Where f is a complex valued function on B. [10]

The Bitsadze equation arises in many areas including
structural mechanics, electrostatics, magneto statics, po-
wer electromagnetic, conductive media, heat transfer and
diffusion ([11-13]). In [1,2], Begehr introduced some
boundary value problems for Bitsadze equation under
some solvability conditions and presented their solutions
as results for applying the Dirichlet and Neumann boun-
dary value problems all those solutions have singular in-
tegrals in their context. For that, we will consider one of
these problems to apply our numerical method for eva-
luating the singular integrals.

Problem (1.1):

w, =finB, w=y,zw,, =x0n dB, w,(0)=c,

Where f eL,(B;C), 7,7 €C(0B;C)andceC.
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Its unique solution is given by Equation (1.2) (Below)
Let us rewrite it in the form

w(z)=cZ+u(z)+v(z)+Gf (z), (1.3)
Where
1 a7
U(Z)_ZniMLy"(g);—z’
1 2 12219
V(Z)‘zﬂim[jl(é”) ; loo(1-22) 7
and
Gf(z):—jjf( |§| | BL Bl dedy. (14)
7T g(¢-12)

Our method is basically a recursive routine in Fourier
space that divides the interior of the unit disk into a col-
lection of annular regions and expands the integral in
Fourier series in angular direction with radius dependent
Fourier coefficients. A set of exact recursive relations are
derived which are used to produce the Fourier coeffi-
cients of singular. These recursive relations involve ap-
propriate scaling of one-dimensional integrals in annular
regions. The integrals in (1.4) at all grid points are then
easily obtained from the Fourier coefficients by the FFT.

The rest of the paper is structured as follows. Section 2
presents the solution of the linear integrals u and v. Sec-
tion 3 develops the mathematical foundation of the effi-
cient algorithm to evaluate (1.4) within the unit disk. The
fast algorithms for solving problem (1.1) is discussed in
Section 4. We carry out numerical results with this me-
thod in section 5. Finally, we summarize and conclude in
Section 6.

2. Evaluating the Integrals u and v

1
27Z'i M‘:l

e
-1z

where p,r =0 then

1) u(z)= 7 (<)

Let ¢ =pe” and z=re",

119

u(r,a)= izizﬂnz (a,r"e™ )e™ }e‘”’dr

u(ra)= > ue™ (2.1)
Where
U = a,r" if n>0,
" 10 ifn<o.
2) v(z)_i l({)ﬂlog(l—zg_)d—g
27Z'i ‘4‘71 z g
_ i ir 1_r2| 1 ia —Ir |pe”d7
v(r,a)_—iyl( e )reT og( —re' pe ) P
2 2

n

e .f (lr)rn m(a r)dz.

Let y(e")=>." be™,

= ! 71 (¢ )log(1- re‘(“’”)dr,
-1

< rZ -11 i f bnrn in in —in
, — _ 102 T Td ,
V(r a) ~ rela 271_ _([|:n_w[ n € ] e T
< bn n+l n-1) 5ia(n-1)
= E —\r " —=r e .
) n ( )
putn=m+1

m+1

v(ra)= 3

Then we can write

m)eima.

( m+2

ia 1 i ir I ede
()= o T ) 20200 -
i pe’ —re v(ra)= Y v.e™, (2.3)
Since the integral is on the unit disk then p =1, e
o (e") Where
15F 7
u(r,a)=— . dr Bt /ms2  om .
( ) 7 .([ 1_re|(a—r) v, = m—+11<l’ Z—I' ) if mZO,
- 1 2 Ir n.infa—7 i
:Z—I%<e )re( ldr 0 if m<O0.
n=0 72-0
wW(z)=cZ+-— | 7,(¢) g 1 yl(g)l i | Iog(l zg’) de 1 Md§d77
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3. Mathematical Foundation of the
Algorithms

In this section, we develop the theory needed to construct
an efficient algorithm for evaluation the singular inte-
grals (1.4). The following theorem is crucial for later
development of the algorithm.

Theorem 3.1. The value of the integral (1.4) with
z=re"", r=0 canbe written as

Gf (z)= > g,(r)e™ (3.1)
Where
| | ("2
Tdfdn; n>0
1 B(O;l)—B(O;r) ;
gn(r)_;

(jj)f( (§_| |)d§d n<i

(3.2)
Proof. If we denote

AP A
r,g da. 3.3
2nj fe—p° 0 B9
Then it follows from (1.4) and (3.1) that
== jj f(£)Q(r,¢)dédn.  (3.4)
7 8(0;1)

The integral in (3.3) can be evaluated by first expand-

ing %in power of % and — toget
< rn (|§|2 _rz) in
|§|2 _|Z|2 _ % é/n+2 e r< |§|
¢(¢-2) -l
( n+2 ) ma; r >|§|

By comparing this result with the Fourier series coef-

2 2
ficients of %,we get
-z
0; n>0,r>|{],
2 .n_ .n+2
Mrgn—”r; n>0, r<|{],
Q(r.¢)= R (3.5)
T; n<-1 r>l,
0; n<-1, r<|<].
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Substitution of (3.5) into (3.4) yields the desired result.

Corollary 3.1. Suppose that ¢ = pe' and f (&) has
Fourier coefficient f, (p); then the coefficients g, (r)
in Equation (3.2) can be written as:

1 2.n _ .n+2
I%fnﬂ(/ﬂ)dp; n>0,

gn(r):z r n+2p_ r (36)
Tff fz(p)dp; n<-1.
0

Corollary 3.2. It follows directly from Equation (3.6)
that
9,(1)=0 for n>0, g,(0)=0 for n<-1.
Corollary 3.3. Let r, <r;. Define

T
J fn+2n§],.0) d , n2 O,

cho=4" (3.7)

ij T
[ f”*zngf)d n<-1

and

j
2Py,

B =1" (38)
j
'[f””ngp)d © n<-1
P

After some algebraic manipulation it follows from
Equations (3.7) and (3.8) that

9, (1) =C, (1) =By (1)- (3.9)
Where
Cn(n)=2n”cin’i+[rr_i] c.(r)inz0,  (3.10)
i
-n-2
Cn(rj)z{:—‘] C,(r )+2r”*2CI”J; n<-1, (3.11)
i
n+2
Bn(ri):?_riszi"‘j +{:_'] Bn(rj); n>0, (3.12)
j
and
Bn(rj):(%] B,(r)+2r'B';; n<-1.  (3.13)
]
Corollary 3.4. Let O=r <p<r<--<r,=1. It

follows from recursive applications of (3.10)-(3.13) and
from using Corollary 3.2 that

2Z:(rl ||+1 n+ZBInI+l) n>0
(3.14)

9. (%)=

23(5"Clay ~'Bly ) n< L
i=
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for 1=1,2,3,---,M -1.
Corollary 3.5. It follows directly from Equations (3.6)
and (3.9) that

(3.15)

(3.16)

4. The Fast Algorithm

We construct the fast algorithm based on the theory of
section 3. The unit disk is discredited using M xN lat-
tice points with M equidistant points in the radial direc-
tion and N equidistant points in the circular direction.
The following is a formal description of the fast algo-
rithm useful for programming purposes.

Algorithm 4.1. (The fast algorithm for evaluating the
singular integral (1.4))

Input: M, Nand f (re?™™),Ie[LM -1] k e [1,N]
Output: Gf (re?™"), 1e[LM -1],ke[LN] .

Stepl.Set K=N/8, r,=0 and r, =1.

Step 2. Compute the Fourier coefficients f (r),
vle[0,M -1] and ne[-K,K] from known values of
f (rez”"‘/N) k=12---,N using the FFT.

Step 3. Compute C,,Vie[1,M —1] and
ne[-K-2,-1]u[0,K - 2] using Equation (3.7).

Step 4. Compute B, Vi [1,M —1] and
ne[-K-2,-1]uUl0, K- 2] using Equation (3.8).

Step 5. Compute g, (1), ne[-K-2,K-2],

I €[1,M —1] using relations (3.14).
set C,(r,)=0,B,(r,)=0,vne[0,K-2]
do n=01---, K-2
do I=M-1,.--1

nAn I ’
Cn(rl)zzrl CI,I+1+[r_Ij Cn(r|+1)v
1+1

B,(r)=2""B/\, +(H B, (5.1),
9n (1) =C,(1)-B,(r)-

enddo
enddo
set C,(r,)=0,B,(r,)=0,Vne[-K-2,-1]
C ( ): n+2C0nl'
B, (n)=2r"Byg,
g, (rl):Cn( ) (rl)'
do n=-K-2,---,—
do =2 ;n,M-—l
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n+2/~n
r| 1)+2r| Cilars

ot

r n

B, (rl): T] B, (rl 1)+2r| B 11
|

9. (1) =Cy(1)=B,(r).
enddo
enddo

Step 6. Finally, compute
K=2 )
z gn(rl)Eka/N;

Gf (Z _ r| 27r|k/N):
—K-2

Ie[l,M —1],ke[l,N].

Algorithm 4.2 (The fast algorithm for solving the
problem (1.1)): _ _

Input: M, N, 7, (e™"), 7, (e*™") and
f(re*™™), 1e[LM -1, ke[LN].

Output: w(r,em/N ) le[LM -1],k e[LN].

Stepl.Set K=N/8, r,=0 and r, =1.

Step 2. Compute Gf (z=re*™"), le[LM-1],
k e[LN] using algorithm 4.1.

Step 3. Compute the Fourier coefficients
a,vne[-K,K] from known values of y, (e},
k=1,2,---,N using the FFT.

Step 4. Compute the Fourier coefficients
b,vne[-K —1,K -1] from known values of 7, ("),
k=1,2,---,N using the FFT.

Step 5. Compute u(re*™™),1e[LM -1], k €[L N]
using the relation (2.1).

Step 6. Compute v(r,e®™ /M), 1e[L,M -1], k €[, N]
using the relation (2.3).

Step 7. Compute w(re”™ ™), 1 e[LM -1], k e[L N].

W(rleerik/N ) =cr, eZ;rik/N +u (rleZzzik/N )

+V(r|eZ/rik/N )+Gf (rleZ/rik/N)

5. Numerical Results

In this section we solve a boundary value problem for the
inhomogeneous Bitsadze equation in the unit disk by
using the algorithms that presented in section 4.

Example

Consider the problem

W, =2zinB,w=7, zw, =2, Vze B, wf(o):o,
The exact solution for this problem is given by
w(z)=7°z,vzeoB

By using algorithm 4.2 we have the max error as illu-
strate in the following Table 1.
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Table 1. Maximum relative error.

MAX ERROR
M =10 M =50 M =100 M =200
N=64 3.371768E-07 2.980596E-07 2.588641E-07 2.245232E-07
N=128 3.371753E-07 2.980553E-07 2.588640E-07 2.245231E-07
N= 256 3.371734E-07 2.980548E-07 2.588639E-07 2.245196E-07
N=512 3.371718E-07 2.980526E-07 2.588628E-07 2.245153E-07
N= 1024 3.371717E-07 2.980501E-07 2.588627E-07 2.245142E-07

6. Conclusions

We presented a fast algorithm to solve the Bitsadze equ-
ation in the unit disk under special boundary conditions
in the complex plane, by constructed the fast algorithm
to evaluate the singular integral transform (1.4). The
method divides the interior of the unit disk B =

z:|z| <1} into a collection of annular regions. The in-
tegrals and the function f (z) are expanded in terms of
Fourier series with radius dependent Fourier coefficients.
The good performance of the algorithm is due to the use
of scaling one-dimensional integral in the radial direction
to produce the value of the singular integral over the en-
tire domain. Specifically, scaling factors are used to de-
fine exact recursive relations which evaluate the radius
dependent Fourier coefficients of the singular integral
(1.4). The inverse Fourier transform are applied on each
circle to obtain the value of the singular integrals on all
circles.
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