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Abstract 

 
Aims: To provide an alternative definition for subset Sarima modeling and demonstrate it by 

application to monthly internally generated revenue of Ikot Ekpene Local Government Area of 

Akwa Ibom State of Nigeria.  

Study Design: The study design is theoretical as well as empirical. 

Place and Duration of Study: Department of Mathematics and Computer Science, Rivers State 

University of Science and Technology, Port Harcourt, Nigeria. 

Methodology: Based on the duality relationship between autoregressive (AR) and moving 

average (MA) models an alternative definition to subset sarima models is proposed. The 

seasonality of the above-mentioned time series is established. A non-seasonal differencing of the 

seasonal difference of the series yields a stationary series which is analysed by Sarima methods.  

Results: Applying the duality relationship between AR and MA models, subset Sarima models 

may be defined in AR terms rather than exclusively in MA terms as earlier done. An analysis of 

a 120-point internally generated revenue series from 1998 to 2007 yields the additive model 

from the original SARIMA (1, 1, 0)x(1, 1, 0)12 model. The additive model is found to be 

adequate. 

Method Article 
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Conclusion: Based on the new and equivalent definition the monthly internally generated 

revenue of Ikot Ekpene Local Government Area of Nigeria follows an additive Sarima Model. 

Keywords: Sarima model, subset sarima model, additive sarima model, multiplicative sarima 

model, internally generated revenue, Ikot Ekpene LGA, Nigeria. 

 

1 Introduction 

 
Autoregressive (AR) models and modeling were introduced by Yule [1]. Box and Jenkins [2] 

followed this up with the proposal of the autoregressive moving average models and modeling, of 

which seasonal autoregressive integrated moving average (SARIMA) models and modeling are a 

special case.  They defined SARIMA models as multiplicative and applied it on the airways data. 

They did not just define it but also justified the multiplicative approach by considering a 

movement of the series up the time axis from one season to the next. They did not mention or 

define any other category of SARIMA model type. They however briefly acknowledged the 

existence of the “non-multiplicative” type. The acknowledgement of the existence of the 

multiplicative sarima model naturally raises the question of the additive type. Suhartono [3] 

defined subset, multiplicative and additive Sarima Models in terms of the moving average (MA) 

model. His work is classical as it pioneers the discussion and application of the categories of 

Sarima models. His approach of using MA symbolism naturally raises the question of the 

exclusivity or otherwise of the use of MA terminology. Does the use of the MA in the definition 

not naturally imply the propriety of the use of the AR as an alternative given their duality?  

 

In this work it is proposed that AR models could still have been used as basis of the definitions 

granted the duality relationships between the AR and the MA models. In section 2, arguments 

along duality lines were advanced in order to establish this fact. In section 3, the monthly 

internally generated revenue of Ikot Ekpene Local Government Area of Nigeria was used as a case 

study. 

 

Sarima models and modeling have been applied to model seasonal time series. It is apparent that 

their popularity is increasing in recent times. Authors who have used these models of recent are 

Etuk [4], Eni et al. [5], Ekezie et al. [6], Otu et al. [7], Paul et al. [8], Suhartono and Lee [9], Shiri 

et al. [10], Prista et al. [11], Oduro-Gyimah et al. [12], Fannoh et al. [13], to mention a few.  

 

2 Materials and Methods/Experimental Details/Methodology  

 
The data used are 120 monthly values of internally generated revenue from 1998 to 2007 of the 

Ikot Ekpene Local Government Area (LGA) of Akwa Ibom State of Nigeria. The realization was 

used by Udoudo [14]. The data are given to the nearest ten thousands of naira. The data are 

retrievable from the records of the Research, Planning and Statistics Unit of the LGA.  See the 

Appendix for the data.  

   

2.1 Sarima Models 

 
A stationary time series {Xt} is said to follow an autoregressive moving average model of order p 

and q denoted by ARMA (p, q) if  

 

Xt - α1Xt-1 - α2Xt-2 - … - αpXt-p = εt + β1εt-1 + β2εt-2 + … + βqεt-q   (1) 
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where the left hand side (LHS) of (1) is the AR component and the right hand side (RHS) is the 

MA component. The α’s are the AR coefficients and the β’s their MA counterparts. They are 

constants such that the model is stationary as well as invertible. Suppose that model (1) is put as 

 

A(L)Xt = B(L)εt         (2) 

 

where the AR operator A(L) = 1 - α1L - α2L
2
 - … - αpL

p
 and the MA operator B(L) = 1 + β1L + 

β2L
2
 + ... + βqL

q
 where L

k
Xt = Xt-k. For stationarity A(L) = 0 must have roots with moduli greater 

than one. For invertibility B(L) = 0 must have such roots too.  

 

Suppose a series is non-stationary. Box and Jenkins [2] proposed that such a series may be made 

stationary after a number of differencing. Suppose for {Xt} the minimum number of differencing 

necessary for stationarity is equal to d, if the d
th

 difference {∇d
Xt} follows an ARMA(p, q) the 

original series {Xt} is said to follow an autoregressive integrated moving average model of order 

p, d and q, denoted by ARIMA(p, d, q). Here ∇ = 1 – L. 

 

For a seasonal series of period s, Box and Jenkins [2] moreover proposed that it may be modelled 

by the multiplicative model. 

 

A(L)Φ(L
s
)∇d∇D

s Xt = B(L)Θ(L
s
)εt       (3) 

 

where the LHS and the RHS of (3) are respectively the AR and the MA components and  Φ(L) 

and Θ(L) are the respective seasonal operators whose coefficients are such that stationarity and 

invertibility of the entire model are guaranteed.  Here ∇s = 1 – L
s 
and D is the degree of seasonal 

differencing. Model (3) is called a multiplicative seasonal autoregressive integrated moving 

average model of order p, d, q, P, D, Q and s and denoted by SARIMA(p, d, q)x(P, D, Q)s model. 

 

2.2 Duality Relationship between AR and MA models 

 
The dual of the model (2) may be defined as the model. 

 

 B(L)Xt = A(L)εt        (4) 

 
(McLeod [15]) 

 

AR and MA models are well known to have duality relationships. These include the following 

facts: 

 

1) A finite-order model of one type is equivalent to an infinite order model of the other 

type; (Box and Jenkins [2]) 

2) An AR model is always invertible whereas a MA model is always stationary. Stationarity 

and invertibility are twin and dual requirements ensuring a one-to-one correspondence 

between a particular autocorrelation structure and a model (Priestley [16]). 

3) The autocorrelation function (ACF) of a model of one type is the inverse of the inverse 

autocorrelation (IACF) of the other type. The same applies between partial 

autocorrelation function (PACF) and the inverse partial autocorrelation function 

(Cleveland [17], Hipel et al. [18]). 



 
 
 
 
 
 
 

Etuk and Ojekudo; BJMCS, 5(4): 538-552, 2015; Article no.BJMCS.2015.039 

 

 

541 
 

4) The ACF of one model behaves as the PACF of the other. In particular, the PACF of an 

AR(p) cuts off at lag p; the ACF of an MA(q) model cuts off at lag q.  

5) The spectrum of an AR is the inverse of its MA dual and vice versa, and so on. (Box and 

Jenkins [2]) 

 
The duality is such that the model types may be used interchangeably. For instance, the IACF of a 

stationary time series may be estimated by fitting an AR model of sufficiently long order and 

obtaining the IACF accordingly i.e. the inverse of the ACF of the dual MA model. A well-known 

approach to AR model fitting is by the Yule-Walker equations via the ACF. AR-MA duality has 

been employed to apply the same linear optimization approach to model MA via the IACF 

(Oyetunji [19]).  

  

2.3  Suhartono[3]’s Proposal for Subset, Multiplicative and Additive Sarima 

Modelling   
   
Suhartono [3] proposed an algorithm for fitting a subset, multiplicative and an additive Sarima 

model thus: 

 

Fit the model  

 

Xt = εt + β1εt-1 + βsεt-s + βs+1εt-s-1      (5) 

 

If βs+1 is not statistically significant, the model is additive. Otherwise, Check whether βs+1 = β1βs. 

If so, the model is multiplicative. Otherwise, the model is subset. 

 

Etuk et al. [20,21] and Etuk [22] have applied this proposal to fit additive SARIMA models. 

 

2.4 Sarima Model Fitting 

 
The general Sarima (p, d, q)x(P, D, Q)s model may be fitted by first of all determining the orders. 

The seasonal order s might be suggestive from a knowledge of the seasonal nature of the series or 

from the seasonal pattern of the time-plot or correlogram. Otherwise, a preliminary inspection of 

the series could indicate a seasonal pattern and the period s accordingly determined. The AR 

orders: non-seasonal p and seasonal P may be estimated by the non-seasonal and the seasonal cut-

off points of the PACF respectively. Similarly, the MA orders q and Q may be estimated by the 

non-seasonal and the seasonal cut-off lags of the ACF respectively. The difference orders d and D 

often need not add up to more than 2 for stationarity to be achieved. At each point of the 

differencing process there will be need to test for stationarity. This shall be done by the 

Augmented Dickey Fuller (ADF) Test.  

 

The model (5) is a SARIMA(0, 0, 1)x(0, 0, 1)s in {Xt}. The only order is the period s of 

seasonality. The ACF of such a model is such that the autocorrelation at lag s is significant and the 

ones at lags s-1 and s+1 are equal. Therefore the ACF structure suggestive of the model (5) should 

be such that the value at lag s is significant and those at lags s-1 and s+1 are comparable; at least 

they should be of the same signs. 

 

After order determination the model coefficient parameters may be estimated by a non-linear 

optimization approach like the maximum likelihood or the least squares approach. This is because 
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the presence in the model of items of a white noise process necessitates the adoption of such non-

linear techniques. After model fitting the fitted model is subjected to diagnostic checking by 

residual analysis. Uncorrelatedness of the residuals and/or better still their normality confirms the 

adequacy of the model. In this write-up the econometric and statistical package Eviews shall be 

used for all the analytical work. It is based on the least squares criterion for the estimation process. 

 

3 Results and Discussion 

 
3.1  Proposed Alternative or Complementary Algorithm for Fitting Subset, 

Multiplicative and Additive Sarima Model 

 
Based on the above discussion of the AR-MA duality we hereby propose that, depending on the 

empirical autocorrelation structure an alternative or a complement to Suhartono [3]’s proposal is 

 

Fit  

 

Xt = εt + β1Xt-1 + βsXt-s + βs+1Xt-s-1        (6) 

 

If βs+1 = 0 the model is an additive SARIMA model. If not, if βs+1 = βsβ1 then the model is 

multiplicative. Otherwise it is subset. 

 

Model (6) shall be suggestive if the PACF is such that at lag s the partial autocorrelation is 

significant and the values at lags s-1 and s+1 are comparable. 

 

3.2 A Practical Example  
 
The realization of monthly internally generated revenue of Ikot Ekpene LGA covering 1998 to 

2007 shall be herein called IIGR. The 120-point data has a time-plot that shows an upward secular 

trend and some seasonality rising in amplitude over time (Fig. 1). A preliminary examination of 

the data suggests the presence of a seasonal tendency of period 12 months; eight of the ten yearly 

minimums lie between May to October and seven of the ten maximums fall into the 

complementary interval between September to the next April.  A 12-monthly differencing yields 

the series SDIIGR which has a generally horizontal trend (Fig. 2) and a correlogram which shows 

the presence of some seasonality of period 12 months (Fig. 3). A non-seasonal differencing of 

SDIIGR yields the series DSDIIGR which has a horizontal trend (Fig. 4) and a correlogram in 

(Fig. 5) which shows seasonality of period 12 months and the involvement of seasonal AR and 

MA components of order one each. (Table 1) shows that the ADF test adjudges both IIGR and 

SDIIGR as non-stationary but DSDIIGR as stationary.  
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Fig. 1. The time plot of IIGR 

 

 
 

Fig. 2. The time plot of SDIIGR 
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Fig. 3. The correlogram of SDIIGR 
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Fig. 4. The time plot of DSIIGR 

 
The autocorrelation structure, inter alia, suggests the SARIMA(1, 1, 0)x(1, 1, 0)12 model for IIGR. 

Applying this new algorithm, the model (6) yields the model estimated in (Table 2) as 

 

Xt + .5493Xt-1 + .5135Xt-12 + .1899Xt-13 = εt     (7) 

                                 (±.0877)      (±.1037)      (±.1145) 

 

Clearly the lag 13 coefficient of model (7) is not statistically significant. Hence the adoption of the 

additive model estimated in (Table 3) as 

 

Xt + .4748Xt-1 + .4356Xt-12 = εt      (8) 

                                (±.0794)     (±.0931) 

 

where in model (7) and model (8),  X = DSDIIGR. The model (8) might be preferred to model (7) 

on the following grounds 

 

1) Parametric parsimony: The non-significance of the lag 13 coefficient of model (7) makes 

model (8) preferable as it has fewer parameters.  

2) Schwarz criterion: The Schwarz criterion has a smaller value for model (8) than for 

model (7). 

3) Residual uncorrelatedness shown in (Fig. 6): All the autocorrelations of the residuals of 

model (8) are non-significant. 

4) Jarque-Bera Residual normality test of (Fig. 7). The null hypothesis of normality of the 

residuals is not rejected (p = 0.9474). 
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Fig. 5. The correlogram of DSDIIGR 

 

Table 1. Augmented dickey fuller tests for non-stationarity 

 

Series Test statistic 1% critical 

value 

5% critical 

value 

10% critical 

value 

Conclusion 

IIGR 

SDIIGR 

-1.4314 

-2.8707          

-3.4866 

-3.4931 

-2.8861 

-2.8889 

-2.5799 

-2.5815       

Nonstationary 

Nonstationary
*
  

DSDIIGR -18.3637 -3.4931 -2.8889 -2.5815 Stationary  

*Test significant at 5% level but non-significant at 1% level.   
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Table 2. Estimation of sarima (1, 1, 0)X(1, 1, 0)12 Model 

 

Dependent variable: DSDIIGR 

Method: Least Squares 

Date: 09/01/14 Time: 16:34 

Sample (adjusted): 2000M03 2007M12 

Included observations: 94 after adjustments 

Convergence achiieved after 3 iterations 

Variable Coefficient Std. error t-Statistic Prob. 

AR(1) -0.549309 0.087658 -6.266482 0.0000 

AR(12) -0.513477 0.103721 -4.950534 0.0000 

AR(13) -0.189913 0.114462 -1.659181 0.1005 

R2 0.435551 Mean dependent var -2.957447 

Adjusted R2 0.423146 S.D. dependent var 499.6014 

SE of  regression 379.4518 Akaike info criterion 14.74673 

Sum squared resid 13102515 Schwarz citerion 14.82790 

Log likelihood -690.0962 Hannan-Quinn criter. 14.77951 

Durbin-Watson stat 2.001126   

Inverted AR Roots -90-.24i 

.23+.91i 

-.37,    -.94+.24i 

.90+.24i 

.23-.91i 

-.69-.66i 

.66+.67i 

-.26+.91i 

-.69+.66i 

.66-.67i 

-.26-.91i 

-.94-.24i 

 

Table 3. Estimation of the additive model (8) 

 

Dependent variable: DSDIIGR 

Method: Least Squares 

Date: 09/01/14 Time: 11:34 

Sample (adjusted): 2000M02 2007M12 

Included observations: 95 after adjustments 

Convergence achieved after 2 iterations 

Variable Coefficient Std. error t-Statistic Prob. 

AR(1) -0.410726 0.079372 -5.981830 0.0000 

AR(12) -0.435619 0.093097 -4.679201 0.0000 

R
2
 0.410726 Mean dependent var -4.000000 

Adjusted R
2
 0.404390 S. D. dependent var 497.0407 

SE of regression 383.5951 Akaike info criterion 14.75788 

Sum squared resid 13684503 Schwarz criterion 14.81165 

Log likelihood -698.9993 Hannan-Quinn criter. 14.77961 

Durbin-Watson stat 2.127339   

Inverted AR roots .87+.24i 

.21+.89i 

-.71+.65i 

.87-.24i 

.21-.89i 

-.71-.65i 

.63+.66i 

-.28-.89i 

-.95+.24i 

.63-.66i 

-.28+.89i 

-.95-.24i 
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Fig. 6. The correlogram of the additive sarima residuals 
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Fig. 7. The histogram of the additive sarima residuals 
 

4 Conclusion 
 
A new alternative or complementary algorithm for SARIMA fitting has been proposed. The 

monthly internally generated revenue of Ikot Ekpene LGA of Akwa Ibom State of Nigeria has 

been modeled as an additive SARIMA model (8). This means that a current value depends on its 

last value and its value of a year ago. Forecasts may be based on the fitted model. 
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APPENDIX 
                              

Year Monthly revenue data (N’0000) 

1998 304   343   319   315   268   246   269   243   294   293   516   009  

1999 369   394   313   504   503   366   300   273   394   369   406   717 

2000 406   329   309   415   306   300   291   428   401   318   399   859   

2001 906   953  1212   867   851   779  890 1025   949   792   839   805  

2002 864   908   776   867   939   846   642   942   839   769   856 1056 

2003 1752 1540 1658 1891 1560 2309 1461 2241 1856 2018 1691 1548  

2004 2034 1850 1673 1539 1384 1239 1278 1208 2092 1611 2329 2243       

2005 1917 1995 2037 2140 2543 2637 2836 2381 2237 2354 2657 2370 

2006 2061 2055 1988 2099 1910 2706 3522 2791 3294 2185 2597 2661  

2007 1379 1889 2202 1415 2474 2070 3500 1651 2281 1810 2378 2318 
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