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Abstract
We study an initial value problem for a class of integro-differential equations of Volterra type in a real
Banach space. Using method of upper and lower solutions and Mönch and Von Harten theorem, we
obtain an existence theorem of coupled quasi-solutions, which is an extension of those established
by Y. Chen and W. Zhuang in [1].
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1 Introduction and Preliminaries

Let E be a real Banach space with norm ‖ · ‖, and let E∗ denote the dual of E. Let K ⊂ E be a cone.
By means of K a partial order ≤ is defined as v ≤ u iff u− v ∈ K. We let K∗ = {ϕ ∈ E∗ : ϕ(u) ≥ 0
for all u ∈ K}.
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A cone K is said to be normal if there exists a real number δ > 0 such that 0 ≤ v ≤ u implies
‖v‖ ≤ δ‖u‖, where δ is independent of u, v. We shall always assume in this paper that K is a normal
cone.

Let β denote the measure of noncompactness of Hausdorff respectively. If F is a subspace of E
and M ⊂ F is bounded then we define

βF (M) = inf{ε > 0 :M ⊂
n(ε)⋃
i=1

S(zεi , ε) for some zεi ∈ F}.

We have

β(B) ≤ βF (B) ≤ 2 · β(B) for B ⊂ F bounded.

For these and further properties we refer to Deimling [2] and Sadovskii [3].
For any v, w ∈ C[I, E] such that v(t) ≤ w(t) on I, where I = [0, T ], T > 0, we define the conical

segment

[v, w] = {u ∈ C[I, E] : v ≤ u ≤ w}.

From the definition of [v, w] and the normality of the cone K, we know that [v, w] is a bounded closed
convex subset of C[I, E].

In this paper, we consider the following initial value problem for nonlinear integro-differential
equation (IVP) in a real Banach space, namely

u
′
(t) = H(t, u(t), (Su)(t)), u(0) = u0 (1.1)

where (Su)(t) =

∫ t

0

s(t, τ)u(τ)dτ, s ∈ C[I × I, R+] and s(t, s) ≤ s0 on I × I, s0 > 0, H ∈ C[I ×E ×

E,E]. We obtain an existence theorem of coupled quasi-solutions via the method of upper and lower
solutions and Mönch and Von Harten theorem. The results of this paper are extensions of those
established in [1].

In the proof of our main results the following lemmas are necessary. See [4],[5],[6] for details.
Lemma 1.1[5](Mönch and Von Harten theorem) LetE be a Banach space and β the Hausdorff

measure of noncompactness onE. Let {xn}n≥1 be a sequence of continuously differentiable functions
from J = [a, b] to E such that there is some µ ∈ L1(a, b) with ‖xn(t)‖ ≤ µ(t) and ‖x

′
n(t)‖ ≤ µ(t) on

J . Let ψ(t) = β({xn(t)}n≥1). Then ψ(t) is absolutely continuous on J and

ψ
′
(t) ≤ 2β({x

′
n(t)}n≥1) a.e. on J.

Lemma 1.2[5] LetE be a separable Banach space and β the Hausdorff measure of noncompact-
ness on E. Let {xn}n≥1 be a sequence of continuous functions from J = [a, b] to E such that there
is some µ ∈ L1(a, b) with ‖xn(t)‖ ≤ µ(t) on J . Let ψ(t) = β({xn(t)}n≥1). Then ψ(t) is integrable on
J and

β({
∫ b

a

xn(s)ds}n≥1) ≤
∫ b

a

ψ(s)ds.

Lemma 1.3[6] Let y(t) ∈ C[I, R], y(0) ≤ 0, and satisfy

y
′
(t) ≤ −My(t)−N

∫ t

0

s(t, τ)y(τ)dτ

where M > 0, N ≥ 0, s ∈ C[I × I, R+], s(t, τ) ≤ s0 for (t, τ) ∈ I × I. Suppose further that
Ns0T (exp(MT )− 1) ≤M . Then y(t) ≤ 0 for all t ∈ I.
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To define appropriate classes of upper and lower solutions of (1.1) , we shall suppose that H
admits a decomposition of the form

H(t, u, Su) = H0(t, u, Su) +H1(t, u, Su) +H2(t, u, Su),

where H0, H1, H2 ∈ C[I × E × E,E].
Definition 1.1 Let v0, w0 ∈ C1[I, E]. Then v0, w0 are said to be coupled lower and upper

quasi-solutions of (1.1) if{
v
′
0 −H0(t, v0, Sv0)−H1(t, v0, Sv0)−H2(t, w0, Sw0) ≤ 0, v0(0) ≤ u0,

w
′
0 −H0(t, w0, Sw0)−H1(t, w0, Sw0)−H2(t, v0, Sv0) ≥ 0, w0(0) ≥ u0.

(1.2)

If in (1.2), equalities hold, then v0, w0 are said to be coupled quasi-solutions of (1.1). Clearly one can
define, based on definition 1.1, coupled maximal and minimal quasi-solutions of (1.1). We also need
a stronger form of coupled upper and lower quasi-solutions of (1.1).

Definition 1.2 Let v0, w0 ∈ C1[I, E] be such that v0(t) ≤ w0(t) on I. Then v0, w0 are said to
be strongly coupled lower and upper quasi-solutions of (1.1) if there exist constants M > 0, N ≥ 0
such that{

v
′
0 ≤ H0(t, σ, Sσ) +H1(t, v0, Sv0) +H2(t, w0, Sw0)−M(v0 − σ)−N(Sv0 − Sσ)
w

′
0 ≥ H0(t, σ, Sσ) +H1(t, w0, Sw0) +H2(t, v0, Sv0)−M(w0 − σ)−N(Sw0 − Sσ)

(1.3)

for all σ ∈ [v0, w0].
We list for convenience the following assumptions and suppose that v0, w0 ∈ C1[I, E] such that

v0(t) ≤ w0(t) on I and Ns0T (exp(MT )− 1) ≤M .
(A1) For any bounded set B ⊂ [v0, w0],

β({H0(t, x, Sx) +H1(t, x, Sx) : x ∈ B}) ≤ Lβ(B(t)),
β({H2(t, x, Sx) : x ∈ B}) ≤ Lβ(B(t)),

where L > 0, B(t) = {x(t) : x ∈ B}.
(A

′
1) For any u, v ∈ [v0, w0],

‖(H0 +H1)(t, u, Su)− (H0 +H1)(t, v, Sv)‖ ≤ L‖u(t)− v(t)‖,
‖H2(t, u, Su)−H2(t, v, Sv)‖ ≤ L‖u(t)− v(t)‖,

where L > 0.
(A2) H1(t, x, Sx) is nondecreasing in x and H2(t, x, Sx) is nonincreasing in x relatively to the

normal cone K.
Note Clearly, (A

′
1) implies (A1).

2 Main Results
Our main aim in this paper is to prove the following theorem.

Theorem 2.1 Assume that the cone K is normal and assumptions (A
′
1),(A2) and (1.3) are

satisfied. Then there exists a unique solution u(t) of (1.1) on I such that u ∈ [v0, w0], provided
v0(0) ≤ u0 ≤ w0(0).

In our paper, H = H0 +H1 +H2, where H0, H1, H2 satisfy different conditions respectively. The
papers in [7-12] were concerned with single H , their conditons of measure of noncompactness were
relatively strong.

The proof of the above theorem will be completed by a series lemmas.
First of all, we consider the following linear initial value problem (LIVP):

u
′
= H(t, u, Su), u(0) = u0 (2.1)

whereH(t, u, Su) = −Mu−N(Su)+H0(t, η1, Sη1)+H1(t, η1, Sη1)+H2(t, η2, Sη2)+Mη1+N(Sη1),
and η1, η2 ∈ [v0, w0]. Then we have
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Lemma 2.1 For any η1, η2 ∈ [v0, w0], there exists a unique solution u(t) on I of (2.1).
The proof of this lemma is similar to a corresponding result given in [6] with minor modifications.
For any η1, η2 ∈ [v0, w0], we define the mapping A by A[η1, η2] = u, where u = u(t) is the unique

solution of (2.1) on I corresponding to η1, η2. Then we have the following
Lemma 2.2 Suppose that assumptions (A2) and (1.3) hold. Then A maps [v0, w0] × [v0, w0]

into [v0, w0].
Proof. Let η1, η2 ∈ [v0, w0] and let u = A[η1, η2]. For any φ ∈ K∗, set p(t) = φ(v0(t) − u(t))

and note that p(0) = φ(v0(0)− u0) ≤ 0. Then for all σ ∈ [v0, w0], we have

p
′
(t) = φ(v

′
0(t)− u

′
(t))

≤ φ(H0(t, σ, Sσ) +H1(t, v0, Sv0) +H2(t, w0, Sw0)−M(v0 − σ)−N(Sv0 − Sσ)
−H0(t, η1, Sη1)−H1(t, η1, Sη1)−H2(t, η2, Sη2) +M(u− η1) +N(Su− Sη1)).

Choosing σ = η1, then we get

p
′
(t) ≤ φ((H1(t, v0, Sv0)−H1(t, η1, Sη1)) + (H2(t, w0, Sw0)−H2(t, η2, Sη2)))

−φ(M(v0 − u)−N(Sv0 − Su))

≤ −Mp(t)−N
∫ t

0

s(t, τ)p(τ)dτ,

which implies p(t) ≤ 0 by Lemma 1.3. This proves v0(t) ≤ u(t) on I since φ ∈ K∗ is arbitrary.
A similar argument yields that u(t) ≤ w0(t) on I. Since η1, η2 ∈ [v0, w0] are arbitrary, the proof is

complete. 2

In view of Lemma 2.2, we can define the sequences {vn}, {wn} as follows:

vn+1 = A[vn, wn], wn+1 = A[wn, vn] and vn, wn ∈ [v0, w0], n = 0, 1, 2, · · ·.

We now prove the following lemma.
Lemma 2.3 Suppose that assumptions (A1), (A2) and (1.3) hold. Then the sequences {vn}, {wn}

are uniformly bounded, equicontinuous and relatively compact on I.
Proof. Since the cone K is normal and vn, wn ∈ [v0, w0] for all t ∈ I, it follows that {vn}, {wn}

are uniformly bounded on I.
By assumption (A1), H0 +H1 and H2 map a bounded set into a bounded set. Noting that

v
′
n(t) = −Mvn −N(Svn) +H0(t, vn−1, Svn−1) +H1(t, vn−1, Svn−1)

+H2(t, wn−1, Swn−1) +Mvn−1 +N(Svn−1),
(2.2)

so there exists a constant M0 > 0 such that

‖v
′
n(t)‖ ≤M0, t ∈ I, n = 1, 2, · · ·.

Therefore, by the mean value theorem (see theorem 1.3.2 in [13]), we have

‖vn(t1)− vn(t2)‖ ≤M0|t1 − t2|, t1, t2 ∈ I.

This implies that {vn(t)} is equicontinuous on I. A similar argument shows that {wn(t)} is equicontinu-
ous on I.

Let ϕ(t) = β({vn(t) : n ≥ 0}), ψ(t) = β({wn(t) : n ≥ 0}). Clearly {vn(t)}, {wn(t)} satisfy the
conditions of Lemma 1.2. Therefore

ϕ
′
(t) ≤ 2β({v

′
n(t) : n ≥ 0}), ψ

′
(t) ≤ 2β({w

′
n(t) : n ≥ 0}) a.e. on I. (2.3)

LetE1 = span{vn(t), wn(t) : n ≥ 0, t ∈ I∩Q}, whereQ is the set of rational numbers. By assumption
(A1), we have

β({H0(t, vn−1, Svn−1) +H1(t, vn−1, Svn−1) : n ≥ 1}) ≤ Lβ({vn−1(t) : n ≥ 1}) = Lϕ(t), (2.4)
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β({H2(t, wn−1, Swn−1) : n ≥ 1}) ≤ Lβ({wn−1(t) : n ≥ 1}) = Lψ(t). (2.5)

By the properties of Hausdorff’s measure of noncompactness and Lemma 1.2, we obtain

β({(Svn−1)(t) : n ≥ 1}) ≤ βE1({(Svn−1) : n ≥ 1}) = βE1({
∫ t

0

s(t, τ)vn−1(τ)dτ : n ≥ 1})

≤
∫ t

0

βE1({s(t, τ)vn−1(τ) : n ≥ 1})dτ =

∫ t

0

s(t, τ)βE1({vn−1(τ) : n ≥ 1})dτ

≤ 2

∫ t

0

s(t, τ)β({vn−1(τ) : n ≥ 1})dτ ≤ 2

∫ t

0

s0ϕ(τ)dτ. (2.6)

By (2.2)-(2.6), we have

ϕ
′
(t) ≤ 2(2Mϕ(t) + 2N · 2s0

∫ t

0

ϕ(τ)dτ + Lϕ(t) + Lψ(t))

= 2(2M + L)ϕ(t) + 2Lψ(t) + 8Ns0

∫ t

0

ϕ(τ)dτ a.e. on I.

A similar argument yields that

ψ
′
(t) ≤ 2(2M + L)ψ(t) + 2Lϕ(t) + 8Ns0

∫ t

0

ψ(τ)dτ a.e. on I.

Set m(t) = ϕ(t) + ψ(t), then

m′(t) ≤ 2(2M + L)m(t) + 2Lm(t) + 8Ns0

∫ t

0

m(τ)dτ, a.e. on I,

that is,

m′(t) ≤ 4(M + L)m(t) + 8Ns0

∫ t

0

m(τ)dτ a.e. on I.

Noting that m(0) = 0, we have

m(t) ≤ 4(M + L)

∫ t

0

m(τ)dτ + 8Ns0

∫ t

0

∫ τ

0

m(ξ)dξdτ

≤ 4(M + L)

∫ t

0

m(τ)dτ + 8Ns0

∫ t

0

∫ t

0

m(ξ)dξdτ

≤ 4(M + L)

∫ t

0

m(τ)dτ + 8Ns0T

∫ t

0

m(ξ)dξ

= 4(M + L+ 2Ns0T )

∫ t

0

m(τ)dτ.

Consequently, m(t) ≤ m(0)exp(4(M + L + 2Ns0T )) = 0, we thus obtain ϕ(t) = ψ(t) = 0, t ∈ I.
Hence, by Ascoli-Arzela theorem, the sequences {vn}, {wn} are relatively compact in C[I, E]. The
proof of Lemma 2.3 is complete. 2

Lemma 2.4 Suppose that assumptions (A
′
1), (A2) and (1.3) hold. Then we have p(t) ≡ 0 on I

for either
p(t) = lim

n→∞
‖vn(t)− vn−1(t)‖

or
p(t) = lim

n→∞
‖wn(t)− wn−1(t)‖.

Proof. Let m1(t) = lim
n→∞

‖vn(t)− vn−1(t)‖, m2(t) = lim
n→∞

‖wn(t)− wn−1(t)‖, m(t) = m1(t) +

m2(t). In the following we will prove that m(t) ≡ 0 on I.
By the proof of Lemma 2.3, there exists a constant M0 > 0 such that

‖v
′
n(t)‖ ≤M0, ‖w

′
n(t)‖ ≤M0, ∀t ∈ I.
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Therefore, for all t1, t2 ∈ I, we have

|‖vn(t1)− vn−1(t1)‖ − ‖vn(t2)− vn−1(t2)‖|
≤ ‖vn(t1)− vn(t2)‖+ ‖vn−1(t1)− vn−1(t2)‖
≤ 2M0|t1 − t2|,

thus
‖vn(t1)− vn−1(t1)‖ ≤ ‖vn(t2)− vn−1(t2)‖+ 2M0|t1 − t2|,
‖vn(t2)− vn−1(t2)‖ ≤ ‖vn(t1)− vn−1(t1)‖+ 2M0|t1 − t2|.

Taking the limit, we obtain

m1(t1) ≤ m1(t2) + 2M0|t1 − t2|, m1(t2) ≤ m1(t1) + 2M0|t1 − t2|

and so
|m1(t1)−m1(t2)| ≤ 2M0|t1 − t2|,

which proves that m1(t) is continuous on I. A similar argument yields that m2(t) is also continuous
on I.

Now (A
′
1) yields

‖vn+1(t)− vn(t)‖ ≤
∫ t

0

[‖H0(τ, vn(τ), (Svn)(τ)) +H1(τ, vn(τ), (Svn)(τ))

−H0(τ, vn−1(τ), (Svn−1)(τ))−H1(τ, vn−1(τ), (Svn−1)(τ))‖
+‖H2(τ, wn(τ), (Swn)(τ))−H2(τ, wn−1(τ), (Swn−1)(τ))‖+M‖vn+1 − vn‖
+N‖Svn+1 − Svn‖+M‖vn − vn−1‖+N‖Svn − Svn−1‖]dτ

≤
∫ t

0

[(L+M)‖vn − vn−1‖+ L‖wn − wn−1‖+M‖vn+1 − vn‖

+N‖Svn+1 − Svn‖+N‖Svn − Svn−1‖]dτ

≤
∫ t

0

[(L+M)‖vn − vn−1‖+ L‖wn − wn−1‖

+(M +Ns0T )‖vn+1 − vn‖+Ns0T‖vn − vn−1‖]dτ

=

∫ t

0

[(L+M +Ns0T )‖vn − vn−1‖+ L‖wn − wn−1‖

+(M +Ns0T )‖vn+1 − vn‖]dτ.

By Fatou lemma, taking limit, we have

m1(t) ≤
∫ t

0

[(L+M +Ns0T )m1(τ) + Lm2(τ) + (M +Ns0T )m1(τ)]dτ

=

∫ t

0

[(L+ 2M + 2Ns0T )m1(τ) + Lm2(τ)]dτ.

Similarly, we can obtain

m2(t) ≤
∫ t

0

[(L+ 2M + 2Ns0T )m2(τ) + Lm1(τ)]dτ.

Therefore,

m(t) = m1(t) +m2(t) ≤ 2

∫ t

0

(L+M +Ns0T )m(τ)dτ.

Notice that m(0) = 0, so m(t) ≡ 0 on I. The proof of Lemma 2.4 is complete. 2

Proof of theorem 2.1
By Lemma 2.3, the sequences {vn}, {wn} have uniformly convergent subsequences {vnk}, {wnk}.

We let lim
k→∞

vnk = v, lim
k→∞

wnk = w and notice that

vnk (t) = u0 +

∫ t

0

[−Mvnk (τ)−N(Svnk )(τ) +H0(τ, vnk−1(τ), (Svnk−1)(τ))

+H1(τ, vnk−1(τ), (Svnk−1)(τ)) +H2(τ, wnk−1(τ), (Swnk−1)(τ)) +Mvnk−1(τ) +N(Svnk−1)(τ)]dτ,
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and Lemma 2.4 implies

lim
k→∞

vnk−1 = lim
k→∞

vnk = v, lim
k→∞

wnk−1 = lim
k→∞

wnk = w uniformly on I.

Therefore, leting k →∞, we get

v(t) = u0 +

∫ t

0

[H0(τ, v(τ), (Sv)(τ)) +H1(τ, v(τ), (Sv)(τ)) +H2(τ, w(τ), (Sw)(τ))]dτ.

Similarly, we have

w(t) = u0 +

∫ t

0

[H0(τ, w(τ), (Sw)(τ)) +H1(τ, w(τ), (Sw)(τ)) +H2(τ, v(τ), (Sv)(τ))]dτ.

Thus v, w are the coupled quasi-solutions of (1.1). By (A
′
1), we obtain

‖v(t)− w(t)‖ ≤ 2L

∫ t

0

‖v(τ)− w(τ)‖dτ.

It then follows that ‖v(t) − w(t)‖ ≡ 0 on I since ‖v(0) − w(0)‖ = 0. That is, v = w is a solution
of (1.1). It is easy to prove that the solution of (1.1) is unique by (A

′
1). The proof of theorem 2.1 is

therefore complete. 2

Remark When H1 = H2 = 0, theorem 2.1 in this paper is just theorem 2.1 in [1].

3 Conclusions
In this paper, we obtain an existence theorem of coupled quasi-solutions for a class of integro-
differential equations of Volterra type in a real Banach space by using method of upper and lower
solutions and Mönch and Von Harten theorem.
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