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Abstract

We study an initial value problem for a class of integro-differential equations of Volterra type in a real
Banach space. Using method of upper and lower solutions and Ménch and Von Harten theorem, we
obtain an existence theorem of coupled quasi-solutions, which is an extension of those established
by Y. Chen and W. Zhuang in [1].
Keywords: Banach space; measure of noncompactness; lower and upper solutions; normal cone;
Quasi-solution.
2010 Mathematics Subject Classification: 45D05;34A12

1 Introduction and Preliminaries

Let E be a real Banach space with norm || - ||, and let E* denote the dual of E. Let K C E be a cone.
By means of K a partial order < is definedasv < wiffu —v e K. Welet K* = {p € E* : p(u) >0
forallu € K}.
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A cone K is said to be normal if there exists a real number 6 > 0 such that 0 < v < w implies
[|lv]| < &]|ul|, where § is independent of u, v. We shall always assume in this paper that K is a normal
cone.

Let 5 denote the measure of noncompactness of Hausdorff respectively. If F' is a subspace of E
and M C F is bounded then we define

n(e)
Br(M) =inf{e > 0: M C ] S(z{,¢) for some z; € F}.

i=1

We have
B(B) < Br(B) <2-B(B) for B C F bounded.

For these and further properties we refer to Deimling [2] and Sadovskii [3].
For any v, w € C[I, E] such that v(¢t) < w(t) on I, where I = [0,T],T > 0, we define the conical
segment

[v,w]={ueC[l,E] :v<u<w}

From the definition of [v, w] and the normality of the cone K, we know that [v, w] is a bounded closed
convex subset of C[I, E].

In this paper, we consider the following initial value problem for nonlinear integro-differential
equation (IVP) in a real Banach space, namely

’

u (t) = H(t,u(t), (Su)(t)), u(0)=wuo (1.1)

t

where (Su)(t) = / s(t,T)u(r)dr,s € C[I x I, R and s(t,s) < soon I x I,s0 >0,H € C[I x E x
E, E]. We obtain a?l existence theorem of coupled quasi-solutions via the method of upper and lower
solutions and Ménch and Von Harten theorem. The results of this paper are extensions of those
established in [1].

In the proof of our main results the following lemmas are necessary. See [4],[5],[6] for details.

Lemma 1.1°!(Ménch and Von Harten theorem) Let F be a Banach space and 8 the Hausdorff
measure of noncompactness on E. Let {z, },>1 be a sequence of continuously differentiable functions
from J = [a,b] to E such that there is some p € L'(a,b) with ||z, (¢)|| < p(t) and ||x'n(t)|| < p(t) on
J. Let ¥(t) = B({zn(t)}n>1). Then ¢(t) is absolutely continuous on J and

’

¥ (1) < 28({an(t)}n>1) a.e.on J.

Lemma1.20%] Let E be a separable Banach space and 3 the Hausdorff measure of noncompact-
ness on E. Let {z,},>1 be a sequence of continuous functions from J = [a, b] to E such that there
is some p € L' (a,b) with ||z, (t)|| < p(t) on J. Let () = B({xx(t)}n>1). Then 3 (t) is integrable on
J and

ﬂ({/bmn(s)ds}nzl) < /bw(s)ds.
Lemma 1.3  Lety(t) € C[I, R], y(0) < 0, and satisfy
(< =My(®) = N [ st ry(rdr
where M > 0,N > 0,s € C[I x I,R"],s(t,7) < so for (t,7) € I x I. Suppose further that

NsoT(exp(MT) —1) < M. Theny(t) <0Oforall ¢ € I.
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To define appropriate classes of upper and lower solutions of (1.1) , we shall suppose that H
admits a decomposition of the form

H(t,u,Su) = Ho(t,u, Su) + Hi(t,u, Su) + Ha(t,u, Su),

where Ho, H1,H, € C[I x E x E, E].
Definition 1.1 Let vo,wo € C'[I, E]. Then vy, wo are said to be coupled lower and upper
quasi-solutions of (1.1) if

(1.2)

’UE) — Ho(t,vo,S’Uo) — Hl(t,’Uo,Svo) — Hg(t,u)o, Swo) S 0, 1}0(0) < uo
woy — I‘I(](t,wo7 Swo) — I‘Il(t,wo7 S’wo) — Hg(t, 1}0,51}0) Z 0, ’wo(O) Z U

Ifin (1.2), equalities hold, then v, wo are said to be coupled quasi-solutions of (1.1). Clearly one can
define, based on definition 1.1, coupled maximal and minimal quasi-solutions of (1.1). We also need
a stronger form of coupled upper and lower quasi-solutions of (1.1).

Definition 1.2  Let vo,wo € C*[I, E] be such that vo(t) < wo(t) on I. Then vg, wo are said to
be strongly coupled lower and upper quasi-solutions of (1.1) if there exist constants M > 0, N > 0
such that

(1.3)

vo < Ho(t, o, So) + Hi(t, vo, Svo) + Ha(t, wo, Swo) — M (ve — o) — N(Svo — So)
wo > Ho(t,0,S0) + Hi(t, wo, Swo) + Ha(t, vo, Svo) — M(wo — o) — N(Swo — So)

for all o € [vo, wo).
We list for convenience the following assumptions and suppose that vo, wo € C*[I, E] such that
vo(t) < wo(t) on I and NsoT (exp(MT) — 1) < M.
(A1) For any bounded set B C [vo, wo],
B({Ho(t,x,Sz) + H1(t,z,Sz) : x € B}) < LB(B(t)),
B({Ha(t,x,5z) - = € BY) < LB(B(t)),
where L > 0, B(t) = {z(t) : € B}.
(All) For any w, v € [vo, wo,
[(Ho + H1)(t,u, Su) — (Ho + Hi)(t, v, Sv)|| < Llu(t) — v(t)],
[ Hz(t, w, Su) — Ha(t, v, Sv)|| < Llju(t ) v(®)]],
where L > 0.
(A2) Hi(t,z,Sxz) is nondecreasing in x and H(t,z, Sz) is nonincreasing in z relatively to the
normal cone K.
Note Clearly, (A}) implies (A).

2 Main Results

Our main aim in this paper is to prove the following theorem.

Theorem 2.1 Assume that the cone K is normal and assumptions (A;),(Az) and (1.3) are
satisfied. Then there exists a unique solution w(¢) of (1.1) on I such that u € [vg,wo], provided
vo(O) S uo S w()(O).

In our paper, H = Hy + H1 + H2, where Hy, H,, H, satisfy different conditions respectively. The
papers in [7-12] were concerned with single H , their conditons of measure of noncompactness were
relatively strong.

The proof of the above theorem will be completed by a series lemmas.

First of all, we consider the following linear initial value problem (LIVP):

u = H(t,u,Su), u(0)=uo (2.1)

where H(t,u, Su) = —Mu— N(Su)+Ho(t, n1, Sm)+Hi(t, n1, Sm)+Ha(t, 92, Sn2) +Mn1+N(Sn1),
and 71, n2 € [vo, wo]. Then we have
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Lemma 2.1  For any n1,m2 € [vo, wo), there exists a unique solution w(t) on I of (2.1).

The proof of this lemma is similar to a corresponding result given in [6] with minor modifications.

For any n1,m2 € [vo, wo], we define the mapping A by A[n1,72] = u, where u = u(¢) is the unique
solution of (2.1) on I corresponding to 71, 72. Then we have the following

Lemma 2.2 Suppose that assumptions (Az) and (1.3) hold. Then A maps [vo, wo] X [vo, wo)
into ['U(), 'wo].

Proof. Let ni,7n2 € [vo,wo] and let u = A[ni,n2]. Forany ¢ € K*, set p(t) = ¢(vo(t) — u(t))
and note that p(0) = ¢(vo(0) — ug) < 0. Then for all o € [vg, wo], we have

P (8) = $lvo(t) —u (1))
< ¢(Ho(t,o,So) + Hi(t,vo, Svo) + Ha(t, wo, Swo) — M(vo — o) — N(Svg — So)

—Ho(t,m,Sm) — Hi(t,m,Sm) — Ha(t,n2, Sn2) + M (u —m) + N(Su — Sm)).

Choosing o = 71, then we get

p (1) < $((H(t, UO,SUO) Hi(t,m, Sm)) + (Hz(t, wo, Swo) — Ha(t, n2, Sn2)))
—(M(vo — u) (Svo — Su))
< —Mp(t) N/ (t,)p
which implies p(t) < 0 by Lemma 1.3. This proves vo(t) < u(t) on I since ¢ € K™ is arbitrary.
A similar argument yields that «(¢) < wo(¢) on I. Since 11, n2 € [vo, wo] are arbitrary, the proof is

complete. O
In view of Lemma 2.2, we can define the sequences {v, }, {w,} as follows:

Unt+1 = A[vn, W], Wnt1 = Alwn, vs] and v, wy € [vo, wo],n =0,1,2,- - -

We now prove the following lemma.

Lemma2.3 Suppose thatassumptions (A;), (A2) and (1.3) hold. Then the sequences {v, }, {wn}
are uniformly bounded, equicontinuous and relatively compact on I.

Proof. Since the cone K is normal and v,, w, € [vo, wo] for all ¢ € I, it follows that {v, }, {wn, }
are uniformly bounded on 1.

By assumption (A1), Ho + H, and H> map a bounded set into a bounded set. Noting that

Un(t) = —MUn — N(Svn) + Ho(t, Un—1, S’Un_l) —+ Hl(t, Un—1, Svn_l) (22)
+H(t,wn-1,Swn-1) + Mvn_1 + N(Svn-1),

so there exists a constant M, > 0 such that
[on(l < Mo, tel, n=12,-
Therefore, by the mean value theorem (see theorem 1.3.2 in [13]), we have
lon(t1) — v (t2)|| < Mot — ta|, ti,t2 € 1.

This implies that {v, (¢) } is equicontinuous on I. A similar argument shows that {w,, (¢)} is equicontinu-
ouson I.

Let p(t) = B({vn(t) : m > 0}), ¢(t) = B{wn(t) : n > 0}). Clearly {v,(t)}, {wn(t)} satisfy the
conditions of Lemma 1.2. Therefore

0 (t) < 28({va(t) :n>0}), ¥ (t) <28({w,(t) :n>0}) ae. onl. (2.3)

Let By = span{v,(t),wn(t) : n > 0,t € INQ}, where Q is the set of rational numbers. By assumption
(A1), we have

B{Ho(t,vn-1,SVn-1) + Hi(t,vn—1,Svn-1) : 0 > 1}) < LB({vn—1(t) : n > 1}) = Lp(t), (2.4)
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B{Hz(t,wn—1,Swn-1) :n>1}) < LA{wn-1(t) : n > 1}) = L(¥). (2.5)
By the properties of Hausdorff’s measure of noncompactness and Lemma 1.2, we obtain

BU(Stn-1)(0) 112 1) < B ((Son1) i 2 1) = By (4 sltrhunca(rhdr 2 1)
< /0 Be, {s(t, T)vn-1(7) : n > 1})dr = /0 s(t, 7)BE, ({vn=1(7) : n > 1})dT

< 2/0 s(t, 7)B({vn-1(1) :n > 1})dr < 2/0 sop(T)dT. (2.6)

By (2.2)-(2.6), we have
¢ (1) < 2(200(0) + 2V 250 | o(r)dr + L(t) + Lo(®)
0 t
— 2(2M + L)o(t) + 2L (t) + 8N so / o(r)dr ae. onl.
0

A similar argument yields that

’

P () < 2(2M + L)y(t) + 2Lp(t) + 8Nso /t Y(r)dr ae.onl.
Set m(t) = p(t) + ¥(t), then
m/(t) < 2(2M + L)m(t) +2Lm(t) + 8N so /t m(r)dr, a.e.onl,

that is,
t
m/(t) < 4(M + L)m(t) + 8N50/ m(7)dr a.e.onl.
0

Noting that m(0) = 0, we have
t t T
m(t) < 4(M + L) / m(r)dr + 8Nso / / m(€)dédr
0 t 0 tO t

< A(M + L)/ m(r)dr + 8Nso/ / m(€)dédr

9, 0 Jo
< 4(M + L)/ m(7)dr + 8N80T/ m(&)dg
0 0

t
=4(M+ L+ 2N80T)/ m(7)dr.
0

Consequently, m(t) < m(0)exp(4(M + L + 2NsoT)) = 0, we thus obtain ¢(t) = ¥(t) = 0,t € I.
Hence, by Ascoli-Arzela theorem, the sequences {v,}, {w,} are relatively compact in C[I, E]. The
proof of Lemma 2.3 is complete. ]

Lemma 2.4 Suppose that assumptions (A}), (A2) and (1.3) hold. Then we have p(t) =0on I
for either

p(t) = T [lon (t) — w1 (0)]

n—oo

or -
p(t) = lim |lwn(t) — w1 ()]

n—o0
Proof. Letmi(t) = nILn;ol|U”(t) — V-1 (t)]], m2(t) = ILm [[wn (t) — wn—1(@)||, m(t) = ma(t) +
ma(t). In the following we will prove that m(t) = 0on I.
By the proof of Lemma 2.3, there exists a constant M, > 0 such that

Jon(®)]] < Mo, |lwn(8)|| < Mo, V€I
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Therefore, for all ¢1,t2 € I, we have

[l (t1) — vn—1(t)|| = [lvn(t2) — va—1(t2)]l]
< lvn(tr) = val(t2)[l + [[vn—1(t1) — va—1(t2)]|
< 2Mylt1 — tal,

thus

lon(t1) — vn—1(t)[l < [lvn(t2) — va-1(t2)| + 2Molts — t2f,

lun(t2) — vn—1(t2)[| < [lun(t1) — vn—1(t1)|| + 2Molts — t2|.
Taking the limit, we obtain

ma(t1) < ma(ta) + 2Moltr — t2|, mai(te) < mi(t1) + 2Molt1 — t2|
and so
| (t1) — ma(te)] < 2Molty — tal,
which proves that m,(t) is continuous on I. A similar argument yields that m2(¢) is also continuous
onlI.
Now (A}) yields

t

[on+1(t) —on (D)l S/O (1 Ho (7, vn(7), (Svn)(7)) + Hi (T, va(T), (Sva)(7))

—Ho(7,vn—-1(7), (Svn-1)(7)) — H1(7,vn-1(7), (Svn-1)(7))|l
H[Ha (7, wn (1), (Swn)(7)) — Ha (T, wn—1(7), (Swn-1)(7))|| + M||vn+1 — vnl|
t—l—N||Svn+1 — Svn|| + M||vn — vn—1]] + N||Svn — Svp—1]|ldr
< [ UL+ M) = vneall + Dl = wncal| + Mo = v
Ot—l—NHSvnH — Sunll + N||Svn — Svn_1|]dr
< [ 1@+ 2Dlon = vacall + L, = wo]
Ot-i—(M + NsoT)|[vns1 — vnll + NsoT | on — vn_r|||dr
= / [(L+ M + NsoT)||vn — vn-1]| + L||wn — wn-1]|
* L (M + NosoT)|[vnsr — vnl[Jdr-

By Fatou lemma, taking limit, we have
ma(t) < /O (L + M + NsoT)ma(r) + Lma(r) + (M + NsoT)ma (r)]dr
= t[(L +2M + 2NsoT)ma(7) + Lma(7)]dr.
Similarly, we can obtain i
ma(t) < /O "L+ 2M + 2NsoT)ma () + L (r)]dr.
Therefore,
m(t) = ma(t) + ma(t) < 2 /t(L + M + NsoT)m(7)dr.
0

Notice that m(0) = 0, so m(t) = 0 on I. The proof of Lemma 2.4 is complete. O
Proof of theorem 2.1
By Lemma 2.3, the sequences {v, }, {w» } have uniformly convergent subsequences {vx, }, {wn, }.
We let lerI;o Uny =, leII;IO wn,, = w and notice that

t

Uny (t) = uo + /O [=Muvp, (1) = N(Svn,, ) () + Ho (7, vn ~1(7), (Svn, —1)(7))
+H1(7—7 U"k—l(T)7 (S’Unk_1)(7')) + H2(7—7 wnk—l(T)7 (Swnk—l)(T)) + M’Unk_1(7') + N(Svnk_ﬂ(’f)}dﬂ

476



Liang; BIMCS, 5(4), 471-478, 2015; Article no.BJMCS.2015.033

and Lemma 2.4 implies

lim v, -1 = lim vy, =v, lim w,,—1 = lim w,, = w uniformly on 1.
k—o0 k— oo k—oo k— oo

Therefore, leting k — oo, we get

o(t) = uo + /0 t[HO(T, o(7), (50)()) + Hi (7, 0(7), (Sv)(7)) + Ha (7, w(7), (Sw)(7))]dr.
Similarly, we have

w(t) =uo + /Ot[Ho(ﬂ w(T), (Sw)(7)) + Hi (7, w(7), (Sw)(7)) + Ha (7, v(7), (Sv)(7))]dT.
Thus v, w are the coupled quasi-solutions of (1.1). By (A}), we obtain

t
Jo(®) — w)l <2L [ fo(r) = w(o)dr.
0
It then follows that ||v(t) — w(t)|] = 0 on I since ||v(0) — w(0)|| = 0. Thatis, v = w is a solution
of (1.1). It is easy to prove that the solution of (1.1) is unique by (A). The proof of theorem 2.1 is

therefore complete. ]
Remark When H; = H; = 0, theorem 2.1 in this paper is just theorem 2.1 in [1].

3 Conclusions
In this paper, we obtain an existence theorem of coupled quasi-solutions for a class of integro-

differential equations of Volterra type in a real Banach space by using method of upper and lower
solutions and Ménch and Von Harten theorem.
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