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Abstract
The existence of nonoscillatory solutions of a class of higher order forced neutral dynamic equations
with time delay on time scales is discussed. The main tool is the Banach fixed point theorem. Based
on the different values of p(t), we give several existence theorems of nonoscillatory solutions of our
discussing equations. An example is also presented to illustrate the applications of the obtained
results.
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1 Introduction
Theory of dynamic equations on time scales has a very important theoretical significance and broad
application prospects [1,2], and the study of dynamic equations on time scales can further improve
the related results of differential and difference equations with time delay. Therefore, the study of

*Corresponding author: E-mail: fjj18@126.com
Project supported by NSFN of China (No.11171192) and NSF of Shandong Province (No.

ZR2013AM005).

www.sciencedomain.org


Fan & Lu; BJMCS, 5(4), 492-501, 2015; Article no.BJMCS.2015.035

dynamic equations on time scales has become one of the hot issues in recent years and the calculus
theory on time scales is more and more perfect [3,4]. Certain results have been obtained in the
qualitative theory and the existence of nonoscillatory solutions of dynamical equations on time scales
[5,6,7,8]. There have been some research results [9,10,11] about the oscillation and nonoscillation of
higher order neutral differential equation, but the achievements about the existence of nonoscillatory
solutions of the higher order neutral differential equations with time delay are less.

In [12] authors studied the neutral dynamic equation with positive and negative coefficients on
time scales

(x(t)− x(t− τ))∆ + p(t)x(t− θ)−Q(t)x(t− δ) = 0,

and obtained the sufficient conditions for the existence of the bounded positive solution and bounded
oscillatory solution of this equation.

In [13] authors discussed the following dynamic equation by Krasnoselskii fixed point theorem

(x(t) + p(t)x(g(t)))∆ + f(t, x(h(t))) = 0,

and obtained the criteria for the existence of nonoscillatory solution of this equation.
In [14] authors considered the n-order neutral differential equation

[x(t) + px(t− τ)](n) + f [t, x(t− τ1(t)), · · ·, x(t− τk(t))] = 0,

and gained the sufficient conditions for the existence of the positive solution of this equation as p 6= 1
and the necessary and sufficient conditions for the existence of the bounded positive solution of this
equation as p = −1.

In this paper, we consider the existence of nonoscillatory solution of the following forced n-order
neutral dynamic equation with time delay on time scales

[x(t) + p(t)x(τ(t))]∆
n

+ f [t, x(δ1(t)), x(δ2(t)), · · ·, x(δm(t))] = g(t), t ∈ [t0,∞)T, (1.1)

where T is an no upper-bounded time scale, p, g ∈ Crd([t0,∞)T, R), τ, δi ∈ Crd([t0,∞)T, [t0,∞)T), i =
1, 2, · · ·,m, f ∈ C([t0,∞)T ×Rm, R), t0 ∈ T, and Crd represents the set of all right dense continuous
functions.

According to the different values of p(t), we construct different special nonempty closed sets and
special operators in Banach spaces, and prove the existence of nonoscillatory solution of (1.1) by
using Banach fixed point theorem and extend the previous results. By giving special time scales, we
obtain the existence of nonoscillatory solution of the forced n-order neutral differential equation with
time delay. An example is also presented to illustrate the applications of the obtained results.

2 Preliminaries and Lemmas
A time scale is an arbitrary nonempty closed subset of the real numbers. Let T be a time scale.
For t ∈ T we define the forward jump operator σ : T → T by σ(t) = inf{s ∈ T : s > t}, while
the back jump operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}, where inf ∅ = supT
and sup ∅ = inf T. If σ(t) > t, we say that t ∈ T is right-scattered, while if ρ(t) < t we say that t
is left-scattered. Also, if t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and
ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense at the same time are
called dense. Defining the set Tκ as following: If T has a maximum left-scattered point M , then
Tκ = T − {M}. Otherwise, Tκ = T. Assume f : T → R, t ∈ Tκ. If there is a constant α, for any
ε > 0, and there is a neighborhood UT(= (t− δ, t+ δ)

⋂
T for some δ > 0) of t, such that

|f(σ(t))− f(s)− α[σ(t)− s]| ≤ ε|σ(t)− s|, s ∈ UT,

then we say that f is ∆ differentiable at t, and the derivative is α, which is denoted by f∆(t). Similarly,
we can define n order ∆ derivative f∆n

= (f∆n−1

)∆. Other concepts and calculations on time scales
can be seen in [1-2].
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Lemma 2.1 [10] (Banach fixed point theorem) Suppose (X, ρ) is a complete metric space, Ω is
a nonempty closed subset of X and T is a contraction mapping from Ω to itself. Then T has a unique
fixed point in Ω.

Lemma 2.2 [15] Let a ∈ Tκ, b ∈ T, a < b, t ∈ Tκ, t > a. Assume f : T × Tκ → R is
continuous and f∆(t, ·) is rd-continuous in [a, σ(t)]( f∆ denotes the derivative of the first variable).

Set h(t) :=

∫ b

t

f(t, τ)∆τ , then h∆(t) =

∫ b

t

f∆(t, τ)∆τ − f(σ(t), t).

We say that a nontrivial solution of (1.1) is oscillatory if it is finally not positive or not negative,
otherwise we say that it is nonoscillatory. If all solutions of (1.1) are oscillatory, then we say that the
equation (1.1) is oscillatory.

For convenience, we list the following assumptions:
(H1) δi(t) ≤ t,∀t ∈ [t0,∞)T, and lim

t∈T,t→∞
δi(t) =∞, i = 1, 2, ··,m;

(H2) τ(t) ≤ t,∀t ∈ [t0,∞)T, and lim
t∈T,t→∞

τ(t) =∞;

(H3) ∃G ∈ Cnrd([t0,∞)T, R), G0 ∈ R, s.t. G∆n

(t) = g(t), ∀t ∈ [t0,∞)T, lim
t∈T,t→∞

G(t) = G0;

(H4) xif(t, x1, x2, ··, xm) ≥ 0, f(t, x1, x2, ··, xm) is not decreasing for each xi ∈ R,i = 1, 2, · ·

·,m, t ∈ [t0,∞)T, and ∃b > 2, s.t.

∫ ∞
t0

(σ(s)− t0)n−1f(s, b, ··, b)∆s <∞.

3 Main Results
We consider the Banach space

BC[t0,∞)T = {x : x ∈ Crd([t0,∞)T, R), sup
t∈[t0,∞)T

|x(t)| <∞}

endowed with the norm
|| x ||= sup

t∈[t0,∞)T

|x(t)|.

The main results in this paper are the following theorems.
Theorem 3.1 Assume (H1) ∼ (H4) hold, and there exist 0 < c1 < c2 < 1, such that c1 ≤

p(t) ≤ c2, and for all 0 ≤ ui, vi ≤ b, i = 1, 2, · · ··,m, | f(t, v1, v2, · · ·, vm) − f(t, u1, u2, · · ·, um) |≤
mf(t, b, b, ··, b) sup

1≤i≤m
| vi − ui | holds. Then there exists a bounded nonoscillatory solution of (1.1).

Proof Let Ω = {x : x ∈ BC[t0,∞)T,
b(1− c2)

2(1− c1)
≤ x(t) ≤ b, ∀t ∈ [t0,∞)T}. Clearly, Ω is a

nonempty closed subset inBC[t0,∞)T. From (H1) ∼ (H4), there exists sufficient large T0 ∈ [t0,∞)T,
when t ∈ [T0,∞)T,

τ(t) ≥ t0, δi(t) ≥ t0, i = 1, 2, · · ·,m, (3.1)

| G(t)−G0 |≤
(b− 2)(1− c2)

4
, (3.2)

1

(n− 1)!

∫ ∞
T0

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s ≤ 1− c2
2m

. (3.3)

Define the operator S : Ω→ BC[t0,∞)T as follows

(Sx)(t) =



b

4(1− c1)
(3 + c2 − c1 − 3c1c2)− p(t)x(τ(t))+

(−1)n−1

(n− 1)!

∫ ∞
t

(σ(s)− t)n−1f(s, x(δ1(s)), x(δ2(s)), · · ·, x(δm(s)))∆s+G(t)−G0, t ∈ [T0,∞)T;

(Sx)(T0), t ∈ [t0, T0)T.
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Firstly, we prove SΩ ⊆ Ω. When t ∈ [t0, T0)T, (Sx)(t) = (Sx)(T0), so we only need to discuss
the case on t ∈ [T0,∞)T.

From (H4) and (3.1) ∼ (3.3), for all t ∈ [T0,∞)T, x ∈ Ω, we have

(Sx)(t) ≥ b

4(1− c1)
(3 + c2 − c1 − 3c1c2)− c2b−

1

(n− 1)!

∫ ∞
T0

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s

− | G(t)−G0 |

≥ b

4(1− c1)
(3 + c2 − c1 − 3c1c2)− c2b−

1

2
(1− c2)− 1

4
(b− 2)(1− c2) =

b(1− c2)

2(1− c1)
,

(Sx)(t) ≤ b

4(1− c1)
(3 + c2 − c1 − 3c1c2)− bc1(1− c2)

2(1− c1)
+

1

(n− 1)!

∫ ∞
T0

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s

+ | G(t)−G0 |

≤ b

4(1− c1)
(3 + c2 − c1 − 3c1c2)− bc1(1− c2)

2(1− c1)
+

1

2
(1− c2) +

1

4
(b− 2)(1− c2) = b.

Therefore
b(1− c2)

2(1− c1)
≤ Sx(t) ≤ b, so SΩ ⊆ Ω.

Secondly, we prove that S is a contraction mapping on Ω. When t ∈ [t0, T0)T, | (Sx)(t) −
(Sy)(t) |=| (Sx)(T0)− (Sy)(T0) |, so we only need to discuss the case on t ∈ [T0,∞)T.

For all t ∈ [T0,∞)T, x, y ∈ Ω, from (H4) and (3.1), (3.3),

| (Sx)(t)− (Sy)(t) |≤ p(t) | x(τ(t))− y(τ(t)) | + 1

(n− 1)!

∫ ∞
t

(σ(s)− t)n−1 | f(s, x(δ1(s))

, · · ·, x(δm(s)))− f(s, y(δ1(s)), · · ·, y(δm(s))) | ∆s

≤ c2 ‖ x− y ‖ +
1− c2

2
‖ x− y ‖= 1 + c2

2
‖ x− y ‖,

so ‖ Sx− Sy ‖≤ 1 + c2
2
‖ x− y ‖ . Thus S is a contraction mapping on Ω since 0 < c2 < 1.

By Lemma 2.1, there exists x ∈ Ω, such that (Sx)(t) = x(t) holds for all t ∈ [t0,∞)T. Therefore,
we have

x(t) + p(t)x(τ(t)) =
b

4(1− c1)
(3 + c2 − c1 − 3c1c2)

+
(−1)n−1

(n− 1)!

∫ ∞
t

(σ(s)− t)n−1f(s, x(δ1(s)), x(δ2(s)), · · ·, x(δm(s)))∆s+G(t)−G0.

By Lemma 2.2, we obtain

[x(t) + p(t)x(τ(t))]∆ =
(−1)n

(n− 2)!

∫ ∞
t

(σ(s)− t)n−2f(s, x(δ1(s)), x(δ2(s)), · · ·, x(δm(s)))∆s+G∆(t),

[x(t)+p(t)x(τ(t))]∆
2

=
(−1)n+1

(n− 3)!

∫ ∞
t

(σ(s)− t)n−3f(s, x(δ1(s)), x(δ2(s)), · · ·, x(δm(s)))∆s+G∆2

(t),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ··

[x(t) + p(t)x(τ(t))]∆
n−1

= (−1)2n−2

∫ ∞
t

f(s, x(δ1(s)), x(δ2(s)), · · ·, x(δm(s)))∆s+G∆n−1

(t),

[x(t) + p(t)x(τ(t))]∆
n

+ f [t, x(δ1(t)), x(δ2(t)), · · ·, x(δm(t))] = g(t).
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Therefore x(t) is a bounded nonoscillatory solution of (1.1). 2

Theorem 3.2 Assume (H1) ∼ (H4) hold, and there exist −1 < p1 < p2 < 0, such that p1 ≤
p(t) ≤ p2, and for all 0 ≤ ui, vi ≤ b, i = 1, 2, · · ·,m,| f(t, v1, v2, · · ·, vm) − f(t, u1, u2, · · ·, um) |≤
mf(t, b, b, · · ·, b) sup

1≤i≤m
| vi − ui | holds. Then there exists a bounded nonoscillatory solution of (1.1).

Proof Let Ω = {x : x ∈ BC[t0,∞)T,
b(1 + p1)

2(1 + p2)
≤ x(t) ≤ b, ∀t ∈ [t0,∞)T}. Obviously, Ω is a

nonempty closed subset inBC[t0,∞)T. From (H1) ∼ (H4), there exists sufficient large T0 ∈ [t0,∞)T,
when t ∈ [T0,∞)T,

τ(t) ≥ t0, δi(t) ≥ t0, i = 1, 2, · · ·,m, (3.4)

| G(t)−G0 |≤
(b− 2)(1 + p1)

4
, (3.5)

1

(n− 1)!

∫ ∞
T0

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s ≤ 1 + p1

2m
. (3.6)

Define the operator S : Ω→ BC[t0,∞)T as follows

(Sx)(t) =



3b(1 + p1)

4
− p(t)x(τ(t))+

(−1)n−1

(n− 1)!

∫ ∞
t

(σ(s)− t)n−1f(s, x(δ1(s)), x(δ2(s)), · · ·, x(δm(s)))∆s+G(t)−G0, t ∈ [T0,∞)T;

(Sx)(T0), t ∈ [t0, T0)T.

Firstly, we prove SΩ ⊆ Ω. From (H4) and (3.4) ∼ (3.6), for all t ∈ [T0,∞)T, x ∈ Ω, we have

(Sx)(t) ≥ 3b(1 + p1)

4
− p2

b(1 + p1)

2(1 + p2)
− 1

(n− 1)!

∫ ∞
T0

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s

− | G(t)−G0 |

≥ 3b(1 + p1)

4
− p2

b(1 + p1)

2(1 + p2)
− 1

2
(1 + p1)− (b− 2)(1 + p1)

4
=
b(1 + p1)

2(1 + p2)
,

(Sx)(t) ≤ 3b(1 + p1)

4
− p1b+

1

(n− 1)!

∫ ∞
T0

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s

+ | G(t)−G0 |

≤ 3b(1 + p1)

4
− p1b+

1

2
(1 + p1) +

(b− 2)(1 + p1)

4
= b.

Therefore
b(1 + p1)

2(1 + p2)
≤ (Sx)(t) ≤ b,

so SΩ ⊆ Ω.
Secondly, we prove S is a contraction mapping on Ω. For all t ∈ [T0,∞)T, x, y ∈ Ω, from (H4)

and (3.4), (3.6), we obtain

| (Sx)(t)− (Sy)(t) |≤| p(t) || x(τ(t))− y(τ(t)) | + 1

(n− 1)!

∫ ∞
t

(σ(s)− t)n−1 | f(s, x(δ1(s))

, · · ·, x(δm(s)))− f(s, y(δ1(s)), · · ·, y(δm(s))) | ∆s

≤ −p1 ‖ x− y ‖ +
1 + p1

2
‖ x− y ‖= 1− p1

2
‖ x− y ‖,

so ‖ Sx− Sy ‖≤ 1− p1

2
‖ x− y ‖ . Hence S is a contraction mapping on Ω since −1 < p1 < 0.
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By Lemma 2.1, there exists x ∈ Ω and (Sx)(t) = x(t) holds for all t ∈ [t0,∞)T.
Finally, by Lemma 2.2 and simple calculation, x(t) is a bounded nonoscillatory solution of (1.1).2

Theorem 3.3 Suppose that (H1) ∼ (H4) hold, and τ is a monotone increasing mapping, and
there exist d1 < d2 < −1, s.t. (1 − b)d2 + d1 > 0, d1 ≤ p(t) ≤ d2, and for all 0 ≤ ui, vi ≤ b, i =
1, 2, · · ·,m,| f(t, v1, v2, · · ·, vm)− f(t, u1, u2, · · ·, um) |≤ mf(t, b, b, · · ·, b) sup

1≤i≤m
| vi−ui | holds. Then

there exists a bounded nonoscillatory solution of (1.1).

Proof Let Ω = {x : x ∈ BC[t0,∞)T,
b(1 + d2)

2(1 + d1)
≤ x(t) ≤ b, ∀t ∈ [t0,∞)T}. Then Ω is a

nonempty closed subset inBC[t0,∞)T. From (H1) ∼ (H4), there exists sufficient large T0 ∈ [t0,∞)T,
when t ∈ [T0,∞)T,

τ(t) ≥ t0, τ−1(t) ≥ t0, δi(t) ≥ t0, i = 1, 2, · · ·,m, (3.7)

| G(t)−G0 |≤
(d2 + 1)(d1 + d2 − bd2)

2(d1 + d2)
, (3.8)

1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s ≤ −1− d2

2m
. (3.9)

Define the operator S : Ω→ BC[t0,∞)T as follows

(Sx)(t) =



1

p(τ−1(t))
[
b(d2 + 1)

d1 + d2
(d1 +

d2

2
)− x(τ−1(t))+

(−1)n−1

(n− 1)!

∫ ∞
τ−1(t)

(σ(s)− τ−1(t))n−1f(s, x(δ1(s)), · · ·, x(δm(s)))∆s+G(τ−1(t))−G0], t ∈ [T0,∞)T;

(Sx)(T0), t ∈ [t0, T0)T.

Firstly, we prove SΩ ⊆ Ω. From (H4) and (3.7) ∼ (3.9), for all t ∈ [T0,∞)T, x ∈ Ω,

(Sx)(t) ≥ 1

d1
[
b(d2 + 1)

d1 + d2
(d1 +

d2

2
)]− b(1 + d2)

2d1(1 + d1)

+
1

p(τ−1(t))

1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s+
1

p(τ−1(t))
| G(t)−G0 |

≥ 1

d1
[
b(d2 + 1)

d1 + d2
(d1 +

d2

2
)]− 1

d1

b(1 + d2)

2(1 + d1)
− d2 + 1

2d2
+

1

d2

(d2 + 1)(d1 + d2 − bd2)

2(d1 + d2)
=
b(1 + d2)

2(1 + d1)
,

(Sx)(t) ≤ 1

d2
[
b(d2 + 1)

d1 + d2
(d1 +

d2

2
)]− 1

d2
b− 1

p(τ−1(t))

1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s

− 1

p(τ−1(t))
| G(t)−G0 |

≤ 1

d2
[
b(d2 + 1)

d1 + d2
(d1 +

d2

2
)]− 1

d2
b+

d2 + 1

2d2
− 1

d2

(d2 + 1)(d1 + d2 − bd2)

2(d1 + d2)
= b.

So
b(1 + d2)

2(1 + d1)
≤ x(t) ≤ b.

Therefore SΩ ⊆ Ω.
Secondly, we prove S is a contraction mapping on Ω. For all t ∈ [T0,∞)T, x, y ∈ Ω, from (H4)

and (3.7), (3.9), we obtain

| (Sx)(t)−(Sy)(t) |≤| 1

p(τ−1(t))
| [ | x(τ−1(t))− y(τ−1(t)) | + 1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− τ−1(t))n−1
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| f(s, x(δ1(s)), · · ·, x(δm(s)))− f(s, y(δ1(s)), · · ·, y(δm(s))) | ∆s ]

≤ 1

−d2
‖ x− y ‖ +

−1− d2

−2d2
‖ x− y ‖= d2 − 1

2d2
‖ x− y ‖.

Hence ‖ Sx− Sy ‖≤ d2 − 1

2d2
‖ x− y ‖ . Thus S is a contraction mapping on Ω since d2 < −1,.

From Lemma 2.1, there exists x ∈ Ω and (Sx)(t) = x(t) holds for all t ∈ [t0,∞)T.

Finally, by Lemma 2.2 and simple calculation, x(t) is a bounded nonoscillatory solution of (1.1).2

Theorem 3.4 Suppose that (H1) ∼ (H4) hold, and τ is a monotone increasing mapping, and
there exist q2 > q1 > 1, s.t. q2

1 > q2, b(q
2
1 − q2) > (q2 − 1)(q1 + q2), q1 ≤ p(t) ≤ q2, and for all 0 ≤

ui, vi ≤ b, i = 1, 2, · · ·,m, | f(t, v1, v2, · · ·, vm)−f(t, u1, u2, · · ·, um) |≤ mf(t, b, b, · · ·, b) sup
1≤i≤m

| vi−ui |

holds. Then there exists a bounded nonoscillatory solution of (1.1).

Proof Let Ω = {x : x ∈ BC[t0,∞)T,
bq2(q2

1 − q2)

2q1(q2
2 − q1)

≤ x(t) ≤ b, ∀t ∈ [t0,∞)T}. Clearly, Ω is a

nonempty closed subset inBC[t0,∞)T. From (H1) ∼ (H4), there exists sufficient large T0 ∈ [t0,∞)T,
when t ∈ [T0,∞)T,

τ(t) ≥ t0, τ−1(t) ≥ t0, δi(t) ≥ t0, i = 1, 2, · · ·,m, (3.10)

| G(t)−G0 |≤
1

2(q1 + q2)
[(q2

1 − q2)b− (q1 − 1)(q1 + q2)], (3.11)

1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s ≤ q1 − 1

2m
. (3.12)

Define the operator S : Ω→ BC[t0,∞)T as follows

(Sx)(t) =



1

p(τ−1(t))
{ bq2
q1 + q2

[1 + q1 +
(q2

1 − q2)(q2 + 1)

2(q2
2 − q1)

]− x(τ−1(t))+

(−1)n−1

(n− 1)!

∫ ∞
τ−1(t)

(σ(s)− τ−1(t))n−1f(s, x(δ1(s)), · · ·, x(δm(s)))∆s+G(τ−1(t))−G0}, t ∈ [T0,∞)T;

(Sx)(T0), t ∈ [t0, T0)T.

Firstly, we prove SΩ ⊆ Ω. From (H4) and (3.10) ∼ (3.12), for t ∈ [T0,∞)T, x ∈ Ω,

(Sx)(t) ≥ 1

q2

bq2
q1 + q2

[1 + q1 +
(q2

1 − q2)(q2 + 1)

2(q2
2 − q1)

]− b

q1

− 1

p(τ−1(t))

1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s− 1

p(τ−1(t))
| G(t)−G0 |

≥ b

q1 + q2
[1 + q1 +

(q2
1 − q2)(q2 + 1)

2(q2
2 − q1)

]− b

q1
− q1 − 1

2q1
− 1

2q1(q1 + q2)
[(q2

1 − q2)b− (q1 − 1)(q1 + q2)]

=
bq2(q2

1 − q2)

2q1(q2
2 − q1)

,

(Sx)(t) ≤ 1

q1

bq2
q1 + q2

[1 + q1 +
(q2

1 − q2)(q2 + 1)

2(q2
2 − q1)

]− bq2(q2
1 − q2)

2q1(q2
2 − q1)

q2

+
1

p(τ−1(t))

1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− t0)n−1f(s, b, · · ·, b)∆s+
1

p(τ−1(t))
| G(t)−G0 |

≤ bq2
q1(q1 + q2)

[1 + q1 +
(q2

1 − q2)(q2 + 1)

2(q2
2 − q1)

]− b(q2
1 − q2)

2q1(q2
2 − q1)

+
q1 − 1

2q1
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+
1

2q1(q1 + q2)
[(q2

1 − q2)b− (q1 − 1)(q1 + q2)] = b.

Therefore
bq2(q2

1 − q2)

2q1(q2
2 − q1)

≤ x(t) ≤ b.

So SΩ ⊆ Ω.
Secondly, we prove S is a contraction mapping on Ω. For t ∈ [T0,∞)T, x, y ∈ Ω,from (H4) and

(3.10), (3.12), we have

| (Sx)(t)−(Sy)(t) |≤ 1

p(τ−1(t))
[ | x(τ−1(t))− y(τ−1(t)) | + 1

(n− 1)!

∫ ∞
τ−1(T0)

(σ(s)− τ−1(t))n−1

| f(s, x(δ1(s)), · · ·, x(δm(s)))− f(s, y(δ1(s)), · · ·, y(δm(s))) | ∆s ]

≤ 1

q1
‖ x− y ‖ +

q1 − 1

2q1
‖ x− y ‖= q1 + 1

2q1
‖ x− y ‖.

Thus ‖ Sx− Sy ‖≤ q1 + 1

2q1
‖ x− y ‖ . Therefore S is a contraction mapping on Ω since q1 > 1.

From Lemma 2.1, there exists x ∈ Ω and (Sx)(t) = x(t) holds for all t ∈ [t0,∞)T.
Finally, by Lemma 2.2 and simple calculation, x(t) is a bounded nonoscillatory solution of (1.1).2

As an application of Theorem 3.1 ∼ Theorem 3.4, we can obtain several relevant results on the
following special time scale.

When T = R, the equation (1.1) is the following differential equation

[x(t) + p(t)x(τ(t))](n) + f [t, x(δ1(t)), x(δ2(t)), · · ·, x(δm(t))] = g(t), t ∈ [t0,∞)T, (3.13)

where t0 ∈ R, p, g, τ, δi ∈ Crd([t0,∞), R), i = 1, 2, · · ·,m, f ∈ C([t0,∞)×Rm, R).
The assumptions (H1) ∼ (H4) are the following (H

′
1) ∼ (H

′
4)

(H
′
1) δi(t) ≤ t,∀t ∈ [t0,∞), and lim

t→∞
δi(t) =∞, i = 1, 2, · · ·,m;

(H
′
2) τ(t) ≤ t,∀t ∈ [t0,∞), and lim

t→∞
τ(t) =∞;

(H
′
3) ∃G ∈ Cn([t0,∞), R), G0 ∈ R, s.t. G(n)(t) = g(t), ∀t ∈ [t0,∞), lim

t→∞
G(t) = G0;

(H
′
4) xif(t, x1, x2, · · ·, xm) ≥ 0, f(t, x1, x2, · · ·, xm) is not decreasing for each xi ∈ R, i =

1, 2, · · ·,m, t ∈ [t0,∞), and ∃b > 2, s.t.

∫ ∞
t0

(s− t0)n−1f(s, b, · · ·, b)ds <∞.

In Theorem 3.1 ∼ Theorem 3.4, the conditons (H1) ∼ (H4) are replaced by (H
′
1) ∼ (H

′
4) and

other conditions are not changed, then there exists a bounded nonoscillatory solution of (3.13).

4 Applications
We consider the fifth-order forced neutral dynamic equation with time delay on T = [2,∞)

[x(t) + (
1

t
+

1

3
)x(t− 1)](5) + [

119(t− 1)

t7
+

160

t(t− 1)5
]x(t− 1) = − 1

t6
, (4.1)

where m = 1, n = 5, p(t) =
1

t
+

1

3
, τ(t) = δ1(t) = t− 1, g(t) = − 1

t6
, t0 = 2,

f(t, x(δ1(t))) = [
119(t− 1)

t7
+

160

t(t− 1)5
]x(t− 1).

Let b > 2, we have

(s− 2)4f(s, b) = (s− 2)4[
119(s− 1)

s7
+

160

s(s− 1)5
]b <

119b

s2
+

160b

(s− 1)2
,
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and ∫ ∞
2

(
119b

s2
+

160b

(s− 1)2
)ds <∞.

Therefore the conditions of Theorem 3.1 are satisfied and there exists a bounded nonoscillatory
solution of (4.1). In fact, x(t) = 1

t
+ 1 is a nonoscillatory solution of (4.1).

5 Conclusions

In this paper, we obtain several existence theorems of nonoscillatory solutions of a class of higher
order forced neutral dynamic equations with time delay on time scales and give an example to
illustrate the applications of the obtained results.
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