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Abstract
In this paper, we study existence, and the asymptotic behavior, with respect to λ, of positive radially
symmetric solutions of

−4pu = λh(x, u)

in annular domains in RN , N ≥ 2. The nonlinear term has a superlinear local growth at infinity, and
is nonnegative.
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1 Introduction and Main Results
We study existence and the asymptotic behavior with respect to λ of positive solutions of the problem{

−4pu = λh(x, u), in Ω,

u = 0, on ∂Ω,
(Aλ)

where Ω = {x ∈ RN : r1 < |x| < r2} with 0 < r1 < r2, 4pu = div(|∇u|p−2∇u) (1 < p ≤ N ) is the
p-laplacian, and where λ > 0 is a real parameter and h is a radial nonnegative nonlinearity which is
locally superlinear at +∞.

In recent years, the existence, non-existence, asymptotic behavior and uniqueness of the positive
solutions for the following quasilinear eigenvalue problems{

−4p u = λf(u(x)), x ∈ Ω;
u(x) = 0, x ∈ ∂Ω, (Bλ)

have been studied by many authors. In [1] Maya and Petr proved nonexistence results for when Ω is a
unit ball in RN and f has only one zero. In [2], nonexistence and existence results are proved when Ω
is a connected and bounded subset of RN . [3] studied elliptic systems related to (Bλ) and proved the
existence of positive solutions to (Bλ) in some sublinear cases. The result of nontrivial solutions for p-
Laplacian systems be proved by [4]. When f is strictly increasing on R+, f(0) = 0, lim

s→0+
f(s)/sp−1 =

0 and f(s) ≤ α1 + α2s
µ, 0 < µ < p − 1, α1, α2 > 0, it was shown in [5] that there exist at least

two positive solutions for Eqs (Bλ) when λ is sufficiently large. If lim
s→0+

inf f(s)/sp−1 > 0, f(0) = 0

and the monotonicity hypothesis (f(s)/sp−1)′ < 0 holds for all s > 0, it was proved i n[6] that the
problem (Bλ) has a unique positive solution when λ is sufficiently large. Moreover, it was also shown
in [7] that problem (Bλ) has a unique positive large solution and at least one positive small solution
when λ is large if f is nondecreasing; there exist α1, α2 > 0 such that f(s) ≤ α1 + α2s

β , 0 < β <

p− 1; lim
s→0+

f(s)

sp−1
= 0, and there exist T, Y > 0 with Y ≥ T such that

(f(s)/sp−1)′ > 0 for s ∈ (0, T )

and
(f(s)/sp−1)′ < 0 for s > Y.

Recently, [8] considered the case when Ω is an annular domains, and obtained the existence of
positive large solutions for the problem (Bλ) when λ sufficiently small. [9] proved the singular problem
(Bλ) has a unique positive radial solution if f is a continuous function and positive on Ω = BR (here
BR is a ball). The existence of entire solutions for (Bλ) with singular and non-singular has been
considered in [10].

When p = 2, f(0) < 0, Ω is an annulus or a ball and f has more than one zero, the related
results for the problem (Bλ) have been obtained by [11] and [12]. In [13,14], when p = 2, f(0) < 0, f
is a monotone nondecreasing nonlinearity and has only one zero, this problem has been studied by
[13] in the ball, and by [14] in the annulus. The asymptotic behavior of positive solution have been
obtained by [15,16].

When p = 2, the existence, multiplicity, and the behavior of positive radially solutions of (Aλ)
has been studied extensively, see for example [17] and the reference therein. When Ω is a bounded
domain of RN , (Aλ) is studied in [18] by the same authors as [17].

Motivated by the results of the above cited papers, we shall attempt to treat such equation (Aλ),
the results of the literature [17] are extended to the problem (Aλ).
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In fact, in order to study the solution of (Aλ), one can make a standard change of variables. In
the case N ≥ p+ 1, if t = − A

r(N−p)/(p−1) +B and v(t) = u(r), where

A =
(r1r2)

N−p
p−1

r
N−p
p−1

2 − r
N−p
p−1

1

and B =
r
N−p
p−1

2

r
N−p
p−1

2 − r
N−p
p−1

1

,

then Problem (Aλ) transforms into the boundary value problem for the ODE{
(|v′(t)|p−2v′(t))′ + λq(t)f(t, v(t)) = 0, t ∈ (0, 1),

v(0) = v(1) = 0,
(Pλ)

where

f(t, v) = h((
A

B − t )
p−1
N−p , v(t)) and q(t) = (

N − p
p− 1

)1−p
A

(p−1)2

N−p

(B − t)
(p−1)(N−1)

N−p

.

In the case N = p, one sets r = r2( r1
r2

)t and v(t) = u(r), obtaining again the Problem (Pλ), this time
with

f(t, v) = h(r2(
r1
r2

)t, v(t)) and q(t) = [r2(
r1
r2

)t(ln
r2
r1

)−1]p−1.

Note that, in both cases, the function q(t) is well defined, continuous and bounded between positive
constants in the interval [0, 1].

For our purpose, we shall restrict our attention to the ordinary boundary value problem (Pλ),
where the function q(t) is continuous and positive on the interval [0, 1], while for f we consider the
following assumptions:

(H1) The function f : [0, 1]×[0,+∞)→ [0,+∞) is continuous, f(t, 0) = 0 and f(t, v) > 0 if v > 0.

(H2) There exists a continuous function b : [0, 1]→ (0,+∞) such that

limv→0+
f(t,v)

vp−1 = b(t) uniformly in t ∈ [0, 1].

(H3) There exist positive constants 0 < α < β < 1 such that

limv→+∞
f(t,v)

vp−1 = +∞ uniformly in t ∈ [α, β].

Before stating our results, we need to introduce some notations. Let m : [0, 1] → R be a
continuous function and consider the eigenvalue problem{

−(|v′(t)|p−2v′(t))′ = λm(t)|v(t)|p−2v(t), in (0, 1),

v(0) = v(1) = 0.
(1.1)

In particular λ1,m > 0 is called the first eigenvalue of (1.1) and the associated eigenfunction will be
denoted by φ1,m. It is known that φ1,m > 0. Then, λ1,m satisfies{

−(|φ′1,m(t)|p−2φ′1,m(t))′ = λ1,mm(t)φp−1
1,m (t), in (0, 1),

φ1,m(0) = φ1,m(1) = 0.
(1.2)

In addition, we have ∫ 1

0

|v′(t)|pdt ≥ λ1,m

∫ 1

0

m(t)|v(t)|pdt for any v ∈ H1
0 (0, 1), (1.3)
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where the equality holds if and only if v is a multiple of φ1,m.

Since q(t) and b(t) are continuous and positive in [0, 1], there exist Ci(i = 1, 2, 3, 4) > 0 such that

max
t∈[0,1]

q(t) = C1, max
t∈[0,1]

b(t) = C2,

min
t∈[0,1]

q(t) = C3, min
t∈[0,1]

b(t) = C4.

The main results in this paper are the following theorems.

Theorem 1.1. Suppose f(t, v) satisfies the hypotheses (H1) ∼ (H3). Then there exists a positive
solution of Problem (Pλ), for every 0 < λ < λ∗, where λ∗ = 1

(1+ε)C1C2
.

Theorem 1.2. Suppose f(t, v) satisfies the hypotheses (H1) ∼ (H3) and {vλ} is a family of
positive solutions of Problem (Pλ). Then one has

‖vλ‖∞ → +∞ when λ→ 0+.

The paper is organized as follows. In Section 2, we establish some notations, as well as some
basic facts, and we state some known results that will be used in the paper. Section 3 contains the
proof of the solution for λ small (Theorem 1.1), a Krasnoselskii fixed point theorem is used. Finally, in
Section 4, we study the asymptotic behavior of the solutions (Theorem 1.2).

2 Preliminaries

We consider the Banach space X = C([0, 1]) endowed with the norm ‖v‖∞ = maxt∈[0,1] |v(t)|. Set

Φp(s) = |s|p−2s =

{
sp−1, s ≥ 0,

−(−s)p−1, s < 0,

then

Φ−1
p (s) =

{
s

1
p−1 , s ≥ 0,

−(−s)
1
p−1 , s < 0.

Let v be a solution of (Pλ), then

v(t) =

{∫ t
0

Φ−1
p (λ

∫ σ
s
q(τ)f(τ, v(τ))dτ)ds, 0 ≤ t ≤ σ,

−
∫ 1

t
Φ−1
p (−λ

∫ s
σ
q(τ)f(τ, v(τ))dτ)ds, σ ≤ t ≤ 1,

(2.1)

where σ ∈ (0, 1) is the unique solution of the equation Θv(t) = 0, 0 ≤ t ≤ 1, where the map
Θ : X → X is defined by

Θv(t) =

∫ t

0

Φ−1
p (λ

∫ t

s

q(τ)f(τ, v(τ))dτ)ds+

∫ 1

t

Φ−1
p (−λ

∫ s

t

q(τ)f(τ, v(τ))dτ)ds. (2.2)

Conversely, if v is a function satisfying (2.1), then v is a solution of (Pλ).

It is easy to see if v(t) is a nonnegative solution of Problem (Pλ), then it is a concave function. In
view of this fact, we define Q be a cone in X by

Q = {v ∈ X : v is concave and v(0) = v(1) = 0}.
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Let T : Q→ X be defined by

Tv(t) =

{∫ t
0

Φ−1
p (λ

∫ σ
s
q(τ)f(τ, v(τ))dτ)ds, 0 ≤ t ≤ σ,

−
∫ 1

t
Φ−1
p (−λ

∫ s
σ
q(τ)f(τ, v(τ))dτ)ds, σ ≤ t ≤ 1.

By virtue of Lemma 2.1, the operator T is well defined. Then its nontrivial fixed points inQ correspond
to the positive solutions of Problem (Pλ).

Lemma 2.1. Assume (H1) holds. Then for any v ∈ Q, Θv(t) = 0 has a unique solution in (0, 1).

Proof. Let α(τ) = λq(τ)f(τ, v(τ)), then α(τ) > 0 for τ ∈ (0, 1). Therefore, Θv(0) < 0 and
Θv(1) > 0. It follows from the continuity of Θv(t) that Θv(t) = 0 has at least one solution in (0, 1).
Moreover, it is not difficult to check that Θv(t) is nondecreasing function on [0, 1].

If σ1, σ2 ∈ (0, 1) are two different solutions of Θv(t) = 0, and without loss of generality, we
assume that σ1 < σ2. We consider∫ σ2

σ1

Φ−1
p (

∫ σ2

s

α(τ)dτ)ds =

∫ σ2

0

Φ−1
p (

∫ σ2

s

α(τ)dτ)ds−
∫ σ1

0

Φ−1
p (

∫ σ2

s

α(τ)dτ)ds

≤
∫ σ2

0

Φ−1
p (

∫ σ2

s

α(τ)dτ)ds−
∫ σ1

0

Φ−1
p (

∫ σ1

s

α(τ)dτ)ds.

Now, because of Θv(σ1) = Θv(σ2) = 0, we have∫ σ2

σ1

Φ−1
p (

∫ σ2

s

α(τ)dτ)ds ≤
∫ 1

σ1

Φ−1
p (−

∫ s

σ1

α(τ)dτ)ds−
∫ 1

σ2

Φ−1
p (−

∫ s

σ2

α(τ)dτ)ds

≤
∫ σ2

σ1

Φ−1
p (−

∫ s

σ1

α(τ)dτ)ds < 0,

which is contrary to
∫ σ2
σ1

Φ−1
p (
∫ σ2
s
α(τ)dτ)ds > 0. Therefore, σ1 = σ2, and Θv(t) = 0 has the unique

solution.

Now we state the following well-known result without proof (compare [19]-[23]).

Lemma 2.2. Let X be a Banach space endowed with a norm ‖ · ‖, and let Q ⊂ X be a cone in
X. For R > 0, define QR = {v ∈ Q : ‖v‖ < R}. Let r and R be numbers satisfying 0 < r < R.
Assume that T : QR → Q is a completely continuous operator such that

‖Tv‖ < ‖v‖, for all v ∈ ∂Qr and ‖Tv‖ > ‖v‖, for all v ∈ ∂QR, or

‖Tv‖ > ‖v‖, for all v ∈ ∂Qr and ‖Tv‖ < ‖v‖, for all v ∈ ∂QR,

where ∂QR = {v ∈ Q : ‖v‖ = R}. Then T has a fixed point v ∈ Q, with r < ‖v‖ < R.

We also state some elementary properties of concave functions.

Lemma 2.3. Given a function v in the cone Q and a point p ∈ (0, 1), the following estimates hold:

(i) v(t) ≥

{
t
p
v(p), t < p,

1−t
1−pv(p), t > p,

and (ii) v(t) ≤

{
t
p
v(p), t > p,

1−t
1−pv(p), t < p.

Moreover, for all 0 < t0 < t1 < 1, we have

(iii) min
t∈[t0,t1]

v(t) ≥ ct0,t1‖v‖∞,

where ct0,t1 := min{t0, 1− t1}.

Proof. The proof is same as [17].
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3 Proof of Theorem 1.1.

In this section we will show the existence of a solution for λ ∈ (0, λ∗), by verifying, in the next three
lemmas, the hypotheses of Lemma 2.2.

Lemma 3.1. T : QR → Q is a completely continuous operator for λ ∈ (0, λ∗).

Proof. It is obvious that T (QR) ⊂ Q. We now show that T is compact. Let {vn}n∈N be a
bounded sequence in Q and let R > 0 be such that ‖vn‖ ≤ R for all n ∈ N . Hence by the definition
of T , we have

(Tvn)′(t) =

{
Φ−1
p (λ

∫ σ
t
q(τ)f(τ, vn(τ))dτ)ds, 0 ≤ t ≤ σ,

Φ−1
p (−λ

∫ t
σ
q(τ)f(τ, vn(τ))dτ)ds, σ ≤ t ≤ 1.

Then it is easy to see that {Tvn}n∈N and {(Tvn)′}n∈N are uniformly bounded sequences. It follows
from the Ascoli-Arzela theorem that T is relatively compact.

It remains to show the continuity of T . Let vn, v ∈ QR, and vn → v uniformly on [0, 1]. We need
to show that Tvn → Tv uniformly on [0, 1]. We have

Tvn − Tv

=

{∫ t
0

[Φ−1
p (λ

∫ σ
s
q(τ)f(τ, vn(τ))dτ)ds− Φ−1

p (λ
∫ σ
s
q(τ)f(τ, v(τ))dτ)]ds, 0 ≤ t ≤ σ,∫ 1

t
[Φ−1
p (−λ

∫ s
σ
q(τ)f(τ, v(τ))dτ)ds− Φ−1

p (−λ
∫ s
σ
q(τ)f(τ, vn(τ))dτ)]ds, σ ≤ t ≤ 1.

Pay attention to Φ−1
p is continuous, then T : QR → Q is continuous. The proof is completed.

Lemma 3.2. Suppose conditions (H1) and (H3) hold. Let ‖ · ‖ be a norm on C([0, 1]) which
is equivalent to ‖ · ‖∞. Then, for all Λ,K > 0 there exists R > 0 such that, for all λ ≥ Λ and all
v ∈ {v ∈ Q : ‖v‖ ≥ R}, we have

‖Tv‖ > K‖v‖.

Proof. Without loss of generality we will give the proof using the norm ‖ · ‖∞. By hypothesis
(H3), given M > 0, there exists N > 0 such that v > N implies f(s, v) ≥Mvp−1, for all s ∈ [α, β]. By
estimate (iii) in Lemma 2.3, v(s) ≥ cα,β‖v‖∞ for s ∈ [α, β]. Then, if we choose ‖v‖∞ ≥ R > N

cα,β
,

we have

f(s, v) ≥M(cα,β‖v‖∞)p−1.

Note, from the definition of Tv(t), that Tv(σ) is the maximum value of Tv(t) on [0, 1]. If σ ∈ [ 1
4
, 3
4
],

we have

f(s, v) ≥M(
1

4
‖v‖∞)p−1.
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So,

2‖Tv‖∞

≥
∫ σ

1
4

Φ−1
p (λ

∫ σ

s

q(τ)f(τ, v(τ))dτ)ds−
∫ 3

4

σ

Φ−1
p (−λ

∫ s

σ

q(τ)f(τ, v(τ))dτ)ds

=

∫ σ

1
4

(λ

∫ σ

s

q(τ)f(τ, v(τ))dτ)
1
p−1 ds+

∫ 3
4

σ

(λ

∫ s

σ

q(τ)f(τ, v(τ))dτ)
1
p−1 ds

≥
∫ σ

1
4

(Λ

∫ σ

s

C3M(
1

4
‖v‖∞)p−1dτ)

1
p−1 ds+

∫ 3
4

σ

(Λ

∫ s

σ

C3M(
1

4
‖v‖∞)p−1dτ)

1
p−1 ds

=
1

4
‖v‖∞(ΛC3M)

1
p−1

∫ σ

1
4

(σ − s)
1
p−1 ds+

1

4
‖v‖∞(ΛC3M)

1
p−1

∫ 3
4

σ

(s− σ)
1
p−1 ds

=
p− 1

4p
(ΛC3M)

1
p−1 [(σ − 1

4
)
p
p−1 + (

3

4
− σ)

p
p−1 ]‖v‖∞,

and

‖Tv‖∞ ≥
p− 1

8p
(ΛC3M)

1
p−1 [(σ − 1

4
)
p
p−1 + (

3

4
− σ)

p
p−1 ]‖v‖∞.

By setting M > ( 8p
p−1

K)p−1(ΛC3)−1[(σ − 1
4
)
p
p−1 + ( 3

4
− σ)

p
p−1 ]1−p, one obtains ‖Tv‖∞ > K‖v‖∞.

For σ ∈ ( 3
4
, 1), it is easy to see

‖Tv‖∞ ≥
∫ 3

4

1
4

Φ−1
p (λ

∫ 3
4

s

q(τ)f(τ, v(τ))dτ)ds.

On the other hand, we have

‖Tv‖∞ ≥ −
∫ 3

4

1
4

Φ−1
p (−λ

∫ s

1
4

q(τ)f(τ, v(τ))dτ)ds,

if σ ∈ (0, 1
4
). Therefore, similar arguments show that ‖Tv‖∞ > K‖v‖∞.

Lemma 3.3. Suppose conditions (H1) and (H2) hold. Then, for all λ ∈ (0, λ∗), there exists a
norm ‖ · ‖∗ equivalent to ‖ · ‖∞ and r > 0 such that, for all v ∈ {v ∈ Q : ‖v‖∗ = r}, we have

‖Tv‖∗ < ‖v‖∗.

Proof. We consider the norm

‖v‖∗ = |v|E = inf{ξ : ξ(‖φ1,qb‖∞ + E) ≥ v} =
‖v‖∞

‖φ1,qb‖∞ + E
,

which is equivalent to ‖ · ‖∞.

By hypotheses (H1) and (H2), there exists a δ = δ(ε) > 0 such that 0 < v < δ implies
f(s, v) < (1 + ε)b(s)vp−1 for all s ∈ [0, 1]. Let r > 0 be such that r(‖φ1,qb‖∞ + E) < δ, so that
|v|E = r implies ‖v‖∞ < δ.
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If v ∈ Q with |v|E = r, we have when 0 ≤ t ≤ σ,

Tv(t) =

∫ t

0

(λ

∫ σ

s

q(τ)f(τ, v(τ))dτ)
1
p−1 ds

<

∫ t

0

(λ∗
∫ σ

s

(1 + ε)q(τ)b(τ)vp−1dτ)
1
p−1 ds

= ((1 + ε)λ∗)
1
p−1

∫ t

0

(

∫ σ

s

q(τ)b(τ)
vp−1

(‖φ1,qb‖∞ + E)p−1
(‖φ1,qb‖∞ + E)p−1dτ)

1
p−1 ds

≤ ((1 + ε)C1C2λ
∗)

1
p−1 (‖φ1,qb‖∞ + E)|v|E

∫ t

0

(σ − s)
1
p−1 ds

=
p− 1

p
[σ

p
p−1 − (σ − t)

p
p−1 ](‖φ1,qb‖∞ + E)|v|E

< (‖φ1,qb‖∞ + E)|v|E .

Therefore |Tv|E < |v|E . It is similar for σ ≤ t ≤ 1. Thus, |Tv|E < |v|E for all t ∈ [0, 1].

Proof of Theorem 1.1. By Lemma 3.2 and 3.3, there exists Λ ∈ (0, λ∗) such that the above
conclusions hold. So combined with Lemma 3.1, the existence of the positive solution is a consequence
of Lemma 2.2 (using the equivalent norm ‖ · ‖ = | · |E from Lemma 3.3).

4 Proof of Theorem 1.2
In this section we will study the asymptotic behavior of the positive solution of Problem (Pλ) with
respect to the parameter λ sufficiently small.

Proof of Theorem 1.2. Suppose by contradiction that there exists a sequence λn → 0+ and a
constant l > 0 such that ‖vλn‖∞ ≤ l. By the continuity of f and (H2), there exists a positive constant
C such that f(t, v) < Cvp−1 for 0 ≤ v ≤ l. Then, when 0 ≤ t ≤ σ,

vλn(t) =

∫ t

0

(λn

∫ σ

s

q(τ)f(τ, vλn(τ))dτ)
1
p−1 ds

≤ (λnC)
1
p−1

∫ t

0

(

∫ σ

s

q(τ)vp−1
λn

(τ)dτ)
1
p−1 ds

≤ (λnCC1)
1
p−1 ‖vλn‖∞

∫ t

0

(σ − s)
1
p−1 ds

≤ p− 1

p
(λnCC1)

1
p−1 σ

p
p−1 ‖vλn‖∞,

therefore,

1 ≤ p− 1

p
(λnCC1)

1
p−1 σ

p
p−1 ,

but this is impossible, since λn → 0+. Similar arguments are for σ ≤ t ≤ 1. So ‖vλ‖∞ → +∞ when
λ→ 0+.
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