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Abstract 
In this study we discuss the use of the simplex method to solve allocation 
problems whose flow matrices are doubly stochastic. Although these prob-
lems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [1] 
suggested the use of linear programming in addition to the Hungarian me-
thod. Specifically, we use the existence theorem of the solution along with 
partially total unimodularity and nonnegativeness of the incidence matrix to 
prove that the simplex method facilitates solving these problems. We also 
provide insights as to how a partition including a particular unit may be ob-
tained. 
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1. Introduction 

The type of allocation problems in which flow matrices are doubly stochastic can 
be solved via 0 - 1 integer programming, which, however, is generally not solva-
ble in polynomial time. To address this issue, Kuhn [1] proposed the Hungarian 
algorithm which can be recently computed in ( )3O n  time, and suggested that 
it be used along with the simplex method.  

In our Proposal 2033 in Mathematics Magazine [2], instances could be for-
mulated as allocation problems for which the Hungarian method may not be ef-
fective as the non-zero elements in the coefficient matrix are the same.  

In this study, we examine the use of the simplex method for this type of prob-
lems by using the existence theorem of the solution along with partially total 
unimodularity and nonnegativeness of the incidence matrix. Specifically, we 
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provide the proof that solutions to these problems can be obtained using the 
simplex method, which is also easy to use and usually attains a solution effi-
ciently. We also consider a modified problem to obtain a partition including a 
particular unit.  

The remainder of the paper is organized as follows. Section 2 describes the 
type of allocation problems, the object of this study. Section 3 illustrates the 
simplex method, while Section 4 concludes. 

2. Allocation Problems 

Let ( ),G V E=  be a graph, where V is a vertex set and E is an edge set. We 
consider the following allocation problem: 

Problem There are kn units comprising n kinds of goods, and the same k 
(1 k n≤ < ) units are available for each of them. After randomization, the kn 
units are divided into n groups. Is it possible to obtain k partitions, each of 
which consists of n different goods, by choosing one goods from each group? 

Proposal 2033 [2] is an application of the Problem to a deck of cards ( 13n = , 
4k = ).  

We let ( ),G S T E= +  be a bipartite graph (which admits multiple edges) 
with bipartition { },S T . In this case, S includes n groups, while T comprises n 
different goods. We assign ije , i S∈ , j T∈  if there is a goods j in group i. 
We notice that G is k-regular, that is, every vertex v G∈  has degree 

( )Gd v k= . 
We use the following lemma of independent interest (see also [3]), which we 

prove here for the sake of convenience.  
Lemma 2.1 (cf. [3], Corollary 2.1.3]). If G is k-regular ( 1k ≥ ) and bipartite, 

then G has a perfect matching.  
Proof. Summing up the number of edges, 

( ) ( )G G
s S t T

E d s d t
∈ ∈

= =∑ ∑ . 

As G is k-regular and bipartite,  

E k S k T= = ,  

namely,  

S T= . 

We denote ( )N X T⊂  as the neighbors of X S⊂ .  
Let  

( ) ( ){ }, ,N x y E x X y N X= ∈ ∈ ∈ .  

Then, 
N k X=  for X S⊂   

and 
( )N k N X≤  for ( )N X T⊂ .  

Therefore,  
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( )X N X≤ . 

Hence, as per Hall’s theorem [4], G has a perfect matching. □ 
Thus, we give an affirmative answer to the problem. 
Theorem 2.2. In the problem setting, there are k disjoint perfect matchings in 
( ),G S T E= + . 

Proof. We apply Lemma 2.1, and recursively obtain and delete the resulting 
perfect matching k times. □  

We now consider how to solve the problem in specific instances.  

3. Solution Methods 

By adding a source node s to the left of S, and a sink node t to the right of T, and 
by setting capacities of all arcs ijC  to 1, we can consider the resulting network 

( ), , ,N G s t C= . Then, given that the problem can be regarded as a maximum 
flow problem, we can treat it as a variety of the Ford-Fulkerson method (see [5]) 
to solve specific examples. However, we will not use network algorithms because 
they are not easy to implement for people who have not specialized in networks. 
We will focus on optimization methods in this paper. 

We associate a matrix U ( n kn× ) with the bipartite graph ( ),G S T E= +  as  

( )

1 1 0
1 1

0 1 1

ieU u

 
 
 = =
 
 
 









,                (1) 

where 1ieu =  for ,i S e E∈ ∈ , and 0ieu ′ =  for ,i S e E∈ ′∉ . 
We also define a matrix V ( n kn× ) as 

( )jeV v= ,                           (2) 

where 1jev =  for ,j T e E∈ ∈ , and 0jev ′ =  for ,j T e E∈ ′∉ . 
We define an incidence matrix W ( 2n kn× ) as 

U
W

V
 

=  
 

.                           (3) 

We let ijx  ( )0 1ijx≤ ≤  be a flow between i S∈  and j T∈  ( )S T n= = , 
and ( )N i  be the neighbor of i. We let  

( ) ( )11 1 21 2 1 1, , , , , , , , , , ,k k n nk knx x x x x x x x x= =     .        (4) 

We can now formulate the problem as the following 0 - 1 integer program-
ming problem to find its partition:  

Problem I (PI) 
minimize Te x−  

subject to Wx = 1                                (5) 

{ }0,1 knx∈ , 

where ( )T1, ,1 kne += ∈  , and ( )T 21, ,1 n
+= ∈ 1 . 
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Note that there may be multiple edges. We are able to solve (PI) via 0 - 1 pro-
gramming method, since Lemma 2.1 guarantees the existence of solutions. 
However, it may be intractable as n becomes large, since 0 - 1 integer program-
ming problems are generally NP-hard. 

We show the following result.  
Theorem 3.1. Consider the linear programming problem  

minimize Te x−  

subject to Ax = 1                              (6) 

0x ≥ , 

where ( ):A n m n m× ≤  is a nonnegative totally unimodular matrix of which 
columns with exactly one 1 include a permutation matrix. Then, (6) has an optim-
al 0 - 1 solution { }* 0,1 mx ∈ . 

Proof. The linear programming problem (6) has a basic optimal solution from 
[[6], Theorem 13.2]. The basic solution *x  is expressed as ( ) ( )1 , ,I − =1 0 1 0  
interchanging columns of A if necessary, where I is an n n×  identity submatrix, 
which implies that { }* 0,1 mx ∈ . □  

We consider the relationship between (PI) and its linear relaxation problem: 
Problem L (PL) 

minimize Te x−  

subject to Wx = 1                              (7) 

0x ≥ . 

We now restrict the linear programming method to the simplex method, since 
1 , 1, ,ix i kn
k

= =   is a trivial solution to (PL).  

We can now establish the following result.  
Theorem 3.2. The simplex method applied to (PL) solves (PI).  
Proof. Noting that U, V are nonnegative totally unimodular matrices of which 

columns include a permutation matrices (N.B., even W is totally unimodular 
from [[7], Theorem 18.2]), a solution x  to (PL) is expressed as the intersection 
between solutions to 

minimize Te x−                                   
subject to Ux = 1                                  

0x ≥ , 

and solutions to 
minimize Te x−                                  
subject to Vx = 1                                 

0x ≥ , 

there may be a 0 - 1 solution { }0,1 knx∈  from Theorem 3.1. In fact, there exists 
a 0 - 1 solution { }0,1 knx∈  to (PL) in light of Lemma 2.1. 

Hence, the simplex method applied to (PL) solves (PI), since it terminates at a 
basic optimal point [[6], Theorem 13.4], which satisfies { }* 0,1 knx ∈  and 
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T *e x n− = −  because the elements in U and V consist of 1 or 0. □ 
Example 1. A deck of cards ( 13n = , 4k = ). 
See Table 1. 
The experiments are implemented on a laptop, using FORTRAN to code the 

simplex method. At first, there are 52 variables and 26 constraints. The solutions 
are as follows:  

4k =  (initial): 54 iterations 
(K♢, 9♣, 8♢, J♠, 2♠, Q♡, 6♠, 5♡, 7♡, 3♡, 10♡, A♣, 4♢),  

3k =  (delete the previous solution): 32 iterations 
(J♣, 8♣, 7♢, 3♢, 6♢, 5♠, A♡, Q♣, 10♠, K♡, 2♢, 4♠, 9♠),  

2k =  (delete the previous solution): 28 iterations 
(7♣, Q♠, 9♢, K♠, 8♡, 5♢, 2♣, 4♡, 6♡, A♢, J♡, 3♠, 10♢),  

1k =  (the remainder) 
(Q♢, 6♣, 5♣, 9♡, A♠, 3♣, 7♠, K♣, 4♣, 2♡, 8♠, 10♣, J♢). 
We should note that the objective function value of (7) is -n from the proof of 

Theorem 3.2. Therefore, the simplex method terminates in Phase I, in which 
case, we may generally expect high efficiency.  

It is also worth noting that we can select a particular unit (e.g., A♠) in a parti-
tion, since the existence of such a partition is guaranteed by Theorem 2.2. For 
this purpose, we set the coefficient e′  as 

( )1, ,1,1 ,1, ,1 kne s +′ = + ∈    

i.e., ( )
0

1 0,je s s s +′ = + > ∈  for the edge including the particular unit, and 
1ie′ =  for 0i j≠ . 

 
Table 1. A deck of cards. 

Group Cards 

1 7♣  K♢  J♣  Q♢ 

2 8♣  9♣  6♣  Q♠ 

3 7♢  8♢  9♢  5♣ 

4 J♠  9♡  K♠  3♢ 

5 8♡  A♠  6♢  2♠ 

6 Q♡  3♣  5♢  5♠ 

7 A♡  2♣  6♠  7♠ 

8 K♣  4♡  5♡  Q♣ 

9 4♣  10♠  6♡  7♡ 

10 K♡  2♡  3♡  A♢ 

11 10♡  2♢  J♡  8♠ 

12 4♠  10♣  A♣  3♠ 

13 10♢  9♠  J♢  4♢ 

♠: Spades, ♡: Hearts, ♢: Diamonds, ♣: Clubs. 
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Consider the following problem: 
Problem L1 (PL1) 

minimize Te x′−                                  

subject to Wx = 1                              (8) 

0x ≥ . 

Then, the solution of (8) becomes the desired partition, as formalized in the 
following theorem. 

Theorem 3.3. The simplex method applied to (PL1) determines a partition 
that includes the particular unit.  

Proof. The simplex method is valid since, as per Theorem 2.2, there are feasi-
ble points in both (PI) and (PL1). In this case, the simplex method terminates in 
either Phase I or Phase II, when the objective function value n s− −  is attained. □  

By setting 17 2e′ = , 1, 1, ,16,18, ,52ie i′ = =    in order to select A♠ in Ex-
ample 1, we obtained the solution 

(K♢, 9♣, 8♢, J♠, A♠, Q♡, 6♠, 5♡, 7♡, 2♡, 10♡, 3♠, 4♢). 
after 60 iterations (Phase I: 54 iterations, Phase II: 6 iterations) in total. 

In general transportation problems, i.e., when 0e ≥  are arbitrary and 
S T n= =  but there are no multiple edges, the number of variables becomes 

2n , which tends to be much larger than kn. This may cause difficulties in using 
the simplex method. Note that, for the considered problem (kn variables), the 
simplex method is efficient, and we can select an arbitrary unit in the solution. 

4. Conclusion 

In this study, we derived the result for allocation problems which can be mod-
eled using bipartite graphs, which might lead to unexpected results. Specifically, 
we provided the proof that the simplex method solves these problems by using 
the existence theorem of the solution along with partially total unimodularity 
and nonnegativeness of the incidence matrix. The elementary numerical result 
we presented shows the validity and efficiency of the method. Moreover, we 
considered the application of the simplex method to a modified problem to ob-
tain a partition that includes a particular unit. 
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