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Abstract
It was shown by Seeley that associated with a parameter-elliptic boundary problem involving a
system of differential operators of homogeneous type there was associated an analytic semigroup.
This result was extended by Dreher to a Douglis-Nirenberg system of mono-order type, i.e., the
diagonal operators are all of the same order. In this paper we again discuss the problem considered
by Dreher, but use a different approach as his approach gives rise to certain difficulties. We also
extend the results for mono-order systems to a certain class of Douglis-Nirenberg systems of multi-
order type, i.e., the diagonal operators are not all of the same order. 2010 Mathematics Subject
Classification: 35J55; 47D06

Keywords: parameter-elliptic; Douglis-Nirenberg systems; analytic semigroups; quantum hydrodynamics

1 Introduction
Several decades ago Seeley (1) considered a boundary problem for a q× q parameter-elliptic system
of differential operators of homogeneous type defined over a compact manifold G with boundary.
He denoted by AB the operator on Lp(G)q induced by the boundary problem under null boundary
conditions. Then with the implicit use of a priori estimates, he proceeded to show that, after a
possible rotation and a shift in the spectral parameter, the fractional powers of A−1

B formed an analytic
semigroup.

Recently an extension of Seeley’s work was undertaken by Dreher (2). He considered a boundary
problem for a parameter-elliptic mono-order Douglis-Nirenberg system of differential operators over
a bounded region Ω ⊂ Rn, where by mono-order we mean that the diagonal operators are all of
the same order. Then, like Seeley, Dreher poses the problem in a suitable Sobolev space setting
based on Lp(Ω) and denotes by A the operator acting in the Sobolev space just cited induced by the
boundary problem under null boundary conditions. He then points out that in the mono-order case,
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the use of a priori estimates do not suffice in allowing one to establish that the negative powers of
the operator A form an analytic semigroup; and hence in order to achieve this end he proceeds in
an indirect manner. This involves in particular the use of his Lemma 3.1 wherein certain inequalities
are presented which he claims follow from the results given in a certain reference. However an
inspection of this and other references show that there are no such results, and hence since Lemma
3.1 is instrumental for the proof of the semigroup property of A (see his Theorem 2.4), one is led to
question the validity of Drehers’ results.

Accordingly, it is our opinion that the problems just cited which arise in Dreher’s approach to the
multi-order boundary problem are due to the fact that the problem is posed in a Lebesgue-Sobolev
space setting. Thus, motivated by the paper (1), we feel that if one adequately chooses the space in
which the boundary problem should be posed, then the a priori estimates for solutions should suffice
in establishing the semigroup property. Hence the first objective of this paper is to present this new
approach to the multi-order boundary problem. And this will be achieved by posing the problem in
both a Bessel-potential and Sobolev space setting and then by appealing to a priori estimates for
solutions of the boundary problem in this setting. These a priori estimate are proved in Theorem
3.1 and to our knowledge such kinds of estimates have not hitherto been established. The second
objective of this paper will be to extend the foregoing works to a certain class of parameter-elliptic
multi-order Douglis-Nirenberg systems defined over a bounded region Ω ⊂ Rn, i.e., where now the
diagonal operators are not all of the same order. The class under investigation will be that class which
was the subject of investigation in (3). And it is precisely the a priori estimates that were established
there which will allow us to arrive, after a possible rotation and a shift in the spectral parameter, at the
required semigroup property.

Accordingly, with these objectives in mind, let N ∈ N with N > 1 and let { sj }N1 , { tj }N1 , and
{σj }N0

1 be sequences of integers , where with mj = sj + tj for j = 1, . . . , N,N0 = 1
2

∑N
j=1 mj , and

where in the sequel we will impose conditions which will ensure that
∑N
j=1 mj is even. Then we shall

be concerned here with the boundary problem

A(x,D)u(x)− λu(x) = f(x) in Ω, (1.1)

Bj(x,D)u(x) = gj(x) on Γ for j = 1, . . . , N0, (1.2)

where Ω is a bounded region in Rn, n ≥ 2, with boundary Γ, u(x) = (u1(x), . . . ,
uN (x))T , and f(x) = (f1(x), . . . , fN (x))T are N × 1 matrix functions defined on Ω, T denotes
transpose, the gj(x) are scalar functions defined on Γ, A(x,D) is an N × N matrix operator whose
entries Ajk(x,D) are linear operators defined on Ω of order not exceeding sj + tk and defined to be
0 if sj + tk < 0, and Bj(x,D), 1 ≤ j ≤ N0 is a 1×N matrix operator whose entries ar

e linear differential operators defined on Γ of order not exceeding σj + tk and defined to be zero
if σj + tk < 0. Our assumptions concerning the boundary problem (1.1), (1.2), which will depend
upon each of the aformentioned boundary problems under consideration, will be made precise in the
sequel.

2 Prelimimaries
In this section we are now going to introduce some terminology, definitions, and assumptions
concerning the boundary problem (1.1), (1.2) which we require for our work.

Accordingly, we let x = (x1, . . . , xn) = (x′, xn) denote a generic point of Rn and use the notation
Dj = ( −i∂/∂ xj , D = (D1, . . . , Dn), Dα = Dα1

1 · · · Dαn
n = D′α

′
Dαn
n , and ξα = ξα1

1 · · · ξαnn for
ξ = (ξ1, . . . , ξn) = (ξ′, ξn) ∈ Rn, where α = (α1, . . . , αn) = (α′, αn) is a multi-index whose length∑n
j=1 αj is denoted by |α|. Differentiation with respect to another variable, say y ∈ Rn, instead

of x, will be indicated by replacing D,Dα, D′α
′
, and Dαn

n by Dy, Dα
y , D

′α′
y′ , and Dαn

yn , respectively.
For 1 < p < ∞, s ∈ N0 = N ∪ { 0 }, and G an open set in R`, ` ∈ N, we let W s

p (G) the Sobolev
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space of order s related to Lp(G) and denote the norm in this space by ‖ · ‖s,p,G, where ‖u ‖s,p,G =(∑
|α|≤ s

∫
G
|Dαu(x)|p dx

)1/p

for u ∈ W s
p (G). In addition we shall at times equip W s

p (G) with norms
depending upon a parameter λ ∈ C \ { 0 }, namely for 1 ≤ j ≤ N , the norms

|||u|||(j)s,p,G = ‖u‖s,p,G + |λ|s/mj‖u‖0,p,G for u ∈W s
p (G).

We also let
o

W s
p (G) denote the closure of C∞0 (G) in W s

p (G).
In the sequel we shall also at times deal with the Bessel-potential space Hs

p(G) for s ∈ Z and
equipped with either its ordinary norm ‖ · ‖s,p,G or with norms ||| · |||(j)s,p,G, j = 1, . . . , N , depending
upon the parameter λ. We recall from (4, Section 1) and (5, pp.177 and 310) that if u ∈ Hs

p(G)

and G = Rn, then ‖u‖s,p,Rn = ‖F−1〈ξ〉sFu‖0,p,Rn and |||u|||(j)s,p,Rn = ‖F−1〈ξ, λ〉sjFu‖0,p,Rn , while
if G 6= Rn, then ‖u‖s,p,G = inf ‖ v‖s,p,Rn and |||u|||(j)s,p,G = inf |||v|||(j)s,p,Rn , where the infimum is taken
over all v ∈ Hs

p(Rn) for which u = v
∣∣
G
, F denotes the Fourier transformation on Rn (x → ξ), 〈ξ〉 =(

|ξ|2 + 1
)1/2, and 〈ξ, λ〉j =

(
|ξ|2 + |λ|2/mj

)1/2

. Note also from (5, p.316) that when s ∈ N0, G

is bounded, and the boundary of G is sufficiently smooth (as will always be supposed in our work
below), then Hs

p(G) and W s
p (G) coincide (up to equivalent norms), and hence at times in the sequel

we will write Hs
p(G) in place of W s

p (G) for such values of s. Lastly we let Rn± = {x ∈ Rn
∣∣xn >

< 0 },

R± = { t ∈ R
∣∣t >< 0 }, and denote by I` the `× ` unit matrix.

Assume for the moment that the boundary Γ of Ω (see (1.1), (1.2)) is of class Ck for some k ∈ N,
and let s ∈ Z satisfy 1 ≤ s ≤ k. Then for G = Ω or G = Rn+, the vectors u ∈ W s

p (G) have boundary

values v = u
∣∣∣
∂ G

and we denote the space of these boundary values by W s−1/p
p (∂ G) and denote by

‖ · ‖s−1/p,p,∂ G the norm in this space, where ‖ v‖s−1/p,p,∂ G = inf ‖u‖s,p,G for v ∈ W s−1/p
p (∂ G) and

the infimum is taken over all those u ∈ W s
p (G) for which u

∣∣∣
∂ G

= v (see also (6, Section 2), (7, p.20)

for further definitions of W s−1/p
p (∂ G)). In addition we shall use norms depending upon the parameter

λ ∈ C \ { 0 }, namely for 1 ≤ j ≤ N ,

|||v|||(j)s−1/p,p,∂ G = ‖ v‖s−1/p,p,∂ G + |λ|(s−1/p)/mj‖ v‖0,p,∂ G for v ∈W s−1/p
p (∂ G),

where ‖ · ‖0,p,∂ G denotes the norm in Lp(∂ G).
In the sequel we shall make use of the following three results (here we suppose that 1 ≤ j ≤ N

and that |λ| ≥ 1. Firstly from (6, Proposition 2.2) we have:
(1) If k, s ∈ N with 1 ≤ k < s, then

|λ|(s−k)/mj |||u|||(j)k,p,G ≤ C1|||u|||(j)s,p,G (2.1)

for every u ∈W s
p (G), where the constant C1 does not depend upon u and λ.

(2) Suppose that the boundary of Ω is of class Cr for some r ∈ N and let s ∈ N satisfy 1 ≤ s ≤ r.
Then for G = Ω or G = Rn+ and for all u ∈W s

p (G), we have

|||γ u|||(j)s−1/p,p,∂ G ≤ C2|||u|||(j)s,p,G, (2.2)

where γ u denotes the trace of u on ∂ G and the constant C2 does not depend upon u and λ.
Secondly, the following result is an immediate consequence of the duality arguments given in (3,

Proof of Proposition 4.1).
(3) Suppose that u ∈ Hs

p(G), 0 > s ∈ Z, and φ ∈ C−s0 (Rn). Then

|||φu|||(j)s,p,G ≤ C3|||u|||(j)s,p,G, (2.3)

where the constant C3 does not depend upon u and λ.
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Finally turning to the boundary problem (1.1), (1.2), we henceforth write

Ajk(x,D) =
∑

|α|≤sj+tk

ajkα (x)Dα for x ∈ Ω and 1 ≤ j, k ≤ N,

Bjk(x,D) =
∑

|α|≤σj+tk

bjkα (x)Dα for x ∈ Γ and k = 1, . . . , N, j = 1, . . . , N0. (2.4)

Also for ξ ∈ Rn we let
o

A (x, ξ) =

(
o

Ajk (x, ξ)

)N
j,k=1

for x ∈ Ω,

o

B (x, ξ) =

(
o

Bjk (x, ξ)

)
j=1,...,N0
k=1,...,N

for x ∈ Γ,

where
o

Ajk (x, ξ) ( resp.
o

Bjk (x, ξ)) consists of those terms in Ajk(x, ξ) (resp. Bjk(x, ξ)) whose

orders are exactly sj + tk (resp. σj + tk). We denote by
o

Bj (x, ξ) the j-th row of
o

B (x, ξ).

3 The mono-order case
In this section we are going to deal with the first of our objectives stated in Section 1, i.e., the mono-
order case wherein all the mj are equal. We will denote by m the common value of the mj , and
as in (2), suppose that m > 0 and max{σj }N0

1 < m. We will also put σ† = 1+ max{σj }N0
1 and

write 〈ξ, λ〉, ||| · |||s,p,G, and ||| · |||s−1/p,p,∂ G in place of 〈ξ, λ〉j , ||| · |||(j)s,p,G, and ||| · |||(j)s−1/p,p,∂ G,
respectively, for j = 1, . . . , N since now all the mj are equal. Furthermore, by interchanging the rows
and columns of A(x,D) and by adding and subtracting constants, there is no loss of generality in
making the following assumption.

Assumption 3.1. We will henceforth suppose that

0 < t1 ≥ t2 ≥ · · · ≥ tN = 0 and m > s1 ≤ s2 ≤ · · · ≤ sN = m.

Then motivated by the fact that tN = 0 and by the requirement of parameter-ellipticity which will
be defined below, we are also led to make the following assumption.

Assumption 3.2. It will henceforth be supposed that σ† ≥ 1.

3.1 The case σ† ≤ s1

In this subsection we restrict ourselves to the case σ† ≤ s1. Then let us fix our attention again upon
the boundary problem (1.1), (1.2).

Assumption 3.3. It will henceforth be supposed that : (1) Γ is of class Cσ
†+t1 ; (2) for each pair

j, k, ajkα ∈ C|σ
†−sj | for |α| ≤ sj + tk if σ† − sj 6= 0, while if σ† − sj = 0, the ajkα ∈ L∞(Ω) for

|α| < sj + tk and ajkα ∈ C(Ω) for |α| = sj + tk; and (3) for each pair j, k, bjkα ∈ Cσ
†−σj (Γ) for

|α| ≤ σj + tk.

Definition 3.4. Let L be a closed sector in the complex plane with vertex at the origin.Then the
boundary problem (1.1), (1.2) will be called parameter-elliptic in L if the following conditions are
satisfied.

(1) det
(
Å(x, ξ)− λ IN

)
6= 0 for (x, ξ) ∈ Ω× Rn and λ ∈ L if |ξ|+ |λ| 6= 0.
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(2) Let x0 ∈ Γ. Assume that the boundary problem (1.1), (1.2) is rewritten in a local coordinate
system associated with x0; it is obtained from the original one by means of an affine
transformation after which x0 → 0 and ν → en, where ν denote the interior normal to Γ at x0

and (e1, . . . , en) denotes the standard basis in Rn. Then for ξ′ ∈ Rn−1 and λ ∈ L the boundary
problem on the half-line

o

A (0, ξ′, Dn)v(t)− λ v(t) = 0 for t = xn > 0,
o

Bj (0, ξ′, Dn)v(t) = 0 at t = 0 for j = 1, . . . , N0,

|v(t)| → 0 to t→∞,

has only the trivial solution for |ξ′|+ |λ| 6= 0.

Remark 3.1. It follows from (8, Proposition 2.2) that when Condition (1) of Definition 3.4 is satisfied,
then mN is even.

Theorem 3.1. Suppose that the boundary problem (1.1), (1.2) is parameter- elliptic in L. Then there
exists a λ0 = λ0(p) > 0 such that for λ ∈ L with |λ| ≥ λ0, the boundary problem has a unique solution

u ∈
∏N
j=1 W

σ†+tj
p (Ω) for any f ∈

∏N
j=1 H

σ†−sj
p (Ω) and g ∈

∏N0
j=1 W

σ†−σj−1/p
p (Γ), and the a priori

estimate
N∑
j=1

|||uj |||σ†+tj ,p,Ω ≤ C

(
N∑
j=1

|||fj |||σ†−sj ,p,Ω +

N0∑
j=1

|||gj |||σ†−σj−1/p,p,Γ

)
(3.1)

holds, where the constant C does not depend upon the fj , gj , and λ. Conversely, the estimate (3.1)

also holds if u ∈
∏N
j=1 W

σ†+tj
p (Ω), λ ∈ L with |λ| ≥ λ0 and f and the gj are defined by (1.1). (1.2).

Remark 3.2. It is also important to note that the estimate (3.1) is 2-sided, i.e., an estimate reverse to
(3.1) holds. We will elaborate on this point in the proof of the theorem.

Proof of Theorem 3.1. Comparing the assertions of the theorem with analogous ones made in other
papers dealing with parameter-elliptic boundary problems (e.g. (6), (8), (9), and (10)), we see that
the problem considered here is non-standard in that for at least one j, we have σ† − sj < 0. For
this reason we will briefly outline its proof; and in this endeavour we will suppose henceforth that
the hypothesis of the theorem holds and will proceed in several steps. Furthermore, by employing
a standard extension proceedure we can henceforth suppose that the ajkα (x) and bjkα (x) of (2.4) are
defined on all of Rn, are compactly supported, and satisfy the same smoothness assumptions as
asserted in Assumption 3.3 for Ω and Γ, respectively.

Step 1. Let x0 ∈ Ω and let us fix out attention upon the differential equation
o

A (x0, D)u(x)− λu(x) = f(x) for x ∈ Rn and λ ∈ L \ { 0 }. (3.2)

Then observing that for ξ ∈ Rn and λ ∈ L with |λ| ≥ λ0 for a fixed λ0 > 0, we may write( o
A (x0, ξ)− λ IN

)
= diag (〈ξ, λ〉s1 , . . . , 〈ξ, λ〉sN )×( o
A (x0, ξ〈ξ, λ〉−1)− λ 〈ξ, λ〉−mIN

)
diag

(
〈ξ, λ〉t1 , . . . , 〈ξ, λ〉tN

)
,

it follows from Definition 3.4 that∣∣det
( o
A (x0, ξ)− λ IN

) ∣∣ ≥ C 〈ξ, λ〉2N0 ,

where here and below C denotes a generic constant which may vary from inequality to inequality,
but in all cases it does not upon x0, ξ, λ, and the variables u, f , and the gj which will appear below.
Furthermore, if we put

(
Å(x0, ξ)− λ IN

)−1
= (ãjk(ξ, λ))Nj,k=1, then it is clear that the ãjk(ξ, λ) are

499



British Journal of Mathematics and Computer Science 4(4), 495-511, 2014

rational functions of their arguments, while it is also not difficult to verify that for any multi-index α
whose entries are either 0 or 1,

∣∣ξαDα
ξ ãjk(ξ, λ)

∣∣ ≤ C〈ξ, λ〉−tj−sk for all ξ ∈ Rn whose components
are all non-zero. Hence if in (3.2) we denote by uj and fj , 1 ≤ j ≤ N , the components of u and f
, respectively, then arguments completely analogous to those used in the proofs of (3, Propositions
3.1-2) give the following two results:

(1) Suppose that u ∈
∏N
j=1 W

σ†+tj
p (Rn) and (3.2) holds. Then

f ∈
N∏
j=1

H
σ†−sj
p (Rn) and

N∑
j=1

|||fj |||σ†−sj ,p,Rn ≤ C
N∑
j=1

|||uj |||σ†+tj ,p,Rn .

(2) If f ∈
∏N
j=1 H

σ†−sj
p (Rn), then there exists the constant λ† ≥ λ0 such that for λ ∈ L with |λ| ≥ λ†,

the differential equation (3.2) has a unique solution u ∈
∏N
j=1 W

σ†+tj
p (Rn) and

∑N
j=1 |||uj |||σ†+tj ,p,Rn

≤ C
∑N
j=1 |||fj |||σ†−sj ,p,Rn .

Step 2. For x0 ∈ Ω and δ > 0, let Bδ(x0) denote the open ball in Rn with centre x0 and radius δ.
Also let supp denote support. Then we can appeal to (2.1) and argue in a manner similar to the way
we did in the proofs of (3, Propositions 4.1-2) to obtain the following two results.
(1) For any ε > 0 and x0 > 0 there exists a δ, 0 < δ < dist{x0,Γ }, and a λ0 > 0 such that for λ ∈ L
with |λ| ≥ λ0

N∑
j=1

|||
N∑
k=1

(
Ajk(x,D)−

o

Ajk (x0, D)

)
uk|||σ†−sj ,p,Ω ≤ ε

N∑
j=1

|||uj |||σ†+tj ,p,Ω

for every u ∈
∏N
j=1 W

σ†+tj
p (Ω) such that suppu ⊂ Bδ(x0).

(2) For any ε > 0 and x0 ∈ Ω there exists a δ, 0 < δ < dist{x0,Γ }, and a λ0 > 0 such that if
supp

(
ajkα (x)− ajkα (x0)

)
⊂ Bδ(x

0) for |α| = sj + tk, j, k = 1, . . . . , N , and λ ∈ L with |λ| ≥ λ0, then
the estimate

N∑
j=1

N∑
k=1

|||
(

o

Ajk (x,D)−
o

Ajk (x0, D)

)
uk|||σ†−sj ,p,Rn ≤ ε

N∑
j=1

|||uj |||σ†+tj ,p,Rn

holds for every u ∈
∏N
j=1 W

σ†+tj
p (Rn).

Step 3. Suppose next that x0 ∈ Γ and that the boundary problem (1.1), (1.2) has been rewritten
in terms of the local coordinates at x0 as explained in Definition 3.4. Let us now fix our attention upon
the problem in the half-space

o

A (0, D)u(x)− λu(x) = f(x) for x ∈ Rn+ and λ ∈ L \ { 0 }. (3.3)

Then in light of what was said in Step 1 above we can now argue as in the proofs of Propositions
3.3-4 of (3) to deduce the following two results.

(1) Suppose that u ∈
∏N
j=1 W

σ†+tj
p (Rn+) and that (3.3) holds. Then f ∈∏N

j=1 H
σ†−sj
p (Rn+) and

∑N
j=1 |||fj |||σ†−sj ,p,Rn+ ≤ C

∑N
j=1 |||uj |||σ†+tj ,p,Rn+ .

(2) Suppose that f ∈
∏N
j=1 H

σ†−sj (Rn+). Then there exists a λ0 > 0 such that for λ ∈ L with |λ| ≥ λ0

the differential equation (3.3) has a solution u ∈
∏N
j=1 W

σ†+tj
p (Rn+) and

∑N
j=1 |||uj |||σ†+tj ,p,Rn+ ≤

C
∑N
j=1 |||fj |||σ†−sj ,p,Rn+ .

Step 4. Suppose again that x0 ∈ Γ. Then in order to use some results from (3) pertaining to this
case, we are now going to rewrite the boundary problem (1.1), (1.2) in terms of the local coordinates
at x0 as specified there. Accordingly let {U, φ } be a chart on Γ such that x0 ∈ U, φ(x0) = 0, and
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φ is a diffeomorphism of class Cσ
†+t1 mapping U onto an open set in Rn with φ (U ∩ Ω) ⊂ Rn+

and φ (U ∩ Γ) ⊂ Rn−1. Then by means of the mapping φ we can now pass to local coordinates at
x0 and in terms of these local coordinates each of the operators Ajk(x,D) and Bjk(x,D) can be
written as Ãjk(y,Dy) =

∑
|α|≤sj+tk

ãjkα (y)Dα
y and B̃jk(y,Dy) =

∑
|α|≤σj+tk

b̃jkα (y)Dα
y , repectively,

for y ∈ φ(U). We denote by
o

Ãjk (y,Dy) and
o

B̃jk (y,Dy) the principal parts of Ãjk(y,Dy) and
B̃jk(y,Dy), respectively. Then arguments completely analogous to those used in the proofs of (3,
Propositions 4.1 and 4.3) give the following two results.
(1) For j, k = 1, . . . , N , let Ãjk(y,Dy) be extended to all of Rn by putting ãjkα (y) = 0 for y ∈ Rn \φ(U)
and |α| ≤ sj + tk. Then for any ε > 0 there exists a δ > 0 and a λ0 > 0 such that for λ ∈ L with
|λ| ≥ λ0,

N∑
j=1

|||
N∑
k=1

(
Ãjk(y,Dy)−

o

Ãjk (0, Dy)

)
uk|||σ†−sj ,p,Rn+ ≤ ε

N∑
j=1

|||uj |||σ†+tj ,p,Rn+

for every u ∈
∏N
j=1 W

σ†+tj
p (Rn+)) such that suppu ⊂ Bδ(0) ⊂ Bδ(0) ⊂ φ(U).

(2) For j, k = 1, . . . , N , let
o

Ãjk (y,Dy) be extended to all of Rn by putting ãjkα (y) = ãjkα (0) for
y ∈ Rn \ φ(U) and |α| = sj + tk. Then for any ε > 0 there exists a δ, 0 < δ < dist{ 0, ∂ φ(U) }, and
a λ0 > 0 such that if supp

(
ãjkα (y)− ãjkα (0)

)
⊂ Bδ(0) for |α| = sj + tk, j.k = 1, . . . , N and λ ∈ L with

|λ| ≥ λ0, then the estimate

N∑
j=1

N∑
k=1

|||
( o

Ãjk (y,Dy)−
o

Ãjk (0, Dy)

)
uk|||σ†−sj ,p,Rn+ ≤ ε

N∑
j=1

|||uj |||σ†+tj ,p,Rn+

holds for every u ∈
∏N
j=1 W

σ†+tj
p (Rn+).

Step 5. Suppose still that x0 ∈ Γ and that the boundary problem (1.1), (1.2) has been rewritten
in terms of the local coordinates at x0 (see Definition 3.4). Let us now turn to the problem in the
half-space

o

A (0, D)u(x)− λu(x) = 0 for x ∈ Rn+ and λ ∈ L \ { 0 }, (3.4)
o

Bj (0, D)u(x) = gj(x) at xn = 0, j = 1, . . . , N0. (3.5)

Then the following two results are standard and follow from (2.2) and minor modifications of the
arguments given in any of the following works: (8, Section 6), (3, Section 3), (9, Section 2), and (11,
Section 3).

(1) Suppose that u ∈
∏N
j=1 W

σ†+tj
p (Rn+) and that (3.5) holds. Then g =

(g1, . . . , gN0)T ∈
∏N0
j=1 W

σ†−σj−1/p(Rn+) and

N0∑
j=1

|||gj |||σ†−σj−1/p,p,Rn−1 ≤ C
N∑
j=1

|||uj |||σ†+tj ,p,Rn+ .

(2) There exists a λ0 > 0 such that for λ ∈ L with |λ| ≥ λ0, the boundary problem (3.4), (3.5)

has a unique solution u = (u1, . . . , uN )T ∈
∏N
j=1 W

σ†+tj
p (Rn+) for every g = (g1, . . . , gN0)T ∈∏N0

j=1 W
σ†−σj−1/p
p (Rn−1) and the a priori estimate

N∑
j=1

|||uj |||σ†+tj ,p,Rn+) ≤ C
N0∑
j=1

|||gj |||σ†−σj−1/p,p,Rn−1
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holds.
Step 6. If we refer to Step 4 for notation and appeal to (2.1), (2.2), the results of Step 5, and to

arguments similar to those given in the references cited in Step 5, then it is not difficult to establish
the following two results.
(1) for j = 1, . . . , N0, and k = 1, . . . , N , let B̃jk(y,D) be extended to all of Rn by putting b̃jkα (y) = 0
for y ∈ Rn \ φ(U) and |α| ≤ σj + tk. Then for any ε > 0 there exists a δ > 0 and a λ0 > 0 such that
for λ ∈ L with |λ| ≥ λ0

N0∑
j=1

|||
N∑
k=1

(
B̃jk(y,Dy)−

o

B̃jk (0, Dy)

)
γ uk|||σ†−σj−1/p,p,Rn−1 ≤

ε

N∑
j=1

|||uj |||σ†+tj ,p,Rn+

for every u ∈
∏N
j=1 W

σ†+tj
p (Rn+) such that suppu ⊂ Bδ(0) ⊂ Bδ(0) ⊂ φ(U), where γ denotes the

trace operator.

(2) For j = 1, . . . , N0, k = 1, . . . , N , let
o

B̃jk (y,Dy) be extended to all of Rn by putting b̃jkα (y) = b̃jkα (0)
for y ∈ Rn \φ(U) and |α| = σj + tk. Then for any ε > 0 there exists a δ, 0 < δ < dist{ 0, ∂φ(U) }, and
a λ0 > 0 such that if supp

(
b̃jkα (y)− b̃jkα (0)

)
⊂ Bδ(0) for |α| = σj + tk, j = 1, . . . , N0, k = 1, . . . , N

and λ ∈ L with |λ| ≥ λ0, then the estimate

N0∑
j=1

N∑
k=1

|||
( o

B̃jk (y,Dy)−
o

B̃jk (0, Dy)

)
γ uk|||σ†−σj−1/p,p,Rn−1 ≤

ε

N∑
j=1

|||uj |||σ†+tj ,p,Rn

holds for every u ∈
∏N
j=1 W

σ†+tj
p (Rn).

Step 7. Finally, the proof of the theorem follows directly from (2.1)-(2.3), the results of Steps 1-6,
and from the arguments use in the proofs of Lemma 4.1, Propositions 5.1 and 5.2, and Theorems 4.1
and 5.1 of (8). Furthermore, The assertions made in Remark 3.2 can be proved in exactly the same
way. Indeed we know from (8) that we can cover Ω by a finite number of open sets {Uk }n1

1 , where
Uk∩Γ 6= ∅ for k ≤ n0 < n1, and Uk ⊂ Ω for k > n0. If {φk }n1

1 denotes a partition of unity subordinate
to the covering {Uk }n1

1 such that suppφk ∩ Γ 6= ∅ for k ≤ n0 and suppφk ∩ Γ = ∅ otherwise, then
a norm equivalent to the norm |||fj |||σ†−sj ,p,Ω defined above is given by

∑n0
k=1 |||φj fj |||σ†−sj ,p,Rn+ +∑n1

k=n0+1 |||φk fj |||σ†−s−j,p,Rn , where it is to be understood that in the first summation the norms
|||φk fj |||σ†−sj ,p,Rn+ are taken in local coordinates. Since similar statements can be made for both
|||uj |||σ†+tj ,p,Ω and |||gj |||σ†−σj−1/p,p,Γ, the assertion of Remark 3.2 follows directly from (2.1)-(2.3)
and the results of Steps 1-6. �

Notation. (1) We have so far equipped the spaces W s
p (Ω) for s ∈ N0 and Hs

p(Ω) for s ∈ Z with
either their ordinary norms or norms depending upon the parameter λ. To distinguish between these
two cases let us henceforth denote these spaces by W s

p,λ(Ω) and Hs
p,λ(Ω), respectively, when they

are equipped with their λ dependent norms, so that the notation W s
p (Ω) and Hs

p(Ω) will from now on
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mean that these two spaces are equipped with their ordinary norms. We also let

W (σ†+t,λ)
p (Ω) =

N∏
j=1

W
σ†+tj
p,λ (Ω), W (σ†+t)

p (Ω) =

N∏
j=1

W
σ†+tj
p (Ω),

H(σ†−s,λ)
p (Ω) =

N∏
j=1

H
σ†−sj
p,λ (ω), H(σ†−s)

p (Ω) =

N∏
j=1

H
σ†−sj
p (Ω).

(2) In the sequel we will require the following notation. If X =
∏r
j=1 Xj , where the Xj denote Banach

spaces equipped with norms ‖ · ‖Xj , and f = (f1, . . . , fr) ∈ X, then we let ‖ f ‖X =
∑r
j=1 ‖ fj ‖Xj

(note that at times in the sequel we will replace the norms ‖ · ‖Xj and ‖ · ‖X by the norms ||| · |||Xj
and ||| · |||X , respectively, to indicate that we are now considering the parameter dependent norms
introduced above). In addition, if X and Y denote Banach spaces and T a continuous linear operator
from X into Y , then we will use the notation ‖T ‖X→Y (or |||T |||X→Y ) to denote the norm of this
operator.

For the remainder of this subsection we will suppose that the hypothesis of Theorem 3.1 holds
and denote by Ap the operator on H(σ†−s)

p (Ω) that acts as A(x,D) and has domain

D(Ap) =
{
u ∈W (σ†+t)

p (Ω)
∣∣∣Bj(x,D)u(x) = 0 for x ∈ Γ, j = 1, . . . . , N0

}
. (3.6)

As a consequence of Theorem 3.1 it follows that if λ ∈ L with |λ| ≥ λ0 and if D(Ap) is equipped with
the norm |||·|||

W
(σ†+t,λ)
p (Ω)

, then the mapping (Ap−λ IN ) : D(Ap)→ H
(σ†−s,λ)
p (Ω) is an isomorphism

and |||Ap − λ IN |||
D(Ap)→H(σ†−s,λ)

p (Ω)
≤ C. Thus we see that as an operator in H(σ†−s)

p (Ω), Ap has

a non-empty resolvent set. Furthermore, if we let Rp(λ) denote its resolvent, then it follows that for
f ∈ H(σ†−s)

p (Ω) and λ ∈ L with |λ| ≥ λ0, we have

|||Rp(λ)|||
W

(σ†+t,λ)
p (Ω)

≤ C|||f |||
H

(σ†−s,λ)
p (Ω)

≤ C‖ f ‖
H

(σ†−s)
p (Ω)

. (3.7)

Proposition 3.1. Suppose that λ ∈ L with |λ| ≥ λ0. Then as an operator from H
(σ†−s)
p (Ω) into itself,

Rp(λ) is compact and |λ|‖Rp(λ) ‖
H

(σ†−s)
p (Ω)→H(σ†−s)

p (Ω)
≤ C.

Proof. Let X and Y be Banach spaces such that X ⊂ Y , with continuous embedding, and let IX→Y
denote the corresponding embedding operator. Then for 1 ≤ j ≤ N , we have

I
W
σ†+tj
p,λ

(Ω)→H
σ†−sj
p (Ω)

= I
Lp(Ω)→H

σ†−sj
p (Ω)

I
W
σ†+tj
p,λ

(Ω)→Lp(Ω)
;

and it is clear that I
W
σ†+tj
p,λ

(Ω)→Lp(Ω)
is bounded in norm by

C|λ|−(σ†+tj)/m, while a duality argument also shows that I
Lp(Ω)→H

σ†−sj
p (Ω)

is bounded in norm by

C|λ|(σ
†−sj)/m. Since the mapping I

W
σ†+tj
p (Ω)→Lp(Ω)

is compact and since we can write (Rp(λ)f)j =

I
W
σ†+tj
p,λ

(Ω)→Lp(Ω)
(Rp(λ)f)j for f ∈ H

(σ†−s)
p (Ω), where (Rp(λ)f)j denotes the j-th component of

Rp(λ)f , all the assertions of the proposition follow from these results and (3.7). �

It follows from the foregoing results that Ap is a closed, densely defined operator on H(σ†−s)
p (Ω).

Furthermore, we have just seen that Ap has a compact resolvent, and hence a discrete spectrum, so
that at most a finite number of eigenvalues of Ap lie in L. Thus by a shift in the spectral parameter
if necessary, we see that there is no loss of generality in supposing henceforth that 0 lies in the
resolvent set of Ap. Next for 0 < θ ≤ π let Lθ denote the closed sector in the λ-plane with vertex at
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the origin defined by the inequalities θ ≤ |argλ| ≤ π. Then it is clear that all the assumptions and
results presented so far for the boundary problem (1.1), (1.2) remain perfectly valid for the boundary
problem (1.1)′,(1.2), where (1.1)′ is obtained from (1.1) by replacing A(x,D) by ρA(x,D) and λ by
ρ λ, where ρ denotes a constant satisfying |ρ| = 1. Thus we see that by an appropriate choice of θ,
we are led to the following asumption.

Assumption 3.5. We henceforth supose that the sector L of Theorem 3.1 coincides with the sector
Lθ introduced above and that Lθ ∪ B̃2ε(0) is contained in the resolvent set of Ap for some ε > 0,
where B̃2ε =

{
λ ∈ C

∣∣ |λ| < 2ε
}

.

Next let γ denote the contour in the λ-plane consisting of the segment r eiθ with r running from
∞ to ε, the arc ε eiφ with φ running from θ to −θ, and the segment r eiθ with r running from ε to ∞.
Then we come to the main result of this subsection.

Theorem 3.2. Suppose that the hypothesis of Theorem 3.1 as well as Assumption 3.5 hold. Then
the boundary problem (1.1), (1.2) generates a semigroup of operators on H(σ†−s)

p (Ω), namely A−tp =
−(2π i)−1

∫
γ
λ−tRp(λ) dλ, t ≥ 0. Furthermore, A−tp is analytic in the half-space Re t > 0.

Proof. Bearing in mind Proposition 3.1 and the fact that the contour γ can be suitably deformed
(see (6, Subsection 6.2)), the assertions of the theorem follow directly from the results given in (12,
Subsection 14.2, p.280). �

3.2 The case σ† > s1

In this subsection we restrict ourselves to the case σ† > s1. Then for this case we have σ† − s1 > 0
and σ†− sN ≤ 0, and we henceforth let k1 = max { k

∣∣ 1 ≤ k < N, σ†− sj > 0 }. It would be tempting
to treat this case in the same way as we treated the case σ† ≤ s1. Indeed, if for this case we also
suppose as in Theorem 3.1 that the boundary problem (1.1).(1.2) is parameter-elliptic in L, then we
could argue as we did in the proof of Theorem 3.1 to show that all the assertions of that theorem
remain valid. Furthermore, if we now define Ap in an analogous fashion to that in Subsection 3.1 and
employ the terminology introduced there, then we can also show that if λ ∈ L with |λ| ≥ λ0 andD(Ap)

is equipped with the norm ||| · |||
W

(σ†+t,λ)
p (Ω)

, then the mapping Ap−λ IN : D(Ap)→ H
(σ†−s,λ)
p (Ω) is

an isomorphism and Rp(λ) satisfies the first inequality of (3.7), but not the second, since σ† − sj > 0

for 1 ≤ j ≤ k1. Thus unlike the case σ† ≤ s1, we can no longer take H(σ†−s)
p (Ω) as the basic space

( i.e., a space that is equipped with a norm not depending upon λ) on which to construct an analytic
semigroup of operators. To overcome this problem we are led to consider the boundary problem

Ã(x,D)u(x)− λu(x) = f(x) in Ω, (3.8)

B̃j(x,D) = gj on Γ for j = 1, . . . , (N0 − Ñ0), (3.9)

where Ã(x,D) = (Ak1+j,k1+k(x,D))N−k1j,k=1 , B̃j(x,D) =
(
BÑ0+j,k1+1, . . . , BÑ0+j,N

)
, and Ñ0 = mk1/2

(we will impose conditions below which will ensure that mk1 is even).

Assumption 3.6. It will henceforth be supposed that: (1) Γ is of class Cσ
†+tk1+1 ; (2) Condition (2)

of Assumption 3.3 holds for k1 + 1 ≤ j, k ≤ N , while for other values of j, k, aαjk ∈ L∞(Ω) and
aαjk ∈ C(Ω) for |α| = sj + tk, 1 ≤ j, k ≤ k1; and (3) Condition (3) of Assumption 3.3 holds for
Ñ0 < j ≤ N0 and k1 < k ≤ N , while for other values of j, k, bjkα ∈ L∞(Γ).
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For ξ ∈ Rn let us now put

o

A
†

(x, ξ) =
( o
Ajk (x, ξ)

)k1
j,k=1

for x ∈ Ω,

o

Ã (x, ξ) =
( o
Ak1+j,k1+k (x, ξ)

)N−k1
j,k=1

for x ∈ Ω,

o

B̃j (x, ξ) =
( o
BÑ0+j,k1+1 (x, ξ), . . . ,

o

BÑ0+j,N (x, ξ)
)

for x ∈ Γ and

j = 1, . . . , (N0 − Ñ0).

Definition 3.7. Let L be a closed sector in the complex plane with vertex at the origin. Then the
boundary problem (3.8), (3.9) will be called parameter-elliptic in L if the following conditions are
satisfied.

(1) det
(
o

A
†

(x, ξ)− λ Ik1
)
6= 0 and det

( o

Ã (x, ξ)− λ IN−k1
)
6= 0 for (x, ξ) ∈ Ω× Rn and λ ∈ L

if |ξ|+ |λ| 6= 0.

(2) Let x0 ∈ Γ and assume that the boundary problem (3.8), (3.9) is rewritten in a local coordinate
system associated with x0 as explained in Definition 3.4. Then for ξ′ ∈ Rn−1 and λ ∈ L the
boundary problem on the half-line

o

Ã (0, ξ′, Dn)v(t)− λ v(t) = 0 for t = xn > 0,
o

B̃j (0, ξ′, Dn)v(t) = 0 at t = 0 for j = 1, . . . , N0 − Ñ0,

|v(t)| → 0 as t→∞,

has only the trivial solution for |ξ′|+ |λ| 6= 0.

Remark 3.3. Bearing in mind Remark 3.1, it follows from the arguments of (8) that if Condition (1) of
Definition 3.7 is satisfied, then mk1 is even.

Arguments analogous to those used in the proof of Theorem 3.1 give the following result.

Theorem 3.3. Suppose that the boundary problem (3.8), (3.9) is parameter-elliptic in L. Then there
exists a λ0 = λ0(p) > 0 such that for λ ∈ L with |λ| ≥ λ0, the boundary problem has a unique solution

u ∈
∏N−k1
j=1 W

σ†+tk1+j
p (Ω) for any f ∈

∏N−k1
j=1 H

σ†−sk1+j
p (Ω) and g ∈

∏N0−Ñ0
j=1 W

σ†−σ
Ñ0+j

−1/p

p (Γ),
and the a priori estimate

N−k1∑
j=1

|||uj |||σ†+tk1+j ,p,Ω
≤ C

N−k1∑
j=1

|||fj |||σ†−sk1+j ,p,Ω
+

N0−Ñ0∑
j=1

|||gj |||σ†−σ
Ñ0+j

−1/p,p,Γ


holds.

Note that in the above theorem C denotes the generic constant introduced in the text following
(3.2).

Next, bearing in mind the notation following the proof of Theorem 3.1, let us now put

W̃ (σ†+t,λ)
p (Ω) =

N−k1∏
j=1

W
σ†+tk1+j

p,λ (Ω),

H̃(σ†−s,λ)
p (Ω) =

N−k1∏
j=1

H
σ†−sk1+j

p,λ (Ω),

W̃ (σ†+t)
p (Ω) =

N−k1∏
j=1

W
σ†+tk1+j
p (Ω),

H̃(σ†−s)
p (Ω) =

N−k1∏
j=1

H
σ†−sk1+j
p (Ω).
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Also for the remainder of this subsection we will suppose that the hypothesis of Theorem 3.3 holds
and denote by Ãp the operator in H̃(σ†−s)

p (Ω) which acts as Ã(x,D) and has domain

D(Ãp) =
{
u ∈ W̃ (σ†+t)

p (Ω)
∣∣ B̃j(x,D)u(x) = 0 on Γ for j = 1, . . . , N0 − Ñ0

}
.

Then as a consequence of Theorem 3.3, it follows that if λ ∈ L with |λ| ≥ λ0 and D(Ãp) is equipped
with the norm ||| · |||

W̃
(σ†+t,λ)
p (Ω)

, then the mapping
(
Ãp − λ IN−k1

)
: D(Ãp) → H̃

(σ†−s,λ)
p (Ω) is an

isomorphism and
|||Ãp − λ IN−k1 |||D(Ãp)→H̃(σ†−s,λ)(Ω)

≤ C. Thus we see that as an operator on H̃(σ†−s)
p (Ω), Ãp has

a non-empty resolvent set. Furthermore, if we let R̃p(λ) denote its resolvent, then it follows that for
f ∈ H̃(σ†−s)

p (Ω) and λ ∈ L with |λ| ≥ λ0, we have

|||R̃p(λ)f |||
W̃

(σ†+t,λ)
p (Ω)

≤ C|||f |||
H̃

(σ†−t,λ)
p (Ω)

≤ C‖ f ‖
H̃
σ†−s)
p (Ω)

.

In addition we can argue as in the proof of Proposition 3.1 to show that for λ ∈ L with |λ| ≥ λ0, the
operator R̃p(λ) : H̃

(σ†−s)
p (Ω)→ H̃

σ†−s)
p (Ω) is compact and |λ|‖R̃p(λ)‖

H̃
(σ†−s)
p (Ω)→H̃σ

†−s)
p (Ω)

≤ C.

As a consequence of the foregoing results it follows that Ãp is a closed, densely defined operator
in H̃(σ†−s)

p (Ω) with compact resolvent, and hence a discrete spectrum. Then for reasons made in the
text preceding Assumption 3.5, we are led to make the following assumption.

Assumption 3.8. We henceforth suppose that the sector L of Theorem 3.3 coincided with the sector
Lθ defined in the text preceding Assumption 3.5 and that Lθ ∪ B̃2ε(0) is contained in the resolvent set
of Ãp.

Finally, with γ denoting the contour defined in the text preceding Theorem 3.2, we can argue as
in the proof of that theorem to obtain the following result.

Theorem 3.4. Suppose that the hypothesis of Theorem 3.3 as well as Assumption 3.8 hold. Then the
boundary problem (3.8), (3.9), which is associated with the boundary problem (1.1), (1.2), generates a
semigroup of operators on H̃(σ†−s)

p (Ω), namely Ã−tp = −(2π i)−1
∫
γ
λ−tR̃p(λ) d λ, t ≥ 0. Furthermore,

Ã−tp is analytic in the half-plane Re t > 0.

3.3 An example
Let us now consider a boundary problem arising in quantum hydrodynamics that was discussed in
(2) and which is covered by the theory expounded in Subsection 3.2. Here we have the boundary
problem (1.1), (1.2) with Ω a bounded region in R2 with smooth boundary Γ, N = 3,

A(x,D) =

 −ν0∆ −iD1 −iD2

i ε
2

4
D1∆ −ν0∆ 0

i ε
2

4
D2∆ 0 −ν0∆

 ,

B1(x,D) = ∂/∂ ν,B2(x,D) = 1, and B3(x,D) = 1 for x ∈ Γ, where ∆ denotes the Laplacian in R2,
ν0 and ε denote positive constants, and ∂/∂ ν denote differentiation along the interior normal to Γ.
For this problem we take t1 = 1, t2 = t3 = 0, s1 = 1, s2 = s3 = 2, σ† = 2, and thus sj + tj = m = 2
for j = 1, 2, 3 and σ† − s1 = 1.

Let us now take L = Lθ for 0 < θ ≤ π. Then direct calculations show that Conditions (1) and (2)
of definition 3.7 hold. Thus if we let Ãp denote the operator in Lp(Ω)2 that acts as(

−ν0∆ 0
0 −ν0∆

)
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and has domain
(
W 2
p (Ω)∩

o

W
1

p (Ω)

)2

, then we know from the results given in Subsection 3.2 that Ãp

is a densely defined, closed operator in Lp(Ω)2 with compact resolvent R̃p(λ), and hence a discrete
spectrum.

We now assert that for some ε > 0,Lθ ∪Bε(0) is contained in the resolvent set of Ãp. To see this
let us fix our attention upon the boundary problem

−ν0∆u(x)− λu(x) = 0 for x ∈ Ω, (3.10)

u(x) = 0 for x ∈ Γ. (3.11)

It is easy to verify that this boundary problem falls into the class of parameter-elliptic boundary studied
in (6), and so it follows from (6, Theorem 2.1) that if we let Ap denote the operator in Lp(Ω) that acts

as −ν0∆ and has domain W 2
p (Ω)∩

o

W
1

p (Ω), then Ap is a closed, densely defined opertor with
compact resolvent, and hence has a discrete spectrum, and that for some λ0 = λ0(p) > 0, the set{
λ ∈ Lθ

∣∣ |λ| ≥ λ0
}

is contained in the resolvent set of Ap.
Now let us fix our attention upon the case p = 2. Then associated with the boundary problem

(3.10), (3.11) is the sesquilinear formB(u, v) on L2(Ω) with domainD(B) =
o

W
1

2 (Ω), whereB(u, v) =
ν0

∑2
j=1(Dju,Djv), and (·, ·) denotes the inner product in L2(Ω). It is a simple matter to verify that B

is a densely defined, symmetric, closed form which is bounded from below by 0 (see (13, p.310 and
Theorem 2.1, p.322)). Furthermore we must have B(u, u) ≥ δ > 0 for u ∈ D(B) with ‖u‖0,2,Ω = 1,
since otherwise there would exist a u ∈ D(B), ‖u‖0,2,Ω = 1 such that B(u, u) = 0, which leads to the
contradiction that u = 0. Hence if we let Ã2 denote the selfadjoint operator associated with the form
B ( see (13, Theorem 2.6, p.223)), then Ã2 ≥ δ, which implies that the spectrum of Ã2 is contained in
[δ,∞). On the other hand we can argue as in (14, pp.107-112) to show that Ã2 = A2; and since we
know from (15) and (10) that the spectrum of Ap does not depend upon p, it follows that the spectrum
of Ap is contained in [δ,∞). As a consequence of this last result it follows that the assertion that
Lθ ∪ B̃2ε(0) lies in the reolvent set of Ãp is certainly true if we take ε < δ/2.

In light of the foregoing results and Theorem 3.4, we conclude that the operators Ã−tp , t ≥ 0, form
a semigroup in Lp(Ω)2 and that Ã−tp is analytic in the half-space t > 0.

4 The multi-order case
In this section we fix our attention again upon the boundary problem (1.1), (1.2), but we now suppose
that s1 ≥ s2 ≥ . . . ≥ sN , t1 ≥ t2 ≥ . . . ≥ tN ≥ 0, and let mj = sj + tj for j = 1, . . . , N . We also
suppose that m1 = m2 = . . . = mk1 > mk1+1 = . . . = . . .mkd−1 > mkd−1+1 = . . . = mkd > 0,
where kd = N , put m̃j = mkj for j = 1, . . . d, and let Ĩr denote the (kr − kr−1)× (kr − kr−1) identity
matrix for r = 1, . . . , d, where k0 = 0. In the sequel we will impose conditions which will ensure
that for r = 1, . . . , d, the sum

∑kr
j=1 mj is even and henceforth denote this sum by 2Nr. Lastly, we

suppose that max {σj }N0
1 < sN . Then as indicated in (3), there is no loss of generality in making the

following assumption.

Assumption 4.1. It will henceforth be supposed that tj ≥ 0 and sj ≥ 0 for j = 1, . . . N , and that
σj < 0 for j = 1, . . . , N0.

Assumption 4.2. It will henceforth be supposed that : (1) Γ is of class Cκ0 ∩ Cs1 , where κ0 =
max

{
t1,max{−σj }N0

1

}
; (2) for each pair j, k, ajkα ∈ Csj (Ω) for |α| ≤ sj + tk if sj > 0, while if

sj = 0, then ajkα ∈ L∞(Ω) if |α| < sj + tk and ajkα ∈ C(Ω) for |α| = sj + tk: (3) for each pair
j, k, bjkα ∈ C−σj (Γ) for |α| ≤ sj + tk.

In the sequel we shall also require the following notation. For x ∈ Ω, ξ ∈ Rn, and 1 ≤ r ≤ d,

let A(r)
11 (x, ξ) =

( o
Ajk (x, ξ)

)kr
j,k=1

, while for x ∈ Γ, ξ ∈ Rn, and 1 ≤ `1, ` ≤ d we let B(r,`)
`1

(x, ξ) =
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( o
Bjk (x, ξ)

)
j=N`−1(1−δr,`)+1,...,N`

k=1,...,k`1

, where δr,` denotes the Kronecker delta. In addition we let Ĩ1,0 =

Ĩ1 and Ĩr,0 =

diag
(

0Ĩ1, . . . , 0Ĩr−1, Ĩr
)

for r = 2, . . . , d.

Note that when x0 ∈ Γ we can rewrite the boundary problem (1.1), (1.2) in terms of the local
coordinates at x0 as explained in Definition 3.4. Then suppoing that this has been done, we shall in
the sequel be concerned with the boundary problem

o

A (0, D)u(x)− λu(x) = f(x) for x ∈ Rn+,
o

Bj (0, D)u(x) = gj(x
′) at xn = 0 for j = 1, . . . , N0,

and corresponding to this boundary problem we define the matrices A(r)
jk (0, ξ),

B(r,`)
`1

(0, ξ) in precisely the same way as their analogues were define in the original coordinate system.

Definition 4.3. Let L be a closed sector in the complex plane with vertex at the origin. Then the
operator A(x,D) − λ IN will be called parameter-elliptic in L if det

(
A(r)

11 (x, ξ) − λĨr,0
)
6= 0 for x ∈

Ω, ξ ∈ Rn \ {0}, and λ ∈ L, r = 1, . . . , d.

In the sequel we let C± = {z ∈ C, Im z >< 0}.

Definition 4.4. Suppose that the operator A(x,D)− λ IN is parameter-elliptic in the sector L
introduced above. Let x0 be an arbitrary point of Γ and assume that the boundary problem (1.1), (1.2)
has been rewritten in a local coordinate system associated with x0 in the manner just explained. Then
the operator A(x,D) − λ IN will be called properly parameter-elliptic in L if the following conditions
are satisfied.

(1) The polynomial det
(
A(r)

11 (0, ξ′, z)− λĨr,0
)

has precisely Nr zeros lying in C+ for ξ′ ∈ Rn−1 \
{0} and λ ∈ L, r = 1, . . . , d.

(2) The polynomial det
(
A(r)

11 (0, 0, z)− λĨr,0
)

has precisely Nr − Nr−1 zeros lying in C+ for λ ∈
L \ {0}, r = 2, . . . , d.

Remark 4.1. Referring to Condition (1) of Definition 4.4, we know from (8, Section 2) that
det
(
A(r)

11 (0, ξ′, z)− λĨr,0
)

has precisely Nr zeros in C+ if r = 1 or if r > 1 and n > 2. In the
sequel, when proper parameter-ellipticity is supposed, it will be assumed that this is also the case
when r > 1 and n = 2. Turning next to Condition (2) of the definition, it is clear that the number
of zeros of the determinant in C+ (resp. C−) does not depend upon λ. Hence it follows from an
expansion of the determinant in powers of z and λ that Condition (2) always holds if m̃r is even or if
m̃r is odd, kr − kr−1 is even, and there is a λ ∈ L \ {0} such that −λ ∈ L. Lastly we mention at this
point that it is also clear from what was said above that Condition (2) is always satisfied if the operator
A(x,D) is essentially upper triangular at x0 (see Definition 4.6 below)

Definition 4.5. Let L denote the sector introduced in Definition 4.3 above. Then we say that the
boundary problem (1.1), (1.2) is parameter-elliptic in L if A(x,D)−λ IN is properly parameter-elliptic
in L and the following conditions are satisfied. Let x0 be an arbitrary point of Γ and suppose that the
boundary problem (1.1), (1.2) has been rewritten in a local coordinate system associated with x0, as
explained above. Then

(1) the boundary problem on the half-line

A(r)
11 (0, ξ′, Dn)v(xn)− λĨr,0v(xn) = 0 for xn > 0,

B(r,r)
r (0, ξ′, Dn)v(xn) = 0 at xn = 0,

|v(xn)| → 0 as xn →∞, (4.1)

has only the trivial solution for ξ′ ∈ Rn−1 \ {0}, λ ∈ L and 1 ≤ r ≤ d;
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(2) the boundary problem on the half-line

A(`)
11 (0, 0, Dn)v(xn)− λ Ĩ`,0v(xn) = 0 forxn > 0,

B(r,`)
` (0, 0, Dn)v(xn) = 0 atxn = 0,

|v(xn)| → 0 asxn →∞,

has only the trivial solution for λ ∈ L \ {0}, 1 ≤ r < d and r < ` ≤ d.

Remark 4.2. Fixing our attention again upon the boundary problem (1.1), (1.2), suppose that there
exists the monotonic decreasing sequence of positive integers { t′j }N1 such that sj = tj = t′j for
j = 1, . . . , N and that the boundary conditions (1.2) are those of Dirichlet. Suppose in addition that
o

A (x, ξ) is positive definite at each point of Ω × Sn−1, where Sn−1 = { ξ ∈ Rn
∣∣ |ξ| = 1 }. Lastly

suppose that A(x,D) − λ IN is properly parameter-elliptic in L and that L intersects R+ only at the
origin. Then we know from (16) that the boundary problem (1.1), (1.2) is parameter-elliptic in L. On
the other hand, if we only suppose that

o

A (x, ξ) is symmetric at each point of Ω × Sn−1 and that L
intersects R only at the origin, then it was pointed out in (16) that the boundary problem (1.1), (1.2)
is parameter- elliptic in L provided that the boundary problem (4.1) has only the trivial solution when
λ = 0 for r = 1, . . . , d.

Definition 4.6. Let x0 ∈ Γ. Then we say that the operator A(x,D) is essentially upper triangular at
x0 if ajkα (x0) = 0 for |α| = sj + tk, k`−1 < j ≤ k`, 1 ≤ k ≤ k`−1, ` = 2, . . . , d. Likewise we say that
the operator B(x,D) = (Bjk(x,D))j=1,...,N0

k=1,...,N
is essentially upper triangular at x0 if bjkα (x0) = 0 for

|α| = σj + tk, N`−1 < j ≤ N`, 1 ≤ k ≤ k`−1, ` = 2, . . . , d.

From (3) we now have the following result. Here, for 1 ≤ j ≤ N0, we put π(j) = 1 if 0 < j ≤ N1

and π(j) = r if Nr−1 < j ≤ Nr and r > 1.

Theorem 4.1. Suppose that the boundary problem (1.1), (1.2) is parameter-elliptic in L. Suppose
also that at least one of the following conditions hold: (1) the boundary conditions (1.2) are of Dirichlet
type at every point of Γ; (2) the operators A(x,D) and B(x,D) are both essentially upper triangular
at every point of Γ. Then there exists the constant λ0 = λ0(p) > 0 such that for λ ∈ L with |λ| ≥ λ0,
the boundary problem (1.1), (1.2) has a unique solution u = (u1, . . . , uN )T ∈

∏N
j=1 W

tj
p (Ω) for every

f = (f1, . . . , fN )T ∈
∏N
j=1 H

−sj
p (Ω) and g = (g1, . . . , gN0)T ∈

∏N0
j=1 W

−σj−1/p
p (Γ), and the a priori

estimate
N∑
j=1

|||uj |||(j)tj ,p,Ω ≤ C

(
N∑
j=1

|||fj |||(j)−sj ,p,Ω +

N0∑
j=1

|||gj |||(π(j))

−σj−1/p,p,Γ

)
(4.2)

holds, where the constant C does not depend upon the fj , gj , and λ.

Remark 4.3. As was shown in (3) the estimate (4.2) is 2-sided, i.e., an estimate reverse to (4.2)
holds.

We return again to the paragraph starting with “Notation” following the proof of Theorem 3.1 and
introduce the new spaces

W (t,λ)
p (Ω) =

N∏
j=1

W
tj
p,λ(Ω), W (t)

p (Ω) =

N∏
j=1

W
tj
p (Ω),

H(−s,λ)
p (Ω) =

N∏
j=1

H
−sj
p,λ (Ω), H(−s)

p (Ω) =

N∏
j=1

H
−sj
p (Ω).
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We will also suppose for the remainder of this section that the hypotheses of Theorem 4.1 hold and
denote by Ap the operator on H(−s)

p (Ω) that acts as A(x,D) and has domain

D(Ap) =
{
u ∈W (t)

p (Ω)
∣∣Bj(x,D)u(x) = 0 on Γ for j = 1, . . . , N0

}
.

Then as a consequence of Theoerem 4.1 it follows that if λ ∈ L with |λ| ≥ λ0 and D(Ap) is equipped
with the norm ||| · |||

W
(t,λ)
p (Ω)

, then the mapping Ap − λ IN : D(Ap)→ H
(−s,λ)
p (Ω) is an isomorphism

and |||Ap − λ IN |||D(Ap)→H(−s)
p (Ω)

≤ C, where here, and for the remainder of this section, C denotes
the generic constant introduced in the text following (3.2). Thus we see that as an operator on
H

(−s)
p (Ω), Ap has an non-empty resolvent set. Furthermore, if we let Rp(λ) denote its resolvent,

then it follows that for f ∈ H(−s)
p (Ω) and λ ∈ L with |λ| ≥ λ0, we have

|||Rp(λ)f |||
W

(t,λ)
p (Ω)

≤ C|||f |||
H

(−s,λ)
p (Ω)

≤ C‖ f ‖
H

(−s)
p (Ω)

.

In addition we can argue as in the proof of Proposition 3.1 to show that for λ ∈ L with |λ| ≥ λ0, the
mapping Rp(λ) : H

(−s)
p (Ω)→ H

(−s)
p (Ω) is compact and |λ|‖Rp(λ) ‖

H
(−s)
p (Ω)→H(−s)

p (Ω)
≤ C.

As a consequence of the foregoing results it follows that Ap is a closed, densely defined operator
on H(−s)

p (Ω) with compact resolvent, and hence a discrete spectrum. Thus for reasons made in the
text preceding Assumption 3.5, we are led to make the following assumption.

Assumption 4.7. We henceforth suppose that the sector L of Theorem 4.1 coincides with the sector
Lθ defined in the text preceding Assumption 3.5 and that Lθ ∪ B̃2ε(0) is contained in the resolvent set
of Ap.

Finally, with γ denoting the contour defined in the text preceding Theorem 3.2, we can argue as
in the proof of that theorem to obtain the following result.

Theorem 4.2. Suppose that the hypotheses of Theorem 4.1 as well as Assumption 4.7 hold. Then
the boundary problem (1.1), (1.2) generates a semigroup of operators on H(−s)

p (Ω), namely A−tp =
−(2π i)−1

∫
γ
λ−tRp(λ) dλ, t ≥ 0. Furthermore, A−tp is analytic in the half-plane Re t > 0.

5 Conclusion
Fixing our attention firstly upon the mono-order case, we see from Theorem 3.2 that our approach
to the semigroup problem has enabled us to give a direct proof that the boundary problem (1.1),
(1.2) generates a semigroup of operators acting on the space cited there, and completely avoids the
difficulties arising in Dreher’s approach to this problem as cited in Section 1. Analogous statements
also hold for the boundary problem (3.8), (3.9) (see theorem 3.4. Finally , as shown in Theorem
4.2, our approach to the semigroup problem has allowed us to extend the known results for the
homogeneous and mono-order problems to a certain class of parameter-elliptic Douglis-Nirenberg
systems of multi-order type.
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