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ABSTRACT

The co-occurrence of Human Immunodeficiency Virus (HIV) and Tuberculosis (TB) poses a
significant global health challenge, affecting an estimated 1.4 million individuals worldwide. The
synergistic progression of these diseases contributes to elevated morbidity and mortality rates.
Recognizing the substantial public health burden they impose, this study introduces fifteen (15)
compartmental models to discern optimal control strategies for treating HIV-TB co-infection. Initial
consideration is given to sub-models for HIV and TB individually, followed by the comprehensive
HIV-TB co-infection model. The research quantitatively analyzes the existence and uniqueness of
HIV and TB models, examining the stability of equilibrium points for disease-free and endemic
states. The Basic Reproduction Number (R,) is computed using the Next Generation Matrix method.
Optimal control strategies are evaluated to determine the preferred sequence for treating co-
infection. Employing MAPLE software with the differential transformation method, numerical
simulations underscore the importance of epidemiological features in the dynamic spread of HIV-TB
co-infection. The results emphasize the efficacy of simultaneous treatment for both diseases,
coupled with immune system support, compared to sequential treatment of one disease.

Keywords: HIV; TB; reproduction number; equilibrium points; stability; optimal.

1. INTRODUCTION

HIV remains a substantial health challenge,
causing both loss of lives and considerable
economic burdens on governments and
individuals. The disease has claimed over 39
million lives, and despite ongoing intervention
efforts, its impact continues to affect numerous
individuals. ([3], [7], [23], [36]). HIV is a virus that
can be transmitted through specific body fluids,
and it primarily targets the body's immune
system, particularly the CD4 cells. These cells
are crucial for maintaining immune function, and
their levels are commonly used to measure the
health of the immune system. As HIV
progressively damages CD4 cells, the body's
ability to defend itself against infections and
diseases weakens, leading to an increased
vulnerability to various opportunistic infections
and illnesses ([22], [32]). Indeed, tuberculosis
(TB) is one of the opportunistic diseases that can
affect individuals with weakened immune
systems, such as those living with HIV ([1], [35]).
TB is caused by the bacterium Mycobacterium
tuberculosis, and it is highly contagious. The
bacteria primarily target the lungs, leading to
pulmonary TB, but they can also spread to other
organs and tissues in the body, causing
extrapulmonary TB ([13], [27], [38]). Tuberculosis
(TB) ranks second as a global killer caused by a
single infectious agent, with a considerable
number of infections and deaths ([15], [16]). The
burden of TB disproportionately falls on low- and
middle-income countries, where over 95% of TB-
related deaths occur ([7], [37]). To effectively
implement existing intervention strategies, an
estimated $2 billion is needed to bridge the
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resource gap [8]. HIV and TB have a well-
established synergistic relationship, where each
disease increases the susceptibility to
contracting the other. This co-infection can lead
to more severe health consequences and
challenges in treatment, making it crucial to
address both diseases comprehensively in
healthcare strategies ([8], [14], [20], [28]).
Individuals living with HIV have a significantly
higher risk of developing tuberculosis (TB)
compared to those who are HIV-negative.
Studies have shown that people with HIV are
approximately 12 to 20 times more likely to
contract TB, highlighting the increased
vulnerability of this population to the disease ([8],
[12]). In the case of HIV and TB co-infection,
both diseases interact in a way that worsens their
effects on the immune system and overall health,
making it more challenging to manage and
increasing the risk of severe health outcomes.
Addressing these diseases as a syndemic
requires  comprehensive  and integrated
approaches to effectively control their spread and
improve patient outcomes ([7], [18], [19], [29],
[31)).

Indeed, mathematical modeling has been
extensively utilized in researching HIV-TB co-
infection. These models help in studying the
complex dynamics between HIV and TB, and
how the co-infection affects disease progression
and transmission. [35] Developed a
comprehensive mathematical model to analyze
the transmission of HIV and curable TB co-
infection in a population of varying size. Their
model considers essential factors such as
population size, transmission rates, treatment
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effectiveness, and other relevant variables,
making it a valuable tool for understanding the
dynamics of these diseases and devising
effective strategies for control.

The co-infection of Human Immunodeficiency
Virus (HIV) and Tuberculosis (TB) stands as one
of the deadliest diseases globally. Despite
significant  efforts through public  health
campaigns, seminars, drug administration, and
the isolation of infected individuals, there remains
a need for alternative strategies. The focus of
this research is to explore optimal control
strategies to address the longstanding debate on
whether HIV or TB should be treated first, a
dilemma that has impeded the effectiveness of
co-infection control measures. The study aims to
investigate and propose appropriate control
measures for this complex health challenge.

The paper is structured as follows:

Section 2 outlines the formulation of the model.
In Section 3, the complete model is divided into
two fundamental sub-models, namely the HIV-
only model and the TB only sub-model. The
gualitative analysis of each sub-model is
presented in this section. Then, in Section 4, the
main model is extended to an optimal control
problem, and its qualitative analysis using
Pontryagin's maximum principle is discussed. In
Section 5, numerical experimentation of the
resulting optimal control is conducted, and the
outcomes are analyzed. Finally, in Section 6, the
main discussion and conclusions of the research
are presented.

2. MATHEMATICAL MODEL FORMULA-
TION

In modeling the dynamics of HIV- TB co-
infection, the total homogeneously mixing
population at time t, denoted by N(t), is divided

into fifteen (15) compartments of Susceptible
(S@) individuals, Latenty Hiv (L ()
individuals, ~ HIV  Undetected (Hy (1)

individuals, HIV Detected (HD(t)) individuals,

Treated HIV (HW(t)) individuals, Latently TB
and HIV (Lt ) individuals, Active TB and HIV
(Ar () individuals, Latently HIV and TB
(Lir ) individuals, Active HIV and T8
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(Ar (1)

individuals, TB Undetected (T, (1) individuals,
TB Detected (To (1) Failed
Treatment TB (F (1) individuals, Recovered
B (R () individuals, Recovered TB and HIV

(Riu () individuals.  Table 1
description of these. So that:

individuals, Latent TB (LT (t))

individuals,

gives a

N(t)=S+LH+HU+HD+HW+LTH+ATH+

The susceptible population expands through the

recruitment of individuals at a rate 77 , while
natural death ¢ and transmission from both
singly and dually-infected individuals contribute
to its decrease. Singly and dually-infected
individuals play distinct roles in transmitting
either HIV or TB infection, a concept elaborated
in the subsequent sections. This separation
facilitates a clearer formulation of the disease
transmission process.

Susceptible individuals acquire HIV infection,
following effective contact with people infected
with HIV  only (i.e. those in the

(Ly,nyHy,nayHpandny, Hy,)classes at a rate Ay ,

given by:

(LH+TIUHu+77dHHD+77WHW),l 2
Bu N (1.2)

A

Where, 'BH is the effective contact rate for HIV
transmission.

Similarly, susceptible individuals acquire TB
infection from individuals with TB only i.e.
(L, nyTy,narTp, NrrRrandFy) classes at a rate

Ar , given by

_ (Lr+nuTu+NarTp+nRTRT+FT)
Ar = Br - (1.3)

Where, B is the effective contact rate for the TB
infection.

Dually-infected individuals are assumed capable
of transmitting either HIV or TB, but not the
mixed infection.

The Transmission rate of HIV and TB is given as:
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— (LHT+NHAHT) The population of latent class is decreased by
Aur = Bur (1.4) . > = ,
N the progression of latent HIV individual to active
Also, the Transmission rate of TB and HIV is undetected HIV H, (at a rate k) and also
given as: reduced by natural death rate (u) and finally
Apgy = Py LTHHNTATHMRTRTH) (1.5) increased by the fraction of Treated HIV at the
TH T ETH N ' rate (¢) that moves from treated class to latently
Then: HIV compartment. Thus:
ds d:_tH = &14yS — (ky + WLy + Hy(1.7)
E =T — AHS - /1TS - ‘U.S - /‘ITHS - /‘IHTS

(1.6) The population of undetected infected individuals
is increased by the infection of fast progressors

A fraction €1 of the newly infected individuals are &t the rate (1—&)4 and the development of
assumed to show no disease symptoms initially. ~ SYMPtoms by latently individual at the rate, (1 —
These individuals (known as “slow progressors”) ~@1)kn Where w, is the endogenous reactivation
are moved to the latently HIV class(Ly). The rate. This populatlo.n is depreased by natural
remaining fraction, (1 — &,) of the newly infected ~ death rate (u) and disease induced death (at a
individuals are assumed to immediately display 'at€dyy) and further decreased by detection rate
disease symptoms (fast progressors) and are (yyn) of HIV undetected infected individuals.
moved to the undetected infectious class H,. Hence:

dH
d_tU =1 —-e)AyS+ (A —w)kyly — (Yyy + 1+ Syy)Hy (1.8)
The population of detected infected HIV individual increases by the fraction of latently HIV individuals
who develop disease symptoms (at the ratew, k), where w,is the endogenous reactivation rate and
the detection of undetected individual at the ratey,y. The population is later decreased by treatment
rate (t,) for HIV detected individual and finally reduced by the natural death rate, induced mortality
death rate at 4 and §, respectively. Hence:

dHp

& wiKyLy +yygHy — (T4 + 1+ 6y )Hp (1.9)
The population of treated HIV individuals is increased by those that have received treatment from HIV
detected infected individual at the rate (t;), this population reduces by the fraction of treated
individuals that moved back to latently HIV individuals at the rate, (¢) since treatment does not
completely clears the virus and finally reduced by natural death rate (p).
Hence,

dH

d—:V =1 Hp — (¢ + WHy (2.0

The population of latent TB and HIV is increased by infection, which can be acquired following
effective contact with infectious individuals in the latent TB and HIV (Ltn), Active TB induced HIV
(nrArg) or Recovered TB induced HIV (ngrRry) categories at a rate A given by

Arw = Bra (LTH'H?TAT:'HTRTRTH) 2.1)

Wherefry represents the effective contact rate.

The population is reduced by progression from latent stage to active stage at the rate (xry), and by
natural death at the rate (1). The population later is increased by the fraction of those that have been
treated that moved from treated compartment at the rate (a;). Then the rate of change of latent TB
induced HIV population is given by:

dlty
dt

= AruS — (Kry + W)Ly + arRyy (2.2)
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The population of active TB and HIV is increased by the progression from latent stage to active stage
at the rate (kry), the population is decreased by natural death, induced mortality due to disease at the
rate (u) and (8) respectively, individuals who recovered also moved to recovered TB induced HIV at
the rate (o).

Hence,

da
—Ti = Krylry — (U + 01+ 8Ary)Ary (2.3)

dt

The population of latent HIV and TB is increased
by infection, which can be acquired following
effective contact with infectious individuals in the
latent HIV and TB (Lu1), or active HIV induced

TB (77H AHT) categories at a rate A given by:

dAHT _
at

Kur — (U + 8Aur)Anr (2.6)

A fraction ¢, of the newly—infected individuals are
assumed to show no disease symptoms initially.
These individuals (known as slow progressors for
TB) moved to the latently TB class (Lt). The

remaining fraction (1 — &,) of the newly infected

Bur (LHT+NHAHT) (2.4) individuals are assumed to immediately display
N disease symptoms (fast progressor for TB) and

are moved to the undetected infected
compartment (Tu). The population is decreased
by progression rate (k;) from latent TB class to
infected undetected class, natural death rate (u)
and exogenous re-infective (at a rate¢1;), where
¢ <1 accounts for the assumption that latent
individuals have reduced infection rate, this is to

Apr =

Where B, represents the effective contact rate.
The population is reduced by progression from
latent stage to active stage at the rate (ky7) and
by natural death rate. Hence, latent HIV and TB
population is given by:

dLyr

o = AnrS — (kpr + W Lyr (2.5) account for the fact that individuals with latent TB
infection have partial immunity against
Active HIV and TB (AnT) population is increased  exogenous re-infection. The population is

by the progression from latent stage to active increased by natural recovery at the rate (U),

number of unsuccessful treated individuals who
move to the latent TB individuals at the rate

(6:p)and rate (I’a ) respectively at which treated

stage at the rate (KHT ). The population
decreased by natural death rate (i) and disease
induced mortality at the rate (8). Hence the

system of equation of Active HIV induced TB is B 'rl‘dt'_‘"dl?als_ Wa’;)e_the treatment. Then the
given by: population is given by:
LT = £)275 — (kg + dAr + WLy + VT, + 6:pFy + raRy (2.7

dt

The population of undetected infectious individuals is increased by the infection of fast progressors at
the rate (1 — &,)A; and the development of symptoms by latent individuals at the rate, (1 — w,)xr,
where w, is the fraction of exposed individuals who develop symptoms and are detected. It is further
increased by the exogenous re-infection of expressed individuals at the rate, (1 — w3)¢A;, where wsis
the fraction of re-infected exposed individuals who are detected, and fraction of unsuccessful treated
individuals that move from detected individuals to undetected individuals at the rate, (6,p). The
population is decreased by natural recovery at a rate, (v), detection of undetected individuals at a
rate, (yyy), Nnatural death at the rate (1) and disease induced death at a rate (&,7). Hence:

ar
d_tu =1 —&)AyS + (1 — wp)krly + (1 + w3)PArLy + O,pFr — (v + yyr + u + Syr)Ty(2.8)

The population of detected infectious individuals increases by the fraction of latent individuals who
develop diseases symptoms at a rate w,kr, exogenous re-infection of latent individuals, detection rate
for undetected individuals at the rates ws¢, yyr respectively and numbers of unsuccessful treated
individuals who move to latent and undetected individuals at the rates 61 and6. respectively. The
population is decreased by those that are treated and recovered who later moved to recovered
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compartment at the rate (o2 ), treatment rate (t2), hatural death rate (i) and disease induced death at
arate (&47)This gives:

aTr

d_tD = wykrLly + w3pLr + yyrTy + [1 — (6, + 0)|pFr — (02 + 12 + u + 847)Tp (2.9)
The population of failed treatment compartment is generated by the failure of treated infected
detected individuals at the rate, (1 —q;)t,. The treatment failure could be due to a number of
reasons, such as incomplete compliance to the specified treatment or drug resistance among others.
The population is decreased by the fraction of treated individuals who lose their treatment; the
population is decreased by the rate at which TB individuals who fail treatment move to other classes,
natural death and induced death at the rate (£ + u + 6z). Thus:

dFp _

T = (1- )Ty + (1= 1Ry — (p + it + 6p)Fy (3.0)

The population of TB recovered individuals is increased by the treatment of detected individuals at the
rate 1> and treated detected individuals at the rate o2, successfully— recovered individuals eventually
move to the latent class at the rate, a. This population is further decreased by natural death and
disease induced death at the rate u and drt respectively.

Hence:

dR

d_tT = q17Tp — (@ + u + Sgr)Ry + 0, Tp (3.1)
The population of TB and HIV recovered individual is increased by the treatment of active TB at the o,
and later reduced by natural death rate u and the rate (a;), at which treated individuals lose their
treatment induced immunity. Thus we have:

dRTH

i - 01Ary — (ar + Ry (3.2)

Mathematical Model of HIV-TB:

as

— == AyS = ArS — uS = AryS — AyrS

D8 = 6,248 — KLy + @Hy

B — (1 e)2S + (1= w)ryLy — KoHy

dstD = wikyLy +yyyHy — K3Hp

W = 7, Hp - K,Hy

ZI8 = AryS — KoLy + arRoy

df;H = Krylry — KeAry

dZIZT = AurS — K7Lpr (3.3)
dZ?T = KurLuyr — KgApur

(%T = € ArS — KoL + Ty + 01pFr + raRy

d;_tu =1 —-e)AyS + (1 — wy)krLly + (1 + w3)PLr + 6,pFr — Ki4Ty
dstD = wykrly + w3PLy + yyrTy + [1 — (61 + 82)]pFr — K11 Tp

LT — (1= )Ty + (1 = aRy — KipFy

% = q,17,Tp — Ki3Rr + 0,Tp

L = 0147y — Ki4Rry )

dt
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Where

Ky = (kg + 1), K = (yyw + 0+ 6yn), Kz = (11 + 0+ 8qn), Ko = (¢ + 1), Ks = (ki + ),
Ko =+ 01+ 6ry), K7 = (kyr + 1), Kg = (0 + 87y), Ko = (kr + 1), Ko = (W + yyr + 1+ 6yr),
Ki1=(02+ 1+ pu+6a7),Kiz = (p+ p+ 6pp), Kiz = (@ +  + bgr), Ky = —(ar + 1)

£ Ay S

({(1-wy)x; +

(A—g)AgS (- @)el )L,

i l—@)kgly
ety 7 ey g

@Ar+

O Ly (U +67 )—Hl

+ @k )Ly

w-se) Ho [ a0

{H w H“.'
, , L
MLy LTH . Ay Ay S s HT MLy
OrRey
Kl KprLar
1+ Oy Ary N (U +8 ) A
At ' Rrr Apr ——F 5

I"le

Fig. 1. Schematic diagram of the HIV-TB model

3. POSITIVITY OF SOLUTIONS
For the model of Human Immunodeficiency Virus co-infection with tuberculosis to be epidemiologically
meaningful and mathematically well posed, it is necessary to prove that all state variables are non-
negative for all t > 0.
Theorem 1.
Let:

Lyr(0) =2 0,4y7(0) =2 0,L+(0) = 0,Ty(0) = 0,75(0) = 0, Fr(0) = 0,Ry(0) = 0,Rry(0) =2 0} €T

Then, the solution:

{S@), Ly (8), Hy (), Hp (t), Hy (£)Lry (), Arp (£), Ly (), Apr (t), L1 (2), Ty (8), Tp (¢), Fr (D),
Ry (t), Rry(t)} Of the model system equation (3.3) are positive vVt > 0.

29



Adesola et al.; Asian Res. J. Curr. Sci., vol. 6, no. 1, pp. 23-53, 2024; Article no.ARJOCS.1467

Proof:

In order to prove the theorem (1.1), the equations of the system (3.1) were used. From the first

equation of the model (3.3):

as

— == A4S —uS (3.4)
From which it follows that:

das

a == —uS (3.5)
Consequently:

%+,u520 is the first order homogeneous
differential equation.

|F= et =t

(3.6)

Multiplying by the Integrating factor on both sides
will give:

#CS 4 st 2 0 (3.7)
It then follows that:
d(S#) = 0dt

Integrating on both sides gives:

S$#* > ¢ where C is a constant of the integration,
it follows that:
Sty =ctrt (3.8)

3.1.1HIV model only

as

Pl AyS —uS

LH = £.2uS — KoLy + @Hy

DU = (1 - )2uS + (1 — 0)reyLy — K Hy
dstD = wiKyLy + yynHy — K3Hp

Lw - 7T, Hp — KyHy,

dt

For critical points, we set:

L_dbn_dHy_dHp 0

dat dt dt dt dt

Applying the initial condition that, when t =
0,S(t) = S(0),we have:

NOEXS

Hence:

S(t) = S0y ™

Since p > 0andS(0) = 0,then:

S) =0,ift =0andt —» «

Therefore:

S(t) = 0Vt > 0.

Similarly, it can be shown that Ly >0,H; =
0,H, 20,Hy =20,Lry =20,A75 =2 0,Lyr =

0,Ayr =20,L; =20,T; =20,Tp =20,Fr =2 0,Ry =

O,RTHZOVtZO.

Therefore, HIV-TB model formulated is
mathematically and epidemiologically well posed.

3.1Analysis of Sub Models

Before analyzing the full model (3.3), it is
instructive to gain insights into the dynamics of
the models for HIV only and TB only.

(3.9)

(4.0)

At this free equilibrium, it is assumed that there is no infection, then we set An =0
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Disease free equilibrium is:

A
€0 = {—,0,0,0,0}
u

Existence of Endemic Equilibrium (EE)

Where g5 = (S7, Ly, Hy, Hp, Hyy)are the endemic equilibrium points.

*r g
AH+1)
L _ &S +@Hw,,
Hxx Ky
H _ (1_81)AHS**+(1_0J1)KHLH
U =

K3

H _ leHLH**"'YUHHu**
= —
D K3

After the substitution, we have the results (4.1b*-4.1e*) in terms ofS**;

Kk *k
_ &dgeST” | eriyyn(1—e)Ay ST LH** = plﬂ'HS

Ly =
K1A K1K3K4 Kz A
(1—e)AS™ | KykygPi Ay S**

Hyw = 1+ Hoo = P Ay S™

Kz K3

w1kyP1 Ay S** PyA3 S**
HD** — 1KH1Ag +VUH 2'H — P3A>;I*S**
K3 K3

_ T1P3A,Iil*5** — kk QKK
Hy = —"—= Py

4

Where:

A= (1 _ PTywiKp @T1Yyu(1l — wl)KH>
K1K3K4 K1K3K4K2

&1 OTYun(1 — &)
P1 =—+

P,

_ (1-¢) N (1 - wy)ky =Y OTYun(1 — 51)]

31

(4.1a)

(4.1b)

(4.1¢)

(4.1d)

(4.1e)

(4.1b%)

(4.1c*)

(4.1d%)

(4.1e%)
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P, — w1 Ky & @T1Yun(1 — &) Yuu (1-¢) (A-wky [3_1 oTyun(1 — 51)]
3 K, LKA K K;K,K,A K; |(1—wy) K, KA K, K;K,K,A
p = Ty WiKp[ & oYy (1 — &) Yuu (1-¢&)  (1—-w)ky [3_1 @T1Yun(1 - 51)]
* 7K, Ky LKA K K;K,K,A K |(1—wy) K, KA K, K;K,K,A
Where:

A = Bu[Ly +nuHy +nauHp +nwHiy]

N
(4.2)
Substituting the expressions in (4.1b*-4.1e*) into (4.2) we have
AFIS™ + PLAYS™ 4+ PoAGS™ + P Ay S™ + Py Ay S™] = BAGS™ [Py + nyPy + NauPs + nywPy] (4.3)

Divide each term in (4.3) by 1,""5**
1+ PsA™ = B[Py + Ny Py + NayPs + N Ps)

WhereP5=P1+P2+P3+P4_ZO

So that:
B e1(KoK3Ky)  otiyyn (1 — &)
1+ P A = 1-&)K,K;K
+ PsAy K K,K:K, KA @ + (1 — &)K KK,
Kykye K3K, T 1—¢ w1k KK, T 1—-¢
n 2 HA1 3 4+(P 1]/UHI§ 1)+ 1 HA1 2 4+§0 1yUH1§ 1)+VUH(1_51)K1K4
YunkKoe1kuKy  YunKokpoTivyu (1 — &)  Ti01kp& K,  Tiw1kg@Tyyu (1 — &) n (1 - e)K,K
A K3K,A A KK, + A Yuu 118
+YUHK2KH€1K4 +VUHK2KH<PT1YUH(1—E1) =R, +Q where
A K3K,A
B & K3Ks & KKy &7 w1k K,
Q= (Ks + wiky) + ————— (K3 + 2yyy) + ————

K. K,K;K, A A A
3 OTyyn(L— &) (1 —&)2yypky

A AK;K,

2T, 01Ky @
K,K;A

+ (K071 + K010) + (1 — &) yun < + 2K, K, + K1K3K4>]

Therefore: 14+ PsA™ =Ry + Q

R, >1

A =R o hWhenever,
5

3.1.2 Stability of the HIV model

The basic reproduction number of the model (3.3)is calculated by using the next generation matrix
([21, [6], [24], [25], [26]). Using this approach, we have:

&Py &1 Puny €1BuNan &1 Pulw

F = (1 —e)By(1 = &)Bunu (1 — €)BuNan(1 — €1)Bunw
0 0 0 0
0 0 0 0

(4.4)
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K, 0 0 —o

V _ _(1 - (J)l)KH Kz O O
—w; Ky —Yun K 0
O 0 - Tl K4

(4.5)

The reproduction number is the dominant eigenvalue of F x V1. Thus,

1 )
(lp‘fl (1-w1)kHYUH+@T1w1 KHK2 —K3K4 K1 K>

Bu(—(1 — e)yynet + (1 — edNueT W Ky

Ry = (—(1 — eNuKyKsKy — (1 — e))yynnanKaKy
—(1 = e)yunnwt:1Ky — &1 K3 KKy — &1 K3K, (1 — w)rgmy
—NanW1Kp &1 KKy — NagYun€1Ka(1 — 0Ky — Ty 01 ke nwK,

—NwYun&1T1(1 — w1)ky

“The threshold quantity Ry is the basic
reproduction number of the normalized model
system (3.3) for HIV infection in a population. It
measures the average number of new secondary
infections generated by a single infected
individual in his or her infectious period in a
susceptible population” [5].

3.1.3 Global stability of
equilibrium (HIV)

disease-free

We study the global stability of equilibrium
without disease and we implement the approach

of [5], then the equations of
the model may be rewritten in the form;

M _ F(M,I

a ~ FaLD

ar _

i GM,I) 4.7)

With G(P,0) =0, where P € R! represents the
uninfected classes (S)and I € R* represents the
infected classes(Ly, Iy, I, Hy ). Also, E, = (M~,0)
Proof:

F(M,0) = (m — uS)

\l b (4.6)

denotes the disease-free equilibrium of the
model.

The two conditions (H1) and (H2) stated below
must be satisfied for the model to be globally
stable

aMm

(H1): For EzF(M,O),M* is

asymptotically stable

globally

(H2):  GM,I)= Al — G(M,1),G(M, 1) =0 for
(M,)) €D

Where A =D,G(M",0)is an M-matrix (the off-
diagonal elements of A are non-negative) and D
is the region is the feasible region where the
model is biologically meaningful. If (H1) and (H2)
are satisfied, then the following theorem holds;

Theorem 2: The disease-free equilibrium E, =
(M*,0) is a globally asymptotically stable
equilibrium of the model if R, <1 and that the
conditions (H1) and (H2) are satisfied

(4.8)
And
&1Bu — Ki&1Buny €1BuMan E1Bullw — @
A= (1 =&)By — (1 = w1 = &)Buny — K2 (1 = €1)Buman (1 — €1)Bunw
w1 KuYuu - K3 0
0 0 T, - K,
(4.9)

Then
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&1Pu (1 - %)

G =| -y (1-3)
0
0

(5.0)

A
Since 0 < e <1, clearly¢(M,I) =20, E, = ( ) is a globally asymptotic stable equilibrium of the model

T
u

equations. Hence, the two conditions above are satisfied. Therefore, the disease-free equilibrium is
globally asymptotically stable. This implies biologically that the prevention of HIV leads to AIDS is
independent of the initial sizes of the sub-populations whenever the basic production number is less

than one.

3.1.4TB model only

as
=T —ArS—pu
dstT = 822,7'5 - KgLT + UTU + glpFT + T'CZRT
ary

dc

ar

d_tD = wykrLy + w3@ArLr + yyrTy + [1 — (6, + 6;)]pFr — K11 Tp
dF

d_tT = (1 —q)tTp + (1 —r)aRr — Ky, Fr

dR

d_tT = q172Tp — Ki3Ry + 0,Tp

Where

_ (Lr+nuTy+narTp+NRTRT+FT)
Ar = Br
N

Disease-free equilibrium is:

£, = [f,o,o,o,o,oj
y7,

=1 —e)AyS + (1 — wr)krly + (1 + w3)PArLr + 0,pFr — Kqo Ty

Existence of Endemic Equilibrium for TB Model Only

where €6 = (8 L TO T3 R RY)

For a special case of TB-only model, when
(negligible).

Therefore, equations (5.1) become:

as

P ArS — uS

ZL = £,278 — Kol

d;_tu = (1 —&)ArS + (1 — wy)krly — KyoTy
% = waKrLr +yyrTy — K11 Tp

dRT

F = TZTD - MRT + azTD

are the endemic equilibrium points.

g1 =1 an

34

4 u6.,6, and «

(5.1)

(5.2)

are very small

(5.2)
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*k ™
D)
(5.2a)
A S**
Lp.. = 2415
Ko
(5.2b)
(I—SZ)ATSM+(1—(D2)KTLH
Ty = 5.2c
g (5.20)
T = ‘UZKTLT**'H/UTTUW 2
pee = STV (5.2d)
(02+T2)Tp*=
Ry = 2R (5.2e)
The expression for A‘F at the endemic steady-state, denoted by A s given by
= PBr (L?*+TIUT§*+TIdTT153:*+nRTR7***+77FTFT) (5.3)
Ly =200 (5.20%)
9
R (1_82)2'[‘5** (I_OJZ)KTSZATS** — sk Qo *
Ty = wakTEATS™ + YurPiArS™ _ P AL S (5.2d%)
K11Kq K11
[ (UZ+TZ) (/JZKTEZA’;"*S** YUTPIA;"*S** — *k Q*k% *
Ry ; [ T g U | = Puays (5.2e*)
Substituting the expression in (5.2b*)-(5.2e*) into (5.3)
A7 [5 +82K—T9+ PAT'S™ + P,AT S P ATS ] = BrATS™ [MyPy + NarP> + NgrPs] (5.3
Divide each term in (5.3) by A S
1+ P, AT = BrnyPy + NarPz + NgrrPs]
Where
£
P4=BT|:_2+P1+P2+P3:| 20
Ky
So that:
- br
1+PA = [77u (L—&,)Ky Ky +17y - @)k 6,K 5 + 1 0,51 6,K
K9 KlO K11
(0, +17,) (0, +1,)
ar?ur [(1_52)K9 +(l_w2)KT52]+77RT P @,k &, Ky + gy Yut

[(1_52)K9 +(l_w2)KT‘C’2]= R +Q
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pr

Q- P @zﬂz)} .
Ko KioKay

[(1_52)K9 |:77u Kis +Mgr rur + e

(0, +1,) (0, +71,)
(1_602)KT52|:77U Kio + et Fur +77RT7UT# + W, K&, Kop| Mg +URT#

Therefore 1+ P,AT = Ry +Q
- _R+Q-1

p 0

4

R; >1

whenever

3.15 Derivation of Basic Reproduction Number (Ro) for TB Only

The basic reproduction number of the model (5.1) RT is calculated by using the next generation
matrix( [17], [27]). Using this approach we have:

F =
&Pr &BrNy &BrNar &BrNRr &BrNpr
(1 = &)Br(1 — &)Brnu(X — &2)BrNar (1 — &) Brnrr(1 — €2)BrNrr
0 0 0 0 0 (5.4)
0 0 0 0 0
0 0 0 0 0
K, -V 0 —04p —-ra
—-a K 0 —0,p 0
V=|-w kr —Yur Kn b 0 (5.5)
0 0 —-c K, d
0 0 —e 0 K3
Hence;
Ry = W (5.6)
UK;3K, K 1a + yyrareaK,;, — yyrbipeda + yyr61pcK 3Ky — vabde
Where:M = +yur02pKode + vw,0;krpKede + Ky3KoKobc — K1gKoKy1Kq5Kq3

+0)261KTpdeK10 - yUngpCK13K9 + UabCK13 - wszraeKl()Klz
—VW,0,krpcKy3 — wy0:kppcK oKz — KoKyobde

By, = (Br(raeKzyyr + Ki3K12Kq1v + Kyzbcv — bdev + yyr0,pde — yyr0,pcKy3

—&nyabde + &;047K1:K13Vyr + €2MrracKysyyr — €xMrradeyyr + exnpraekvyr
—&raeKyyr — EMybcKoK, 3 + e;nybdeKy — e;nyeKoKy1Ky3 — €:MarKoK15Ky3vyr))

B, = (Br(e2nrrdeKoyyr — €2NprcKoKizyyr — €2pC¢K130,vur + €2pdebryyr + e2nyaKy1 Ky K5
+eMyabcKys + wanykr0,cKy3 — wanykrbide + waNprkrVcK 3 — wangrkrvde
+wonarkrVKi2Ki3 + wonprkrveK ; — €,wanykr0,cKy3 + &,wanykrbide — &,0anarkrvK ;K3
—&WaNgrkTVCK 3 + &0 Nprkrvde — &,w NprkrveKy; + &,waNarkrKi3K12K0))

B; = (Br(&2w NprkrcK 3K g — €,waNprkrceKyg + €,wanprkreK oKy, — rawsnykrek;; — &K 1K 5K 3

—&,UbcKy 5 + ,vbde + £5,K,5¢0,yyr — £,deb yyr + €,bcK oK 3 — €,bdeK;

+&,K10K11K12K13 + NybcKoKy3 — nybceKg + Ny KoKy 1 K15Ky3 + NrrcKoKysYyr — NrrdeKsyyr
+NarKoK12K13Yur + NereKi2KoYur + €xraw,nykrek ; + ny&,pcKi30,w 6 — nye;pded,w;kr))
a=Q1-m,)x;, b= [1_ @ + 92)]/0’ c=(1-0q)z,, d=1-nNa, e :(qlz-Z + 0-2)
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“The threshold quantity Ry is the basic reproduction number of the normalized model system (5.1) for
TB infection in a population. It measures the average number of new secondary infections generated
by a single infected individual in his or her infectious period in a susceptible population” [13].

3.1.6 Global stability of disease free equilibrium (TB)
We study the global stability of equilibrium without disease for a special case For a special case of

TB-only model, when g, = 1 and 01’6’1’ 02 and o are very small (negligible)and we implement the
approach of [5], then the equations of the model may be rewritten in the form;

dM—FMI
dt (M. 1)

L=6oLn (5.7)

WithG(P,0) = 0, where P € R?represents the uninfected classes (S,Ry)and I € R? represents the
infected classes(Ly, Ty, Tp). Also, E, = (M*,0) denotes the disease-free equilibrium of the model.

The two conditions (H1) and (H2) stated below must be satisfied for the model to be globally stable
(H1): For ‘2—1\: = F(M,0), M* is globally asymptotically stable

A A
(H2): G(M, 1) = Al — G(M,I),G(M,I) = 0 for (M,]) €D
Where A = D,G(M",0)is an M-matrix (the off-diagonal elements of A are non-negative) and D is the
region is the feasible region where the model is biologically meaningful. If (H1) and (H2) are satisfied,

then the following theorem holds;

Theorem 2: The disease-free equilibrium E, = (M*,0) is a globally asymptotically stable equilibrium
of the model if R, < 1 and that the conditions (H1) and (H2) are satisfied:

Proof:

NOW M = (S, RT) and I = (LT’ Tu, TD)

—uSs
F(M,0) = (’g K ) (5.8)
And
&Pr — Ko &Py &PBrNar
A=| A —-¢&)fr — (1 —w)rr(l—&)Brny — Ko (1 = &)Brng, (5.9
(0F) Kr Yur — K11
N
A obr (1-7)
GM, D=\ _ _5 (6.0)
1 -e)pr(1-3)
0
A 0 = —_—
Since O<e<l cle<';1rIyG(|vI /| )Z 0 , H)is a globally asymptotic stable equilibrium of the

model equations. Hence, the two conditions above are satisfied. Therefore, the disease-free
equilibrium is globally asymptotically stable. This implies biologically that the prevention of TB is
independent of the initial sizes of the sub-populations whenever the basic production number is less
than one.
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4. MATHEMATICAL ANALYSIS OF OPTIMALITY OF THE FULL MODEL

In this section, we analyze the mathematical analysis of the possible control strategy that will be
useful to the public health practitioners achieve the best control strategy in the spread of HIV-TB co-
infection in the environment. In order to derive the necessary conditions for these optimal control
variables, we introduce Boosting immune system (u;), campaign/education (u,), HIV treatment
(uz)and TB treatment(u,) as control strategy for the spread of HIV-TB co-infection. So the model
equation (3.3) becomes:

ds(t)
a2 T (T =u) + (A —w)) Ay — Ap — Apy — Apr)S(E) — uS(t)
dLy(t)
i (A —u) + (A —up))eAS() — (ky + )Ly + (1 —uz)Hy ()
dHy(t)
Qi (A =—u)+ (A =u))(1—&)AuS(@) + (1 — w)ryLy(t) — Yun(1 —uz) + 1+ dyy)Hy (0)
dHp (1)
i wikyLy(t) + (1 — u)yyyHy(t) — (T1(1 —uz) tu+ 6dH)HD(t)
dHy, (t)
Qo T1(1 —u3)Hp (1) — (1 —uz)e + WHy ()
dLTH(t)
Q- ((1 —u) +(1- uz))ATHS(t) - (((1 —uz)+ (- u4))KTH + M) Lry(t) + arRry(t) (6.1)
dAr, (1)
dZ =((1—uz) + (1 —w))kryLlry(t) — (u+ 01 + §Ar)Ary (t)
dLyr ()
o (1 —u) + (A = ux))AyrS(@) — (1 —uz) + (1 — wy))kpyr + W Lyr(0)
dAyr(t)
a (1 —uz) + (1 —w))kprLpr (t) — (U + §Aur) Apr ()
dLr(t)
- (A —uy)) + (A —up))e 2A7S() — (kp + WLr () + vTy (t) + O1pF7(t) + raRy(t)
dTy(t)
a ((M=—u) + (A —u))(1 = &)AS(@) + (1 — w)rrLy(t) + O,pFr(t) — (v + (1 — wp)yyr + 1+ Syr) Ty ()
dTp(t)
i wakrLr () + (1 = u)yyr Ty (t) + [1 = (61 + 6)]pFr(t) — (07 + (1 — uy)T, + u + 8ar)Tp ()
dFr(t)
Pk (1 =u)(A = g1 Tp(0) + (1 —7r)aR(t) — (p + p + 8p)Fr (D)
dR;(t)
b (1 = u)q17,Tp () — (@ + p + 8pr)Rr(8) + 0, Tp (8)
dR

T
dtH = 0147y (t) — (ar + WRry(t)

Let the function 0 < u,; <1 denote the boosting effect immune system of HIV-TB susceptible
individuals, while 0 < u, <1 represents the effectiveness of educating the society of the menace of
HIV-TB. Again, let0 <u; <g;,(0<g; <1land0<u, <g,, (0 < g, < 1)represent the controls on
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treatment of HIV and TB respectively, where 91 and 92is the drug efficacy used for the treatment.
Since treatments cannot be continued infinitely, because of the negative side which is known as
poison, so for our control classes we choose measurable functions which is defined on a fixed interval
that satisfy 0 < a; < u;(t) < b; < 1fori=1,2,3,4.

4.1Existence of an Optimal Control Pair.

Following the results of [22], the existence of an optimal control pair for the model (6.1) is obtained.

Optimality System:
The Objective functional to be minimized is given as:

J (g, Uy, Uz, Uy) = fotf(aHU + bHp + cAry + dAyr + eTy + fTp + Ajug® + Ayuy? + Azug? + Agu,?)d (6.2)
Here the constants a, b, e c,d, e, f, A, A,, A3z, @22 A, are all positive weights to balance the size of
the terms. tfis the final time of interest while zero is the initial time. The objective here is to minimize
the number of infectious individuals Hy, Hp, Ary, Ayr, TyandTp, while minimizing the cost of control
uq (), uyt), us(t), uys (t). therefore, the optimal control pair u;*, u,*, us*, u," is sought such that:

](ul*' u2*1u3*'u4—*) = ul*,uzll/,[lg’l*,?u‘t*{/(ullu2'u3'u4)/(u1' u2'u3'u4) € U} (63)

WhereU = {(uy, uy, Uz, Uy)

Such thatu,, u,, u;, u,are measurable with:
0<u; <1,0<u, <10=<u; < g;,0 <u, < g,fort € [0,t:] - [0,1]is the control set.

The terms aHp + bTp+ cHy +dTy +eAyr + fAry; are the cost of infection  while
Aju,?, Ayu,?, Agug?, Ayu,  are the costs of Boosting immune system, campaign/education, HIV
treatment and TB treatment efforts respectively. Now, we obtained the optimal control pair using
Pontryagin’s maximum principle. This principle converts equations (6.2) and (6.3) into a problem of
minimizing point-wise a Hamiltonian, H with respect tou,, u,, usandu,. Then

H =aHy + bHp + cAry + dAyr + eTy + fTp + Ajus? + Ayuy? + Azug? + Agu,?

+Ms[m — (1 —up) + (1 —uz)) Ay — Ar — Ay — Agr)S(E) — puS(0)]

M [(1—uy) + (1 —up))edgS(E) — (ky + WLy (1) + (1 — uz)@Hy (0]

My, [(L—u) + (T —u))(1 — €A S(@) + (1 — w)kpLy(t) — (Yuu (1 —uz) + o+ Syp)Hy (B)]

My, [w1kyLy(®) + (1 = ux)yysHy (t) — (71(1 —u3) + u + 6, ) Hp ()]

+My,, [t1(1 — uz)Hp (£) — (1 —uz)e + w)Hy ()]

+M;,., [((1 —u)+(1- uZ))ATHS(t) - (((1 —u3)+ (- u4—))KTH + H) Lry(t) + Q’TRTH(t)] (6.4)

+ My, [(1—uz) + (1 —ug))krpLry(t) — (1 + 0y + 8Ary)Ary (8)]

My (= up) + (1= u)AurS(8) — (1 —us) + (1 — uy))kyr + w)Lyr(8)]

+Mpp [(1 = uz) + (1 — ug))kpyrLyr (8) — (U + 6Aur) Apr ()]

+M [(1 = uy) + (1 —up))e 2A7S(t) — (kr + WL (t) + 0Ty (t) + 61pFr(8) + raRr (D))

M7, [(1—uy) + (1 —ux))(1 — &2)ArS(@) + (1 — w)krLr(8) + O,0Fr (1) — (v + (1 —ux)yyr + 1
+ 8yr)Ty ()]

+Myp, [wakrLr(t) + (1 —up)yyrTy(t) + [1 — (81 + 02)pFr(t) — (02 + (1 —uy)Ty + p + Sar)Tp (1]

M, [(1 —u)(A — g7 Tp(t) + (1 = m)aRr(t) — (p + u + 6p)Fr(t)]

Mg, [(1 —uy)q:72Tp(t) — (@ + p + Spr)Rr(t) + 0,Tp ()]

+MRTH [01A7ry (D) — (ar + W Ry (1)]

Theorem 3: Given an optimal control u,*, u,*, u3", u,* and solutions
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S* Ly Hy" Hp", Hy,™, Loy Ary™ Lyr ™ Ay L™ Ty, Tp™, F*, R, Ry of the corresponding state system
(6.1) that minimizes the objective functional J(u,, u,, us, u,)over U, there exist

Adjoint variables

Ms, My Mty Mt Moy Mir My Mo, Mo Mir, My, M, M, Mg My, satisfying:
s
TS “Mg[(1 —uy) + (1 —up))Ay — Ap — Apy — Apr) + 1] + M, (1 —uy) + (1 —up))edy

My, (L —u) + (1 —u)A —e)Ay + My, (L —wuq) + (T —up))Ary + My, (L —uy) + (1 —up))Ayr
au,,,

= U = MG = ) + (1= 0))S (OB — (ki + B)M, + My, (1= 01Ky + My 01
dMy,
- l=a- Mg((1 —uy) + (1 — u))SOBuny — Myy Yuu (1 — uz) + i+ Syg) + My, (1 — us)yyn
dM
— d:D_ = b - MS((l - u—l) + (1 - uz))s(t)ﬁHT]dH - MHD(Tl(l _ u3) + ‘u + 6(11.1) + MHWT1(1 _ u3)
dMy,,
T Tar —Ms((1 —uy) + (1 —ux))S(OBunw — Muy, (1 —uz)e +u) + My, (1 —u3)9(6.5)
dM
- stTH = —Ms((1 —wu) + (L = u))S(OBr — My, (L —u3) + (1 —wy))kpy + 1) + My, (1 —us)
d + (1 —ug))kry
_% == Mg((A —u) + (A = w))SOBrNr = Magy, (1 + 01 + 6A7y) + Mpyyy 01
aMm,,,.
T ar —Mg((1 —uy) + (1 = uz))S(6)Bu — My (1 —uz) + (1 —ug))kur + 1) + My, (1 = uz)
d + (1 —ug))xyr
_ dszT =d—Ms((1—u) + (A = u))SO)Bunu — My, (u + 6Aur)
dM
_ dtLT = —Ms((1 —wy) + (1 — up))S(O)fr — My, (i + 1) + Mr, (1 — w3)kr + My w,kr
dM
B dtTU =e—Ms((1 —u) + (1 = ux))S(OBrny — My, (v + (1 = wx)yyr + 4 + yr) + Mr,(1 — u2)vyr
My,
T Tar = Ms((1—ug) + (1 = u))S®)BrNar — My, (0, + (1 —ug)t, + b+ Sgr) + Mp, (1 —uy)(1
— q1)72)
+Mp, (1 = uy)qs72
_ dIthFT = —Ms((1 —wy) + (1 — u))S(OBr — M (p + 1t + 8) + My [1 — (61 + 0,)]p + My, 6,p
+ MLTHLD
dMp,
—— = —Ms((1 —uy) + (1 = up))S(t)Brrr — Mg, (@ + p + Spr) + raM,,
_ aMthTH = —Ms((1 —wy) + (1 — u))S(O)Brer — Mpyy, (ar + 1) + My ar

MS(tf): MLH (tf): MHU(tf): MHD(tf): MHW(tf): MLTH(tf): MATH(tf):MLHT(tf):
MAHT(tf): MLT(tf): MTU(tf):MTD(tf):MFT(tf): MRT(tf): MRTH(tf):O

*

u, Uy, Uy and u, satisfying the optimality condition;

tranversality conditions with the controls

40



Adesola et al.; Asian Res. J. Curr. Sci., vol. 6, no. 1, pp. 23-53, 2024; Article no.ARJOCS.1467

[(=Ms)(Ay — Ar — Ay — Agr) + (&M, + (1 — )My ) Ay 1
1 ‘HLTHMLTH + )'HTMLHT + (£2MLT +(1- SZ)MTU)AT]S*(t)

u;" =max{0,min| 1,
24,

[(=Ms)(Ay — Ar — Ay — Ayr) + (&M, + (1 — )My ) Ay
'HLTHMLTH + )'HTMLHT + (£2MLT +(1- gz)MTU)AT]S*(t)
1 +Yuu My, Hp (£)" — My Hy (6)*) + Yur My, Tp (£)" — M7, Ty (£)7)

* = 0, mi , 6.6
u," = max < 0,min 24, (6.6)

wy* = max | 0,min (1, @Hy," (t) [MLH - MHW] + KTHLTH*(t)[MATH - MLTH] + KHTLHT*(t)[MAHT - MLHT]
24,
TzTD*(f)[MTD—MFT(l—41)+q1MRT]+KTHLTH*(f)[MATH—MLTH]

, +ryTLur ()M Ay —ML,
u,* = max< 0,min| 1, (M7 =M1

Proof:
244

\ )

Following Pontryagin’s maximum principle, we obtained the standard form of the adjoint equations
and tranversality conditions by differentiating the Hamiltonian function with respect to state
Mg, My, My, My, My, My Mgy My, My, My, My, My, M, Mg and My, respectively which is
evaluated at the optimal control function uy, u,, us, u,

So we re-write the adjoint system as follows:

dMg _ 0H

di s Ms[((1—u) + (1 —u))Ay —Ar — Ay — Agr) + 1] + My, (1 —uy) + (1 —up))edy

+My, (L —u) + (1 —u))(A —e)Ay + My, (L —w) + (T —up)DAry + My, (1 —uy) + (1 — up))Apr
aM OH

- dtLH = oL, = —Mg((1 —u) + (1 —ux))S(O)By — (ky + WM, + My,(1 — wy)ky + My, ky

dMy, oH

i 9. 4T Ms((1 —uy) + (1 —up))S®Buny — My, (Yun (1 — up) + u + 6yy) + My, (1
u

— U3)Yun

dM,, oH
T o, =b—Ms((1—uy) + (1 —ux))SOBuNan — Mu, (T1(1 —uz) + u + 8ap) + My, 71 (1 — u3)
dM,,  oH
BT T —Mg((1 —wy) + (1 = u))SO)Bunw — My, (L —uz)e + 1) + My, (1 —u3)e
w
M,  oH
T L7 = —Ms((1 —uy) + (1 —u))S®)Br — My, ((L—ug) + (1 —wy))kry +u) + My, (1
—u3z) + (1 —wy))kry
dM,,,  oH

at 94, =c—Mg((1 —u) + (1 = u))SOBrNr — My, (1 + 01 + A7) + Mg, 04
M,  oH
T m = —Ms((1—w) + (1 —u))S) By — My, (L —uz) + (1 —uy))kpr + 1) + My, ((1
—u3z) + (1 —wy))kpr
M,  OH

=——=d—Ms((1—u) + 1 —u))SO)BuNu — My, (1t + §Ay7)(6.7)
dM,, 9H
BT oL, =—Mg((1 —uy) + (1 —ux))S@O)Br — My (kr + ) + My, (1 — wy)kp + Mpywykr
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dMr, OH
T =ar, =e—Ms((1—up)) + (1 —u))SO)Brny — My, (v+ (1 — wx)yyr + 4+ 6yr) + M, (1
—U)Vur
dMr, OH
T dt = ﬁ =f = Mg((1 —uy) + (1 —ux))S@®)BrNar — MTD(O'Z + (1 —u)t, + u+8gr) + MFT((l

—uy)(1 —qy)73)
+MRT(1 — Uy)q1T;

dm 0H
- d;T = oF, = -—Ms((1 —wy) + (1 —up))SO)Br — Mp,(p + u + 8p) + Mr[1 — (6, + 6;)]p + My, 6,p
+M.0:p
dm J0H
- dtRT = R, =—Ms((1 —uy) + (1 —u))S(OBrNrr — Mpp(a + pt + 8gp) + raM,,
conditions
MS(tf): MLH (t;)= MHU (t;)= MHD(tf): MHW (t;)= MLTH (t;)= MATH (t;)= (6.8)

MLHT(tf)zMAHT(tf)z MLT(tf)z MTU(tf)zMTD(tf)zMFT(tf)z MRT(tf)z MRTH(tf):O

dH dH dH dH
5 :O,d =0, =0 and — =0,
Solving Uy U, Us U and evaluating at the optimal control on the
<u < i =
interior of the control set, where 0< Ui _l or 1=12,34 we obtain;

241uy + [((Ms)(Ay — Ar — Ay — AHT) — (&M, + (1 — e)My Ay
6u1 ATHMLTH AHTMLHT (SZMLT +(1- SZ)MTU)AT]S*(t)
( Mg)(Ay — Ar — Arg — Ayr) + (M, + (1 — 51)MHU)/1H>

= 24 +ATHMLTH + AHTMLHT + (oM, + (1 — &)Mp )A7]S™(8)
245u; + [((M)(Ay — A — Apyg — Apr) — (M, + (1 — &) My ) Ay
auz —AruMypy — Aur My, — (&M, + (1 — SZ)MTU)AT]S*(t) (6.9)
—Yun My, Hp (t) — My, Hy (©)*) = Yur (M7, Tp (£)* — My, Ty (£)")
(M) Ay — Ar — Arp — Aur) + (e1My,, + (1 — €)My ) Ay

= 24,u, = | FAruMy,,, + AHTMLHT + (e2Mp, + (1 — &)M7 )A7]S™(8)
+Yun My, Hp (£)" — My, Hy (6)") + Yur (M7, Tp (£)" — M7, Ty (1)")
oH <2A3u3 oHy" ()[My,, — My, ] — KryLry" () [Mag,, — MLTH]>

0u3 KurLur (O [May,, — My,
o 2 A, = (‘PHW ®O[My,, — My, 1 + kryLry™ () [Mag,, — My,
3 +rprLyr” (O [May, — My, ]

oH _ <2A4u4 - TZTD*(t)[MTD — Mg, (1 —q1) + 1 Mg, ] — KryLry” () My — MLTH]>

6_u4 B —KyrLyr™ (t) [MAHT - MLHT]
o A, = (TZTD*(t)[MTD = Mp, (1= q1) + g1 Mg, ] + kryLry" () [Mag,, — MLTH]>
o +rprLyr” (O [May, — My, ]
Therefore:
[(=Ms)(Ay — Ar — Apyg — App) + (&1 My, + (1 — €)My, ) Ay
+ Ay M + AyrM + (&M 4+ (1 — &)M4y, )A-]S* (¢
ul* = max 0, min 1, TH™ Lty HT ' LygT ( 2214[,1‘ ( 2) TU) T] ( )
1
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[(Ms)(Ay — A7 — Ay — Ayr) + (&1 My, + (1 — €)My Ay + ArpMy, + AyrMy,,
. i , +(e2Mp, + (1 — )My )A7]1S™ () + Yun (M, Hp ()" — My, Hy (8)") + vur (Mg, Tp (£)" — My, Ty (£)")
u," =max<0,min| 1

, 24, /j us

= max {0 min (1 PHw" )My, = My, ] + terulon” (©)(Mayy, = Mup, ] + KarLiar" () [May,, — MLHT])}
’ ’ 24,
w,* = max {O,min (1’ TzTD*(t)[MTD‘MFT(1—q1)+qlMRT]+KTHLT;1;(t)[MATH‘MLTH]’fKHTLHT*(t)[MAHT‘MLHT])}
4
By standard control arguments involving the bounds on the control variables, we have

[(=Ms)(Ay — Ar — Agy — Apr) + (M, + (1 — &) My ) Ay
("'ATHMLTH + Agr My, + (oM, + (1 — &)Mp )A7]S™(0) i
Wt = 24, '
! [(=Ms)(Ay — Ar — Aryg — App) + (e My, + (1 — €)My )y
FAruMypy + Aur My, + (€2M, + (1 — €3)Mr, )A7]S™ (1)
24,
(M) Ay — Ar — Agp — Agr) + (e1My, + (1 — €)My ) Ay
FAraMypy + Agr My, + (M, + (1 — &)Mp )A7]S™(0)
24, =
(M) Ay — Ar — Agp — Agr) + (e1My,;, + (1 — €)My ) Ay
FAraMypy + Apgr My, + (M, + (1 — &)Mp )A7]S™(0)

0<

<1,

0if

1i
i 24,
Similarly:
[(—M)(Ay — Ar — Arp — Aur) + (e1My,;, + (1 — €)My ) Ay
FAraMypy,y + Agr My, + (€M, + (1 — )Mp )A7]S™(0)
+Yun My, Hp (£)" — My, Hy (6)") + Yur (M7, Tp (£)" — M7, Ty (£)") if
* 2A2 '
Uy, = A
2 [(=Ms)(Ayg — Ar — Arp — Aur) + (E1My, + (1 — €)My ) Ay
+/1THMLTH + AHTMLHT + (SZMLT +(1- SZ)MTU)AT]S*(t)
+Yun (My, Hp (£)* — My Hy (£)*) + Yur My, Tp (8)* — M7, Ty (£)")
0< N <1,
2
[(—Ms)(Ay — Ar — Apyg — App) + (&M, + (1 — €)My, ) Ay
+/1THMLTH + AHTMLHT + (SZMLT +(1- SZ)MTUMT]S*(t)
0if +Yun My, Hp(£)" — My Hy (6)") + Yur (M, Tp(£)" — M7, Ty (£)") <0
24, =
[(—Ms)(Ag — Ar — Apyg — App) + (&M, + (1 — €)My, ) Ay
+/1THMLTH + AHTMLHT + (SzMLT +(1- EZ)MTU)AT]S*(t)
1if +Yuu My, Hp(£)" — My Hy (£)") + yur (M, Tp(£)" — Mr, Ty (1)") > 1
24, =
oHy" (t)[My,, — My, ] + kryLry () [Mag,, — My, 1 + KprLpr™ (0 [May,, — My, ] if
* 2A3 ’
u = * * *
° 0< @Hy (O)[My,, — My, | + krgLry (0 [Magy — Mipy] + Kgrlur O [May, — My, <1
24, ’
0if @Hy (O[My,, — My, ] + krgLry™ () [Mag, — My, ]+ kprLyr (O [May,, — My, <0
24, =
1if @Hy (1) [MLH - MHW] + KTHLTH*(t)[MATH - MLTH] + KHTLHT*(t)[MAHT - MLHT] >1
24, =
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Also:

22T OIMy, Mg (1-6) +0,Mg ]+ & Ly, (I, =M
+ K Lur OIM,, —M,, ]
N 2A,
2.To OIMy, Mg (L-0) +6;Mg T+ & Ly, (OIM,, —M
0 b OIM,, —My,, ]
2A

.

TZTD*(t)[MTD -M Fr t-a,)+q,M Ry 1+ &g, LTH*(t)[M An T M LTH]

]

LTH

if

1

LTH

<1,

0 if +Kyr LHT*(t)[M Ay ~My, 1 <0
2A,
TZTD*(t)[MTD -M Fr t-a,)+q,M Ry 1+ xq, LTH*(t)[M An T M Lm]
1 if + Kur LHT*(t)[M Aur _MLHT] >1

2A,

This completes the proof.
The optimality system consists of the state system coupled with the adjoint system with the initial and
tranversality conditions together with the characterization of the optimal control pair.

Substituting (6.6) into (6.1) we obtained the following optimality system;

/ [(Ms)(Ay — Ar — Ay — Apr) + (&M, + (1 — 51)MHUMH\ \
as(t) FAraMypy + Agr My, + (€M, + (1 — €)M )A7]S™(0)

=T (kl —max< 0, min kl, 24, ) )

[(=Ms)(Ay — Ar — Arp — Aur) + (E1MLy, + (1 — €)My ) Ay
FAruMypy + Aur My, + (€2My, + (1 — £,)Mr, )A7]S™(2)
+Yun My, Hp (£)* — My Hy (£)*) + Yur My, Tp (£)" — M7, Ty (£)")

+| 1—-—max<{0,min| 1, 24, YAy — Ar
— Arw — Aur)S(t)
—uS(t)
[((=Ms)(Ayg — Ar — Arp — Apr) + (E1My, + (1 — &) My ) Ay
dLy(t +AryM + AyrM + (e, M, + (1 — &,)M4, )A+]S™ (¢t
H( ) — ( 1 — max O,mln 1’ TH"™ LTy HT" 'Lyt ( 2Lt ( 2) Tu) T] ( )
dt 24,
[(—M)(Ayg — Ar — App — Apr) + (e1My,, + (1 — €)My ) Ay
FAraMypy + Agr My, + (€2My, + (1 — €)M, )A7]S™ (1)
+ My, Hp(t)" — My Hy(t)") + My Tp(t)* — My Ty ()"
+| 1= maxdomin| 1, Yun( Hp p(t) Hy u( )211 Yur( Tp p(t) Ty u(®)) Ve AuS(E)
2

— (ky + WLy
; (1

— max {O, min (1,

oHy (O[My,, — My, 1+ kryLry™ (O [Mag, — My, 1+ kprLyr (O [May,, — My,
24, @Hy (t)
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[(M)( Ay =4 = Ay = Aur) + (M + A= &)M )4,

dH, (t) . +ﬂ’THMLTH +/1HTMLHT "'(52M|_T +(1_‘92)MTU )ﬂT]S*(t)
T=(1—max 0,min| 1, 2A

[(’Ms)(lH 7/17 7/17»4 71HT)+(51MLH +(1—£1)MHU )AH
"')"THMLm +lHTMLHT +(52ML, +(1_52)MTU )A]S*(t)
+7un (M HDHD(t)* - MHU HU (t)*)*’}/m (MTDTD(t)* - MTUTU (t)i)

28, (L-£)2,S() +

+[1-max{0,min|1,

[(M)(Ay = A = Ary = Ayr) + (&M Ly Jr(:I-"“'i)MHU M

Jrﬂ’n-«MLw Jr)“HTMLW JF(EZMLT +(:I-"‘:z)MTu )L]S’(t)

+ 7o My, Ho () =My Hy () + 70 (M7 To () =M Ty (0))
2A,

(- )y Ly () = (7yy| 1—max< 0, min| 1,

+/1+5UH)Hu(t)

(M) (A = Ar = Ay _/1HT)'|'(‘5‘1'\/ILH +(1_£1)MHU )

+}~THMLTH +/1HTMLHT "’(‘92MLT +(1_52)MTU MT]S*(t)

+75u(My Hy(®) =My, Hy () + 7, (M, To(t) =M, T, (1)
dHD(t)=w1KHLH(t)+ 1-max 0, min| 1 Yun (M Ho (1) u, Hu (0 )+ 7ur (M7 T () L Tu@®)) o Ho ()

dt 2hA,
"WML -My, T+ Ly OIM, M T+ Ly ©OIM, —M

~(r, 1_nﬁx{0’min[1,¢Hw Ml Ly HW] Koy Ly (DL 2:: LTH] Kyr Lyr (1 Anr LHT]J} +ﬂ+5dH)HD(t)

dt ’ 2A,

_([1_ max{o, min [1 MHy OM, -M,, T+, Ly OIM, M T+, Ly OIM, -M ]J}}H'ﬂ)Hw o)

M _ Tl[l_ maX{O’ i {1 #H,, (O[M L~ My, 1+ x Ly (O[M Ay~ My, I+ &Ly OIM ar —M, ]j}]H o)

. 2A

[(Ms)(Ay = A = Ay _ﬂHT)+(51MLH +(1_'51)MHU )
di, (1) = (| 1-max{0,min| 1, +AgM |+ 4 M "’(‘92MLT +(1_52)MTU )A4:18° (1)
dt 2A

LHT

[(Ms) (A = A4 = gy = ) + (M Ly Jr(]-"’4"1)'\”»-1u )z
+ My, + 4 M [ (M [ (1_52)MTU 14157 (1)
+ 7 (M Hp HD(t)* -M Hy Hy (t)t) +7ur (MTDTD (t)* - MTUTU (t)x)

2 )2 S(0)

1-max4{0,min|1,
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, 2A,
TZTD*(t)[MTD Mg Q-a)+ Mg T+ 5y, LTH*(t)[M e ~ My,

+ Kur LHT*(t)[M Ay —M LHT]
2A,

—(([1—ITBX{0, min {1 MHy OM, -My, T+xy by OIM,, -M J+xc Ly OIM,, - MLHT]]}]

+|1-max{0,min |1, iy + 1)Ly (1)

+orp Ry (1)
dA, ©) _ ([1_ maX{O, . [1, Py OIM,, ~My, T+ Loy M, M T+ Ly OIM M, 1}}
dt 2A;
TZTD*(t)[MTD -M Fr (l_ q1) + q1M Ry ] + Ky LTH,(t)[M A M Lty ]
+ Ky LHT*(t)[M Ae ~ My, ]

+ 1—max{0,min| 1, )ic L ()

2A,

—(u+oy+ Ay ) Ay (1)

[(Ms) (A — A — Ay _/IHT)+(‘91MLH +(l_gl)MHu )

dL, (t) — (| 1-max{0,min |1 +ApM + A4 M +H(EM L +(L-g,)M ) )2 157 (1)
dt ’ ’ 2A
[M )4y —4r — Ay _}“HT)"‘(‘E‘lMLH +(1_51)MHU )
+A’THMLTH +AHTMLHT +(‘92MLT +(l_‘92)MTU )/IT]S*('[)
+yon(My Ho®) =M, Hy @) )+y,; (M To @) =M, T, (1)
1—max30, min| 1 Yun ( Ho o (1) Hy u(® ) +7ur ( T o () T u(®)) Vi S(0)

2A,

, 2,

TZTD*(t)[MTD -M Fr (1_ ql) + q1M Ry ] + Ky LTH*(t)[M A M Lty ]
+ Ky LHT*(t)[M Ay —M LHT]

—([1— max{o, min [1 Hy (OIM, My, T+ s Ly OIM s, =My T+ Kby OIM g, — M]JH

+{1-max<0,min| 1,

2A, )ir + )L (1) (4.10)

dt 2A,

TZTD*(t)[MTD -M Fr (1_q1)+q1M Ry ]+KTH LTH*(t)[M Am M Lru ]
T Kyt LHT* MM, -M_ ]
2A,

dA, (1) ([1—max{0, min [11 #Hy, (OIM L~ My, I+ &5y Ly (O[M A — My, I+ x4 Ly (O[M ae ~My, ]J}]

+{1-max<0, min| 1,

)t L (1)

—(p+Ayr ) Ayr (1)
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[(M) (A =4 = Ay = Apr) + (M +A=-&)M )4,

dL(;t(t) — (| 1-max{0, min | 1, HAM |+ AM +(822|\;|&LT +(1-&)My )4 1S°(t)

[(_Ms)(/lH _A’r _ﬂ’TH _/IHT)+(51M Ly +(l_€1)MHU )’1H
+AM |+ 4 M |+ (M +(1-6)My )2: 187 (t)

| 1- maxJ 0, min 1’+7/UH(MHDHD(t)*_MHU Hy (1:2);)2+7UT(MTDTD(t)*_MTUTU ®)) V6,4 S (1)

= (e + )Ly () + 0Ty () + 6,05 (1) +raR; (1)

[(M) (A = A = Ay = A ) + (&M Ly "'(]-_51)MHU )2

dTét(t) _ (1-mexo, min L FAMu, + A, +(522|\21LT +(1—&,)M; )2, 1S7()

[(M)( Ay = 4r = Ay —Ar) + (&M, +L-)M )4,
M+ 4 M+ (M + (1= 5)My )4:15°(1)

+| 1-maxJ 0, min 1l+7UH(MHDHD(t) -My, Hu(tz)A);‘?’uT(MTDTD(t) -M; Ty (1)) Y= 2,)4,S(t)

(M)A = A = Ay = ) + (M Ly "'(1_‘91)'\/|HIJ )
+AuM, +A4M +H (M +A-)M )2:15" (1)
+(1-0,)x7 L (t) + 6, pF; () — (0 +| 1-max{ 0, min 1,+y“H(MH°HD(t) _MH”HU(tZ)A)ZWUT(MT”TD(t) M T ) Yur

+p+ 0y )Ty ()

(M)A =2 = Ay A )+ (M, + L= )M, )4,
FAuM + A4 M Jr(‘92MLT +(17£2)MTU )2 187 (1)

dT- (t o+ M, Ho()" =M, H, ")+ M, T, (1) =M, T, ()"
th()=a)2KTLT(t)+ 1-max 0, min| 1, Yun ( Ho o(t) Hy U(Z)A) Yur ( T o(t) T u(®) YT @
2

+L- (6, +6,)]oF; (1) -
TZTD* (t)[MTD -M Fr (1-g,)+q,M Ry 1+ Ky LTH*(t)[M Am M Lw 1

+h Ly O[M, —M
1—max40, min| 1, — M4, b oA Ty + i+ 04 [Tp (1)
4
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7, Ty (O[M, 1

+ Kyr LHTt(t)[M At M

Mg @-9) +q,Mg ]+ &y, LTH*(t)[M a, —M

L ]
2A4 (1 - ql)TZTD (t)

Lu

+(A-1aR () - (p+p+5:)F (1)

dR, (1) _
dt

=|1-max<0,min| 1,

TZTD*(t)[MTD -M Fr A-q,)+aqM Ry 1+ &y LTH*(t)[M A
T Kyr LHT*(t)[M ae My, ]

_MLTH]

2A, 0,7, T (1)

—(a+ g+ g )Ry () + o, T (V)

AR, (1)
dt

=0, Ay (1) = (or + )Ry, (1)

5. NUMERICAL SIMULATION

In order to authenticate the theoretical calculations of the model, the numerical simulations of the
model (3.3) are carried out by differential transformation method, using a set of estimated parameter
values given in Table 1.

Table 1. Parameter Values used in Numerical Simulations

Parameters Value Sources
T 2000 Assumed
7,7, 0.20619, 0.20619 Assumed
U 0.02 [9]

£,E, 0.7,0.7 [30]

Ky Ky 0.2522,0.2522 [30]

w,, 0, 0.2,0.3 [30]

Yorr Vot 0.2,0.2 Assumed
¢ 0.7 [34]

B Br 0.1,0.1 [30]

5UH ,5dH 0.3,0.1 [30]

Mo Man e 0.001, 0.001, 0.001 [30]
0,,0, 0.1,0.1 [30]

% 0.85 [10]

Kot » Ky 0.2522, 0.2522 Assumed
w,, o, 0.7,0.7 [11]

1)) 0.2 Assumed
o 0.5 [30]

R 0.8 [11]

P 0.1 Assumed
Syt 10471 0¢ 1 Ory 0.3,0.1,01,03 [11]

o,, O, 0.2 [17]
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Parameters Value Sources
(o} 0.7 [34]
0.001, 0.001, 0.001, 0.001 [30]

Ny Mot Mt s Mrt

6. RESULTS AND DISCUSSION

From this research, fifteen (15) new non linear differential equations for gaining more insight on the
effect of epidemiological features on the dynamical spread of HIV-TB co-infection have been
obtained. Numerical simulation of the model was carried out by MAPLE software, using differential
transformation method in order to determine the dynamical spread pattern of the disease in the
community and to determine which of the diseases should be treated first or the two simultaneously.

The results obtained from numerical simulations using differential transformation method are
presented in the figures.
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Fig. 5. Plots of TB infected individuals against time t

50



Adesola et al.; Asian Res. J. Curr. Sci., vol. 6, no. 1, pp. 23-53, 2024; Article no.ARJOCS.1467

™

15000 H -

14000 —

13000 —

12000 —

ANLENTNEEN Bl N N~

11000

= - Hiv&TE Control
Hiv Comtrol
TE Control

T T
0.5

Time (t) in Vears

Fig. 6. Plots of HIV & TB, HIV and TB infected individuals against time t

6.1 Discussion

This research deals with the formulation and
analysis of new robust mathematical model to
have better understanding of optimal control on
the dynamical spread of HIV-TB co-infection and
to have better control strategies of the two
diseases.

Fig. 2 Shows the effect of effective contact rates
on susceptible individuals. It is shown from the

graph that, effective contact rate ( B ) has
pronounced effect on the susceptible individuals

than effective contact rate ('Br ), which means
that, the rate at which HIV infection reduces the
susceptible population is higher than the TB
disease. Fig. 3 Shows the importance of timely
treatment on HIV and TB individuals, pronounce
effect of treatment was shown on active TB and
HIV individuals when it is almost one and half
year of treatment, the treatment reduces the
population of active TB and HIV from 1000 to
840 and increases recovered TB and HIV
individuals from 750 to 870.Fig. 4 Shows that
HIV infected individuals reduced when there is
control measure compared to when there is no
control. It reduced HIV infected population from
4000 to 2580 within two (2) years of control
intervention. Fig. 5 Shows the effect of control

U4 on TB infected individuals, the control

51

reduces the infected individuals from 4000 to

2600 when Y4 =099 Linin two (2) years of
control intervention. Fig. 6. Compared when HIV
is first treated, when TB is first treated and when
the two diseases are treated simultaneously. The
simultaneous treatment of the disease yields
better results. It shows less HIV-TB infected
individuals when both are treated jointly,
compared to when they are treated separately.

Optimal control analysis was carried out for
different control strategies and the result shows
that simultaneous treatment of HIV-TB disease
together with campaign, given and boosting of
the immune by using necessary drugs yield a
better result compared to when the two diseases
are treated separately.

Effective contact rate of infected individuals
among susceptible individuals needs to be
reduced to guarantee disease free environment,
the disease becomes more endemic due to the
increment in effective contact rate, most

especially B and B . The system becomes

unstable whenever 'BH and ﬂT >0'3. It was
also shown that TB fuels the progression of HIV
into full blown AIDS. Likewise HIV increases
latent TB to active TB in the absence of
treatment, it was shown that in the presence of
treatment, the rate of active TB and HIV



decreases as the treatment
consequently, TB and HIV
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increases and
recovery cases

increase rapidly.

7. CONCLUSION

In conclusion, epidemiological features such as

detection of

infected undetected individuals,

treatment of infected individuals, minimizing the
effective contact rate and boosting of natural
immunity play vital roles in the control of the
spread of HIV- TB co-infection.
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