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Abstract
Let a, α, β, r, u, v, w and D be any integers and suppose that n,m, s and k are non-negative exponent. In this
paper, the diophantine equation αn + βn + a(αs ± βs)m +D = r(uk + vk +wk) is developed and investigated
for integer solution and its various polynomial identities. Moreover, the study formulates some conjectures
for the title equation.
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1 Introduction
The study of Mixed polynomial exponential diophantine equation and integer decomposition into sums of powers
are classical and has been a subject of considerable attention in recent past. Perhaps, may be because of the fact
that, the study of integer decomposition has a direct application in the field of cryptography. Most researchers
seems to have devoted their attention on Ramanujan Nagell Equation x2 +D = ABn where x, n,A and B are
variables and D is a fixed integer and sums of powers. For recent work on polynomial equations of sums of
powers the reader may survey [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and for detailed recap on Ramanujan Nagell
Equation the reader may refer to [14, 15, 16, 17, 18, 19, 20, 21]. In most of this studies, the literature involving
mixed polynomial and sums of powers is still hardily available. Moreover, documented results on diophantine
equation xn + yn + a(xs ± ys)m +D = r(uk + vk + wk) proposed in this research is not known. This study is
therefore, set to introduce and develop the formula xn + yn + a(xs ± ys)m +D = r(uk + vk + wk).

2 Main Results
The following assumptions will apply in this research. All numbers will be treated as integers, and it will be
assumed that β is greater than α.

Conjecture 2.1. For any integer β > α and exponent m,n, k ≥ 2 and s ≥ 1, there exist integers a, u, v, w and
r such that

αn + βn + a(αs ± βs)m +D = r(uk + vk + wk) · · · (1)

where D is an integer

In the sequel, we begin by constructing some solution of conjecture 2.1. We prioritize, determination of the
unknowns a,m, n, r, s, k and D for which the equation αn+βn+a(αs±βs)m+D = r(uk+vk+wk) has solution.
The following cases has been considered. That is, (a,m, n, k, r, s,D) = (1, 4, 4, 2, 2, 1, 0), (a,m, n, k, r, s,D) =
(1, 4, 4, 2, 2, 1, 2).

Theorem 2.2. Consider equation (1) satisfying the condition (a,m, n, k, r, s,D) = (1, 4, 4, 2, 2, 1, 0). Then the
diophantine equation α4 + β4 + (α+ β)4 = 2(u2

1 + v21 + w2
1) has solution in integers if α and β are consecutive

Proof. Suppose α and β are consecutive integers and Consider the equation α4+β4+(α+β)4 = 2(u2
1+v

2
1+w

2
1).

The L.H.S expressed as α4+β4+(α+β)4 = α4+(α+1)4+(2α+1)4 simplifies to 18α4+36α3+30α2+12α+2.
Rewriting the equation 18α4 + 36α3 + 30α2 + 12α + 2 = 2(u2

1 + v21 + w2
1) and dividing both sides by 2 we get

9α4+18α3+15α2+6α+1 = u2
1+v

2
1+w

2
1. To determine the value of u1, v1 and w1 assume u1 = aα2+bα+c, v1 =

dα2+eα+f and w1 = gα2+hα+i. Thus, u2
1+v

2
1+w

2
1 = (aα2+bα+c)2+(dα2+eα+f)2+(gα2+hα+i)2 = a2α4+

2abα3+(2ac+b2)α2+2bcα+c2+d2α4+2deα3+(2df+e2)α2+2efα+f2+g2α4+2ghα3+(2gi+h2)α2+2hiα+i2 =
(a2+d2+ g2)α4+(2ab+2de+2gh)α3+(2ac+ b2+2df + e2+2gi+h2)α2+(2bc+2ef +2hi)α+(c2+f2+ i2) =
9α4 + 18α3 + 15α2 + 6α+ 1. Matching the coefficient we have



a2 + d2 + g2 = 9 · · · (i),
2ab+ 2de+ 2gh = 18 · · · (ii),
2ac+ b2 + 2df + e2 + 2gi+ h2 = 15 · · · (iii),
2bc+ 2ef + 2hi = 6 · · · (iv),
c2 + f2 + i2 = 1 · · · (v).
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Clearly, the system has 9 variables and 5 equation, thus there is no viable method to solve the system. Hence,
we result to method of inspection. To solve the system we find the possible integer values (a, b, c, d, e, f, g, h, i)
that satisfy the system. We shall use step by step approach to determine correctly the solution set. From
equation (1), a2 + d2 + g2 = 9. Assume a = 1, thus d2 + g2 = 8. We need to find integer values for which
d2 + g2 = 8. The only positive integer values are d = 2 and g = 2. Hence, a2 + d2 + g2 = 12 + 22 + 22 = 9.
Substituting the solution set (a, d, g) = (1, 2, 2) into equation (ii) we obtain 2b + 4e + 4h = 18. Dividing both
sides by 2 we obtain b+2e+2h = 9. Need to find the solution set (b, e, h) which satisfy b+2e+2h = 9. Letting
b = 1, e = 1, h = 3 we have 1 + 2(1) + 2(3) = 9. Thus, (b, e, h) = (1, 1, 3) is a solution. Substituting the solution
(a, d, g, b, e, h) = (1, 2, 2, 1, 1, 3) in equation (iii) we have 2c + 4f + 4i = 4. Assuming c = 0, f = 0, i = 1 we get
2(0) + 4(0) + 4(1) = 4. Thus (c, f, i) = (0, 0, 1) is a solution. Since all the solution set have been determined
i.e (a, d, g, b, e, h, c, f, i) = (1, 2, 2, 1, 1, 3, 0, 0, 1) we consider this solution into equation (iv) and (v). Considering
equation (iv),2bc + 2ef + 2hi = 2(1)(0) + 2(1)(0) + 2(3)(1) = 6. Hence, equation (iv) is satisfied. Finally,
considering equation (v) we have c2 + f2 + i2 = 02 + 02 + 12 = 1 which satisfies the equation. Consequently,
u1 = α2 + α, v1 = 2α2 + α and w1 = 2α2 + 3α+ 1. Since u1, v1 and w1 are known the result easily follows.

2.1 Examples
In this subsection, we provide some examples to argument our results in Theorem 2.1 for case (i).

Table 1. α4 + β4 + (α+ β)4 = I = 2(u2 + v2 + w2)

α4 β4 (α+ β)4 I u2
1 = (α2 + α)2 v21 = (2α2 + α)2 w2

1 = (2α2 + 3α+ 1)2

1 16 81 98 4 9 36
16 81 625 722 36 100 225
81 256 2401 2738 144 441 784
256 625 6561 7442 400 1296 2025
625 1296 14641 16562 900 3025 4356
1296 2401 28561 32258 1764 6084 8281
2401 4096 50625 57122 3136 11025 14400

Theorem 2.3. Consider equation (1) satisfying the condition (a,m, n, k, r, s,D) = (1, 4, 4, 2, 2, 1, 2). Then the
diophantine equation α4+β4+(α+β)4+2 = 2(u2+v2+w2) has solution in integers if α and β are consecutive

Proof. Suppose α and β are consecutive integers and Consider the equation α4+β4+(α+β)4+2 = 2(u2+v2+w2).
The L.H.S expressed as α4+β4+(α+β)4+2 = α4+(α+1)4+(2α+1)4+2 simplifies to 18α4+36α3+30α2+12α+4.
Rewriting the equation 18α4 + 36α3 + 30α2 + 12α + 4 = 2(u2 + v2 + w2) and dividing both sides by 2 we get
9α4 +18α3 +15α2 +6α+2 = u2 + v2 +w2. To determine the value of u, v and w assume u = aα2 + bα+ c, v =
dα2+eα+f and w = gα2+hα+i. Thus, u2+v2+w2 = (aα2+bα+c)2+(dα2+eα+f)2+(gα2+hα+i)2 = a2α4+
2abα3+(2ac+b2)α2+2bcα+c2+d2α4+2deα3+(2df+e2)α2+2efα+f2+g2α4+2ghα3+(2gi+h2)α2+2hiα+i2 =
(a2+d2+ g2)α4+(2ab+2de+2gh)α3+(2ac+ b2+2df + e2+2gi+h2)α2+(2bc+2ef +2hi)α+(c2+f2+ i2) =
9α4 + 18α3 + 15α2 + 6α+ 1. Matching the coefficient we have



a2 + d2 + g2 = 9 · · · (i),
2ab+ 2de+ 2gh = 18 · · · (ii),
2ac+ b2 + 2df + e2 + 2gi+ h2 = 15 · · · (iii),
2bc+ 2ef + 2hi = 6 · · · (iv),
c2 + f2 + i2 = 2 · · · (v).

13



Mude; J. Adv. Math. Com. Sci., vol. 39, no. 10, pp. 11-17, 2024; Article no.JAMCS.123913

Clearly, the system has 9 variables and 5 equation, thus there is no viable method to solve the system. Hence,
we result to method of inspection. To solve the system we find the possible integer values (a, b, c, d, e, f, g, h, i)
that satisfy the system. We shall use step by step approach to determine correctly the solution set. From
equation (1), a2 + d2 + g2 = 9. Assume a = 1, thus d2 + g2 = 8. We need to find integer values for which
d2 + g2 = 8. The only positive integer values are d = 2 and g = 2. Hence, a2 + d2 + g2 = 12 + 22 + 22 = 9.
Substituting the solution set (a, d, g) = (1, 2, 2) into equation (ii) we obtain 2b + 4e + 4h = 18. Dividing both
sides by 2 we obtain b+2e+2h = 9. Need to find the solution set (b, e, h) which satisfy b+2e+2h = 9. Letting
b = 1, e = 2, h = 2 we have 1 + 2(2) + 2(2) = 9. Thus, (b, e, h) = (1, 2, 2) is a solution. Substituting the solution
(a, d, g, b, e, h) = (1, 2, 2, 1, 2, 2) in equation (iii) we have 2c + 4f + 4i = 6. Assuming c = 1, f = 0, i = 1 we get
2(1) + 4(0) + 4(1) = 6. Thus (c, f, i) = (1, 0, 1) is a solution. Since all the solution set have been determined
i.e (a, d, g, b, e, h, c, f, i) = (1, 2, 2, 1, 1, 2, 1, 0, 1) we consider this solution into equation (iv) and (v). Considering
equation (iv),2bc + 2ef + 2hi = 2(1)(1) + 2(1)(0) + 2(2)(1) = 6. Hence, equation (iv) is satisfied. Finally,
considering equation (v) we have c2 + f2 + i2 = 12 + 02 + 12 = 2 which satisfies the equation. Consequently,
u = α2 + α+ 1, v = 2α2 + 2α and v = 2α2 + 2α+ 1. Since u, v and w are known the result easily follows.

In this subsection, we provide some examples to argument our results in Theorem 2.3 for case (ii).

Table 2. α4 + β4 + (α+ β)4 + 2 = I1 = 2(u2 + v2 + w2)

α4 β4 (α+ β)4 + 2 I1 u2 = (α2 + α+ 1)2 v2 = (α2 + 2α)2 w2 = (2α2 + 2α+ 1)2

1 16 83 100 9 16 25
16 81 627 724 49 144 169
81 256 2403 2740 169 576 625
256 625 6563 7444 441 1600 1681
625 1296 14643 16564 961 3600 7225
1296 2401 28563 32260 1849 7056 12769
2401 4096 50627 57124 3249 12544 21025

Theorem 2.4. Consider equation (1) satisfying the condition (a,m, n, k, r, s,D) = (1, 4, 4, 2, 2, 1, 0). Then the
diophantine equation α4 + β4 + (β − α)4 = 2(u2

2 + v22 + w2
2) has solution in integers if α and β are consecutive

Proof. Suppose α and β are consecutive integers and Consider the equation α4+β4+(β−α)4 = 2(u2
2+v

2
2+w

2
2).

The L.H.S expressed as α4+β4+(β−α)4 = α4+(α+1)4+14 simplifies to 2α4+4α3+6α2+4α+2. Rewriting the
equation 2α4+4α3+6α2+4α+2 = 2(u2

2+v
2
2+w

2
2) and dividing both sides by 2 we get α4+2α3+3α2+2α+1 =

u2
2 + v22 + w2

2. To determine the value of u2, v2 and w2 assume u2 = aα2 + bα + c, v2 = dα2 + eα + f and
w2 = gα2 + hα+ i. Thus, u2

2 + v22 +w2
2 = (aα2 + bα+ c)2 + (dα2 + eα+ f)2 + (gα2 + hα+ i)2 = a2α4 +2abα3 +

(2ac+ b2)α2 +2bcα+ c2 + d2α4 +2deα3 +(2df + e2)α2 +2efα+ f2 + g2α4 +2ghα3 +(2gi+h2)α2 +2hiα+ i2 =
(a2+d2+ g2)α4+(2ab+2de+2gh)α3+(2ac+ b2+2df + e2+2gi+h2)α2+(2bc+2ef +2hi)α+(c2+f2+ i2) =
α4 + 2α3 + 3α2 + 2α+ 1. Matching the coefficient we have



a2 + d2 + g2 = 1 · · · (i),
2ab+ 2de+ 2gh = 2 · · · (ii),
2ac+ b2 + 2df + e2 + 2gi+ h2 = 3 · · · (iii),
2bc+ 2ef + 2hi = 2 · · · (iv),
c2 + f2 + i2 = 1 · · · (v).

Clearly, the system has 9 variables and 5 equation, thus there is no viable method to solve the system. Hence, we
result to method of inspection. To solve the system we find the possible integer values (a, b, c, d, e, f, g, h, i) that
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satisfy the system. We shall use step by step approach to determine correctly the solution set. From equation
(1), a2 + d2 + g2 = 1. Assume a = 0, thus d2 + g2 = 1. We need to find integer values for which d2 + g2 = 1.
The integer values are d = 0 and g = 1. Hence, a2 + d2 + g2 = 02 + 02 + 12 = 1. Substituting the solution set
(a, d, g) = (0, 0, 1) into equation (ii) we obtain 2gh = 2. Dividing both sides by 2 we obtain gh = 1. Clearly,
g = 1 and h = 1. Thus, (g, h) = (1, 1) is a solution. Substituting the solution (a, d, g, b, h) = (0, 0, 1, 1, 1)
in equation (iii) we have b2 + e2 = 2. Assuming b = 1, e = 1 we get 12 + 12 = 2. Thus (b, e) = (1, 1) is a
solution. Substituting the solution set (a, d, g, b, e, h) = (0, 0, 1, 1, 1, 1) into equation (iv) we have c = 0. Finally,
considering equation (v) we have c2 + f2 + i2 = 02 + 12 + 02 = 1 which satisfies the equation. Consequently,
u2 = α, v2 = α+ 1 and w2 = α2 + α. Since u2, v2 and w2 are known the result easily follows.

In this subsection, we provide some examples to argument our results in Theorem 2.4 for case (i).

Table 3. α4 + β4 + (β − α)4 = I2 = 2(u2
2 + v22 + w2

2)

α4 β4 (β − α)4 I2 u2
2 = α2 v22 = (α+ 1)2 w2

2 = (α2 + α)2

1 16 1 18 1 4 4
16 81 1 98 4 9 36
81 256 1 338 9 16 144
256 625 1 882 16 25 400
625 1296 1 1922 25 36 900
1296 2401 1 3698 36 49 1764
2401 4096 1 6498 49 64 3136

3 Conclusion
To sum up, this research has provided integral solution for the diophantine equation αn+βn+a(αs±βs)m+D =
r(uk + vk + wk) where α and β are consecutive integers. Future research may investigate the same families of
the diophantine equation with different exponent and the difference between alpha and beta greater or equal to 2.
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