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Abstract
For an odd semi-prime N = pq with p < q < 2p, this paper demonstrates that the maximum gap between
two integers sharing a common divisor with N is p − 1. Within interval [1, N − 1] there exists a sequence
of such gaps that can be periodically grouped into small clusters determined by the quotient of p divided
by q − p. Furthermore, the total number of the terms in the sequence is an odd number no smaller than 1.
These findings illustrate that the large gaps among multiples of the divisors of a composite odd integer are
distributed sparely and periodically. Such distribution is advantageous for designing randomized algorithms
capable of identifying a divisor of a composite odd integer within a limited range.
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1 Introduction
This introductory part raises a problem and makes a simple review of its relevant literatures.

1.1 Problems From Observation
Given a semiprime N = 15 that has two divisors, 3 and 5; Checking each integer from 3 to 14 knows that integers
3, 6, 9, and 12 are multiples of 3, while integers 5 and 10 are multiples of 5. Using the terminologies in [1] and
[2], the multiples of 3 are hosts of the divisor 3 , the multiples of 5 are hosts of the divisor 5, and each of these
multiples is a host of N ’s divisors. By arranging all these hosts in order, a sequence can be achieved.

3, 5, 6,|, 9, 10, 12

Using the symbol | to express the ’middle’ of the sequence, hosts of 3, 3 and 6, and hosts of 5, 5 and 10, are
seen symmetrically distributed with respect to |. Using a terminology ’gap’ to describe the number of integers
between two given integers, it is seen that pairs (5,6) and (10, 9) have gap 0, pairs (3,5) and (12,10) have gap
1, and pair (6,9) has the maximal gap 2. Regarding pair (6,9) is symmetric to itself, pairs of the same gap are
symmetrically distributed with respect to |. Changing N to 119, which has two divisors of 7 and 17, leads to
the following host sequence

7, 14, 17, 21, 28, 34, 35, 42, 49, 51, 56,|, 63, 68,70, 77, 84, 85, 91, 98, 102, 105, 112

It can be seen that gap 0 comes from (34, 35) and (85, 84), gap 1 from (49, 51) and (70,68), gap 2 from (14,
17) and (105,102), gap 3 from (17, 21) and (102, 98), gap 4 from (56,51) and (63,68), gap 5 from (28,34) and
(91,85), and the maximal gap 6 from (7,14), (21, 28), (35, 42), (42,49), (56,63), (70,77), (84,77), (98,91), and
(112,105). Pairs of the same gap are also symmetric with respect to |.

The phenomena stated above were first observed and studied in paper [3]. That paper proved the property of the
symmetric distribution of the gaps between two hosts hosting distinct divisors of a semi-prime and the existence
of gap 0. This paper continues the study of that paper and shows how the maximum gaps are distributed for
the case N is a semi-prime whose divisor ratio is smaller than 2.

The paper consists of six sections. This introductory section raises the observed phenomena and makes a brief
on the related literature to show that the problem raised here is truly a new one for which little previous study
has been made; section 2 introduces symbols and notations that will be used in later sections; section 3 presents
the lemmas, corollaries and theorems proved in this paper; section 4 presents numerical tests; section 5 is the
conclusion.

1.2 Simple Review of Relevant Literatures
The topic of this paper is related with two issues in number theory [4]: one is the study of the gaps between
integers and the other is the distributions of the divisors of a composite integer. The first one can be traced
hundreds of years ago, mainly involved in the exploring the gaps between primes, between integers in an
arithmetic progression, and between integers in some particular set of integers. The early researches of the
first kind can be found in [5], [6], and [7]; the recent researches can be seen in [8], [9], and [10]. Beath-Brown
D R and Iwaniec H in [5] investigated the difference between consecutive primes, Galambos J and Katai I in
[6] and [7] researched the gaps in a particular sequence of integers of positive density, Brandon Y Wang and
Wang X in [8] proved a symmetrical distribution of primes and their gaps, Melvyn B Nathanson in [9] researched
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arithmetic progressions contained in sequences with bounded gaps, and Liu Y in [10] estimated bounded gaps
between products of distinct primes.

The second issue mainly concerns the distribution of an integer’s divisors in an interval or a sequence. Early
researches can be found in [11] and [12]; recent ones was summarized in the introductory section of [1]. Jean-
Marie De Koninck in [11] studied the distance between consecutive divisors of an integer; Berend D and Harmse
J E in [12] reported gaps between consecutive divisors of factorials. Seen in the literatures list [1], the relevant
researches have been continued because it is closely related with the study of integer factorization.

The problem raised in this paper concerns the gaps between the integers having a common divisor with a third
composite integer. It does not belong to either of the two mentioned issues. It is therefore of a new kind.

2 Terminologies, Symbols and Notations
This section presents necessary symbols, notations, and definitions for later investigation.

2.1 Previously-used Terminologies, Symbols and Notations
This paper continues using symbols and notations introduced in [1], [2], and [3].

2.2 New Terminologies, Symbols and Notations
Let n be an odd integer and S = {1, 2, 3, ..., n−1} ; integer r ∈ S and n−r ∈ S are said to be symmetric modulo
n. In this whole paper, symbol Hx

[a,b] means the set of all the hosts of x in interval [a, b] and Hx
[a,b] ∩ [c, d] means

the intersection of Hx
[a,b] with the hosts of x in interval [c, d]. If Hx

[a,b] ∩ [c, d] = ∅, interval [c, d] is called an
x-free interval. An integer interval [hy

l , h
y
r ] both of whose two ends are hosts of y is called a y-enclosed interval.

Symbol Gx means a gap taking value x and Gx..y means a set of gaps taking values from x to y.

3 Main Results
This section presents main results obtained and proved in this paper. It consists of two subsections: Lemmas
and Theorems. Lemmas are fundamental mathematical results proved by primary number theory and Theorems
are proven based on the Lemmas to answer the problems raised in the introductory part.

3.1 Lemmas
Lemma 3.1. Let p and r be positive integers with 0 < r < p. Then in the case r = 1 there is not an integer α
with 1 < α < p that enables αr ≥ p; whereas, in the case r > 1 there is at least one such α with 1 < α < p that
enables αr ≥ p and (α− 1)r < p. Among all those candidates of α, α =

⌈
p
r

⌉
is the smallest one.

Proof. The case r = 1 is obviously true. The other case, r ≥ 2, can be proven with proof by contradiction.
Assume there is not an α with 1 < α < p that makes αr > p; then (p − 1)r < p ⇔ r < 1 + 1

p−1
, contradictory

to r ≥ 2. In fact, taking α =
⌈
p
r

⌉
yields

αr =
⌈p
r

⌉
r ≥ p

and

p

r
≤ α =

⌈p
r

⌉
<
p

r
+ 1⇔ p− r ≤ (α− 1)r < p.

Now assume β = α− δ, βr > p, and (β − 1)r < p, where δ ≥ 1 is an integer; then
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(
⌈p
r

⌉
− δ)r ≥ p⇔

⌈p
r

⌉
− p

r
≥ δ

By (P19) in [13],
⌈
p
r

⌉
=
⌊
p−1
r

⌋
+ 1, yielding

(
⌈p
r

⌉
− δ)r ≥ p⇔

⌈p
r

⌉
− p

r
≥ δ ⇔

⌊
p− 1

r

⌋
− p− 1

r
≥ δ − 1 +

1

r
> 0

contradictory to the fact
⌊
p−1
r

⌋
≤ p−1

r
.

Hence the lemma consequently holds.

Lemma 3.2. Let p and q be two odd integers with (p, q) = 1, q = p + r, and 1 < r < p; then there exists an
integer α with 1 < α ≤ p− 1 that enables (α− 1)r < p, αr > p,

(α− 1)p < (α− 1)q < αp (3.1)
and

(α+ 1)p < αq < (α+ 2)p. (3.2)

Proof. Since p and q are odd, r is even, namely, r ≥ 2. Lemma 3.1 ensures the existence of α satisfying
1 < α ≤ p − 1, (α − 1)r < p, and αr > p. Next prove it also satisfies (3.1) and (3.2). The condition (p, q) = 1
yields (p, r) = 1. By αr > p, let αr = sp+ t with s ≥ 1 and 0 < t < p being integers; then

(α− 1)q = (α− 1)p+ (α− 1)r, 0 < (α− 1)r < p (3.3)
and

αq = αp+ αr = (α+ s)p+ t, 0 < t < p. (3.4)
From (3.3), (3.1) surely holds. Next prove s = 1. In fact αr = sp+ t yields

(α− 1)r = sp+ t− r (3.5)

Since 0 < t < p and 1 < r < p, it is known

−(p− 2) ≤ t− r ≤ p− 3 < p− 2,

indicating by (3.5)
(α− 1)r ≥ sp− p+ 2

If s > 1 ⇔ s ≥ 2, it derives (α − 1)r ≥ p + 2, which is contradictory to 0 < (α − 1)r < p. Accordingly, (3.4)
becomes αq = (α+ 1)p+ t with 0 < t < p, which is identical to (3.2).

3.2 Corollaries and Theorems
Corollary 3.3. Let N = pq be an odd integer and IN = [1, N − 1] be an integer interval, where p and q are odd
integers with 1 < p < q and (p, q) = 1; Assume hp ∈ IN and hq ∈ IN are hosts of p and q, respectively; then

0 ≤ gh
q

hp ≤ p− 2.

Proof. The hosts of p and q in IN are given by

p, 2p, 3p, ..., (
q − 1

2
)p, (

q + 1

2
)p, ..., (q − 1)p (3.6)

and
q, 2q, 3q, ..., (

p− 1

2
)q, (

p+ 1

2
)q, ..., (p− 1)q. (3.7)

Since (q − 1)p− (p− 1)q = q − p > 0, αq with integer 1 ≤ α ≤ p− 1 lies in the integer interval [1, (q − 1)p]. By
(p, q) = 1, αq must lie between two adjacent hosts of p, indicating 0 ≤ gh

q

hp ≤ p− 2 because the gap between two
adjacent hosts of p is p− 1.
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Corollary 3.4. Let p and q be odd integers with 1 < p < q; then there is not a host of q between ( q−1
2

)p and
( q+1

2
)p. There are at least two hosts of p between ( p−1

2
)q and ( p+1

2
)q; particularly, ( q−1

2
)p and ( q+1

2
)p are exact

two hosts of p between ( p−1
2

)q and ( p+1
2

)q if 1 < q
p
< 2.

Proof. The first conclusion can be proved using proof by contradiction. A host of q must be of the form αq with
α ≥ 1. Assume there is such an α that makes ( q−1

2
)p < αq < ( q+1

2
)p. Then it follows

(q − 1)p < 2αq < (q + 1)p⇔ p− p

q
< 2α < p+

p

q
⇒ p = 2α

leading to a contradiction to that p is odd.

To prove the second conclusion, consider an integer α that satisfies

(
p− 1

2
)q < αp < (

p+ 1

2
)q. (3.8)

Then it follows

q − q

p
< 2α < q +

q

p

Note that, q−
⌊

q
p

⌋
, q−

⌊
q
p

⌋
+1, ..., q, ..., q+

⌊
q
p

⌋
− 1, and q+

⌊
q
p

⌋
are integers between q− q

p
and q+ q

p
, meaning

α can take at least two values to hold (3.8). In the case 1 < q
p
< 2 ⇔

⌊
q
p

⌋
= 1, q − 1, q, and q + 1 are three

integers to hold (3.8), meaning α = q−1
2

and α = q+1
2

are the only two integers to hold (3.8).

Theorem 3.5. Let N = pq be an odd integer and IN = [1, N − 1] be an integer interval, where p and q are odd
integers such that 1 < p < q and (p, q) = 1; then the maximal gap between two adjacent hosts of N ’s divisors in
IN is p− 1, and there is always such a gap in the middle of IN .

Proof. By Corollary 3.3, gaps between hosts of p and hosts of q are between 0 and p−2. By Corollary 3.4, there
are at least two hosts of p between ( p−1

2
)q and ( p+1

2
)q. Because the gap between arbitrary two adjacent hosts

of p is p− 1, the theorem certainly holds.

Theorem 3.6. Given an odd integer N = pq whose divisors p and q are odd integers satisfying (p, q) = 1,
q = p+ r with 1 < r < p ; let ω =

⌈
p
r

⌉
,ς =

⌊
p+1
2ω

⌋
− 1, and integer intervals be given by

IN = [1, N − 1],
I0 = [q, (ω − 1)q],
I1 = [ωq, (2ω − 1)q],
...,
Ik = [kωq, ((k + 1)ω − 1)q],
...,
Iς = [ςωq, ((ς + 1)ω − 1)q],
Iς+1 = [(ς + 1)ωq, ( p−1

2
)q].

Then for 0 ≤ j ≤ ς, Gp−1 exists between the end of Ij and the start of Ij+1 except for the one near and out of
the end of Iς+1. There are at least 2ς + 1such gaps distributed symmetrically in IN .

Proof. The given conditions show that r is an even integer satisfying 2 ≤ r ≤ p − 1. For convenience of later
reasoning, let r0 = r and ω0 = ω; then q = p+ r0, (p, r0) = 1, and (q, r0) = 1. Consider the following sequence
(3.9) given by

q = p+ r0, 2q = 2p+ 2r0, ..., αq = αp+ αr0, ..., (p− 1)q = (p− 1)p+ (p− 1)r0 (3.9)
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By Lemmas 3.1 and 3.2 , ω0 =
⌈

p
r0

⌉
is the smallest integer that makes (ω0 − 1)r0 < p, ω0r0 > p, (ω0 − 1)p <

(ω0 − 1)q < ω0p, and (ω0 + 1)p < ω0q < (ω0 + 2)p, meaning
(i). (ω0 − 1)r0 < p⇒ (ω0 − j)r0 < p and Hq

[1,N ] ∩ [jp, (j +1)p] 6= ∅, where integer j satisfies 1 ≤ j ≤ ω0 − 1.
(ii). There is not a host of q between ω0p and (ω0 + 1)p, namely,

Hq
[1,N ] ∩ [ω0p, (ω0 + 1)p] = ∅. (3.10)

Now taking half of the ordered sequence (3.9) obtains

q = p+ r0, 2q = 2p+ 2r0, ..., αq = αp+ αr0, ..., (
p− 1

2
)q = (

p− 1

2
)p+ (

p− 1

2
)r0 (3.11)

Let
G1 = {q, 2q, ..., (ω0 − 1)q}

and
G2 = {ω0q, (ω0 + 1)q, ...,

p− 1

2
q}.

Then the number of elements in G2 is calculated by

M =
p− 1

2
− ω0 + 1 =

p+ 1

2
− ω0 (3.12)

Obviously, G2 is empty in the case M = 0⇔ ω0 = p+1
2

. This time the last element of G1 is (ω0 − 1)q = p−1
2
q.

Referring to Corollary 3.4, Gp−1 is known to occur once between p−1
2
q and p+1

2
q in (3.9), validating the theorem.

If M > 0, the proved (i) and (3.10) show that Gp−1 does not occur within G1 but occurs once between the
last element of G1 and the first element of G2. Now investigate the situation in G2. Let ω0r0 = p + r1 with
0 < r1 < p; then r1 = ω0r0 − p, leading to

ω0q = (ω0 + 1)p+ r1, 0 < r1 < p. (3.13)

and the following calculations,

(ω0 + 1)q = ω0q + q = ((ω0 + 1) + 1)p+ r1 + r0,
(ω0 + 2)q = (ω0 + 1)q + q = ((ω0 + 1) + 2)p+ r1 + 2r0,
(ω0 + 3)q = (ω0 + 2)q + q = ((ω0 + 1) + 3)p+ r1 + 3r0,
· · · · · · .

The general formula for the above calculations is easily derived by

(ω0 + j)q = (ω0 + 1 + j)p+ r1 + jr0. (3.14)

where 0 ≤ j ≤M − 1 is an integers.

Substituting j + 1 forj in (3.14) results in the adjacent follow-up of (ω0 + j)q by

(ω0 + j + 1)q = (ω0 + 1 + j + 1)p+ r1 + (j + 1)r0. (3.15)

In the case ω0 < M − 1, taking j = ω0 − 1 in (3.14) and (3.15) leads to, respectively,

(2ω0 − 1)q = 2ω0p+ r1 + (ω0 − 1)r0 (3.16)

and
2ω0q = (2ω0 + 1)p+ r1 + ω0r0 (3.17)

With ω0r0 = p+ r1, (3.17) is turned to be

2ω0q = 2(ω0 + 1)p+ 2r1. (3.18)

56



Wang; J. Adv. Math. Com. Sci., vol. 39, no. 10, pp. 51-61, 2024; Article no.JAMCS.124245

Then it follows
(2ω0 + 1)q = (2(ω0 + 1) + 1)p+ 2r1 + r0 (3.19)

Seen from (3.13), (3.16), (3.18), and (3.19), calculations of the elements in G2 reveal an ω0-periodic phenomenon.
A positive integer k can always correspond to ω0 calculations starting with kω0q = k(ω0 +1)p+ kr1 and ending
with ((k+1)ω0− 1)q = ((k+1)ω0 + k− 1)p+ kr1 +(ω0− 1)r, except the last several ones. Accordingly, G2 can
be grouped into m+ 1 small groups in terms of such periodic trait by,

G2 = {ω0q..., (2ω0 − 1)q︸ ︷︷ ︸
group 1

, ..., kω0q, (kω0 + 1)q, ..., ((k + 1)ω0 − 1)q︸ ︷︷ ︸
group k

, ..., (m+ 1)q, ..., (p− 1)q/2︸ ︷︷ ︸
group m+1

}.

where

m =

⌊
M

ω0

⌋
=

⌊
p+ 1

2ω0

⌋
− 1 = ς (3.20)

So that

m ≤
⌊r0
2

⌋
− 1. (3.21)

Each of the first m small groups contains ω0 elements while the last one contains M −mω0 = p+1
2
−mω0−ω0 =

p+1
2
− (m+ 1)ω0 ones.

The j-th member in the k-th group is given by

(kω0 + j)q = (k(ω0 + 1) + j)p+ kr1 + jr0. (3.22)

where 0 ≤ j ≤ ω0 − 1for 1 ≤ k ≤ m while 0 ≤ j ≤ p+1
2
− (m+ 1)ω0 for k = m+ 1.

The last one of group k with 1 ≤ k ≤ m is

((k + 1)ω0 − 1)q = ((k + 1)(ω0 + 1)− 2)p+ kr1 + (ω0 − 1)r0 (3.23)

and the first one of group k+1 with 1 < k ≤ m+ 1 is

(k + 1)ω0q = (k + 1)(ω0 + 1)p+ (k + 1)r1. (3.24)

For convenience, use qk,ω0−1 for ((k+1)ω0−1)q and Rk,ω0−1 for kr1 +(ω0−1)r0 in (3.23), qk+1,0 for (k+1)ω0q
and Rk+1,0 for (k + 1)r1 in (3.24). Rewrite respectively (3.23) and (3.24) to be

qk,ω0−1 = ((k + 1)(ω0 + 1)− 2)p+Rk,ω0−1, (3.25)

and
qk+1,0 = (k + 1)(ω0 + 1)p+Rk+1,0. (3.26)

Direct calculations show
Rk+1,0 −Rk,ω0−1 = r0 − p. (3.27)

With (3.25) and (3.27), it can be proven that qk,ω0−1 is around ((k + 1)ω0 + k)p. In fact, by (3.27) it follows

Rk,ω0−1 = Rk+1,0 + p− r0 = (k + 1)(ω0r0 − p) + p− r0.

Because (p, r0) = 1, it is sure p ≤ ω0r0 < p+ r0 ⇒ ω0r0 > p, and thus

p < ω0r0 < p+ r0 ⇔ p+ 1 ≤ ω0r0 ≤ p+ r0 − 1.
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Hence Rk,ω0−1 is bounded by

k + 1 + p− r0 ≤ Rk,ω0−1 ≤ kr0 + k + 1 + p. (3.28)

Combining with (3.25) results in

((k + 1)ω0 + k)p+ k + 1− r0 ≤ qk,ω0−1 ≤ ((k + 1)ω0 + k)p+ kr0 + k + 1. (3.29)

Since 1 ≤ k ≤ m, by (3.21) qk,ω0−1is surely around ((k + 1)ω0 + k)p.

Now look at the integer intervals around ((k + 1)ω0 + k)p. Let

Ill = [((k + 1)ω0 + k − 2)p, ((k + 1)ω0 + k − 1)p], (3.30)

Ilr = [((k + 1)ω0 + k − 1)p, ((k + 1)ω0 + k)p], (3.31)

Irl = [((k + 1)ω0 + k)p, ((k + 1)ω0 + k + 1)p]; (3.32)

and

Irr = [((k + 1)ω0 + k + 1)p, ((k + 1)ω0 + k + 2)p], (3.33)

These intervals are obviously around ((k + 1)ω0 + k)p, as illustrated with Fig. 1.

Fig. 1. Intervals are around ((k + 1)ω0 + k)p

By (3.26), it follows

qk+1,0 > (k + 1)(ω0 + 1)p = ((k + 1)ω0 + k + 1)p

indicating qk+1,0 falls into Irr or an interval right to Irr, as also illustrated with Fig. 1.

It can be proven that qk,ω0−1 cannot be in Ill. In fact, assume qk,ω0−1 ∈ Il; then (p, q) = 1 leads to

qk,ω0−1 ∈ (((k + 1)ω0 + k − 2)p, ((k + 1)ω0 + k − 1)p) (3.34)

By (3.26),

qk+1,0 = (k + 1)(ω0 + 1)p+ (k + 1)r1 = (k + 1)ω0p+ (k + 1)ω0r0.

Hence the smallest gap between qk+1,0 and an integer in Il is

qk+1,0 − ((k + 1)ω0 + k − 1)p = (k + 1)(ω0r0 − p) + 2p > 2p,

which is contradictory to qk+1,0 − qk,ω0−1 = q < 2p.

Therefore, qk,ω0−1 can lie in three possible intervals: Ilr, Irl, and Irr. Next show that either case leaves Gp−1 to
occur.

First, qk,ω0−1 lying in Ilr surely leaves Gp−1 to occur because this time interval Irl is q-free for the reason that
qk+1,0 lies in Irr or an interval right to Irr.

Now assume qk,ω0−1 ∈ Irl. Then by (3.25) and (3.32)
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((k + 1)(ω0 + 1)− 2)p+Rk,ω0−1 > ((k + 1)ω0 + k)p⇒ Rk,ω0−1 > 2p⇒ Rk+1,0 > p+ r0
⇒ qk+1,0 = (k + 1)(ω0 + 1)p+Rk+1,0 > ((k + 1)ω0 + k + 2)p+ r0

saying this time qk+1,0 lies in an interval right to Irr and Gp−1 occurs in Irr.

Likewise, in the case qk,ω0−1 lies in Irr, it holds by (3.25) and (3.33)

((k + 1)(ω0 + 1)− 2)p+Rk,ω0−1 > ((k + 1)ω0 + k + 1)p⇒ Rk,ω0−1 > 3p⇒ Rk+1,0 > 2p+ r0
⇒ qk+1,0 = (k + 1)(ω0 + 1)p+Rk+1,0 > ((k + 1)ω0 + k + 3)p+ r0

saying this time Gp−1 occurs in the interval right to Irr.

Therefore every small group k with 1 ≤ k ≤ m leaves Gp−1 to occur near and out of its end because qk,ω0−1

is the last member of the group k. For the group m + 1, Gp−1 is sure to occur out of its end because its last
member is (p− 1)q/2 which is proven in Corollary 3.4. In the end, the symmetrical property of the hosts in IN
finishes validating the theorem.

4 Numerical Tests

Results of Theorems 3.5 and 3.6 can be easily tested. Here take N = 187 = 11× 17 and N = 713 = 23× 31 as
examples to show the numerical tests. Readers can find more examples as well as Maple programs in [14].

Example 1. N = 187 = 11 × 17 ⇒ p = 11, q = 17, r = 6. Calculate ω0 =
⌈
p
r

⌉
= 2 and m =

⌊
p+1
2ω0

⌋
− 1 = 2.

By Theorem 2, each of the intervals [((ω− 1)q, ωq] = [17, 34], [((2ω− 1)q, 2ωq] = [51, 68], and [( p−1
2

)q, ( p+1
2

)q] =
[85, 102] contains gap p − 1 = 10. In fact, [22, 33] ⊂ [17, 34], [55, 66] ⊂ [51, 68], and [88, 99] ⊂ [85, 102] are 3
intervals having gap 10. Programmed and drawn with Maple software, Fig. 2. exactly describes the results
including their symmetric property.

Fig. 2. Distribution of gaps form hosts of 11 and 17

Example 2. N = 713 = 23× 31⇒ p = 23, q = 31, r = 8. Calculate ω0 =
⌈
p
r

⌉
= 3 and m =

⌊
p+1
2ω0

⌋
− 1 = 3. By

Theorem 2, each of the intervals [((ω0−1)q, ω0q] = [62, 93], [((2ω0−1)q, 2ω0q] = [155, 186], [((3ω0−1)q, 3ω0q] =
[248, 279], and [( p−1

2
)q, ( p+1

2
)q] = [341, 372] contains gap p − 1 = 22. In fact, [69, 92] ⊂ [62, 93], [161, 184] ⊂

[155, 186], [253, 276] ⊂ [248, 279], and [345, 368] ⊂ [341, 372] are 4 intervals having gap 22. Programmed and
drawn with Maple software, Fig. 3 exactly describes the results including their symmetric property.
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Fig. 3. Distribution of gaps form hosts of 23 and 31

5 Conclusion
Knowing the distribution of the gaps among hosts of the divisors of a composite integer is helpful to design
randomized algorithm to search a divisor of The theorems proved in this paper reveal a new symmetric
characteristic of the hosts of composite integer. The conclusions in Theorems 1 and 2 indicate that large
gaps are distributed periodically and symmetrically. Such a distribution is beneficial for finding a small range
to identifying certain expected divisors of un-factorized composite integer.

Nevertheless, readers can see from the numerical experiments provided in [14], there are other large gaps whose
distributions are not revealed in this paper. This forms the future research work. Hope the perfect result come
soon.
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