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Abstract

Gut microbiota are shaped by a combination of ecological and evolutionary forces. While

the ecological dynamics have been extensively studied, much less is known about how spe-

cies of gut bacteria evolve over time. Here, we introduce a model-based framework for

quantifying evolutionary dynamics within and across hosts using a panel of metagenomic

samples. We use this approach to study evolution in approximately 40 prevalent species in

the human gut. Although the patterns of between-host diversity are consistent with quasi-

sexual evolution and purifying selection on long timescales, we identify new genealogical

signatures that challenge standard population genetic models of these processes. Within

hosts, we find that genetic differences that accumulate over 6-month timescales are only

rarely attributable to replacement by distantly related strains. Instead, the resident strains

more commonly acquire a smaller number of putative evolutionary changes, in which nucle-

otide variants or gene gains or losses rapidly sweep to high frequency. By comparing these

mutations with the typical between-host differences, we find evidence that some sweeps

may be seeded by recombination, in addition to new mutations. However, comparisons of

adult twins suggest that replacement eventually overwhelms evolution over multi-decade

timescales, hinting at fundamental limits to the extent of local adaptation. Together, our

results suggest that gut bacteria can evolve on human-relevant timescales, and they high-

light the connections between these short-term evolutionary dynamics and longer-term evo-

lution across hosts.
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Author summary

The human gut harbors a diverse microbial community whose composition is shaped by a

variety of ecological forces. Given the high rates of turnover, the residents of this commu-

nity might also have the opportunity to evolve over time by acquiring heritable changes to

their genomes. Yet, despite the potential importance of these effects, we currently know

very little about the evolutionary dynamics that occur within species in this complex com-

munity. Here, we introduce a new approach for extracting evolutionary signals from a

large panel of human gut metagenomes and for interpreting these signals using simple

null models from population genetics. We use this approach to quantify the evolutionary

dynamics of approximately 40 prevalent species of gut bacteria, both within individual

hosts and across the larger population. We find that resident populations of gut bacteria

can evolve within their hosts on short timescales, but after many years, the resident popu-

lations are typically replaced by distantly related strains. The patterns of variation across

hosts indicate widespread recombination within species, but the quantitative signals sug-

gest interesting departures from traditional population genetic models. Together, these

results show that short-term evolution in the gut microbiome may be more complex and

widespread than is often assumed.

Introduction

The gut microbiome is a complex ecosystem comprised of a diverse array of microbial organ-

isms. The abundances of different species and strains can vary dramatically based on diet [1],

host species [2], and the identities of other co-colonizing taxa [3]. These rapid shifts in com-

munity composition suggest that individual gut microbes may be adapted to specific environ-

mental conditions, with strong selection pressures between competing species or strains. Yet,

while these ecological responses have been extensively studied, much less is known about the

evolutionary forces that operate within populations of gut bacteria, both within individual

hosts and across the larger host-associated population. This makes it difficult to predict how

rapidly strains of gut microbes will evolve new ecological preferences when faced with envi-

ronmental challenges, such as drugs or diet, and how the genetic composition of the commu-

nity will change as a result.

The answers to these questions depend on two different types of information. At a mecha-

nistic level, one must understand the functional traits that are under selection in the gut and

how they may be modified genetically. Recent work has started to address this question,

leveraging techniques from comparative genomics [4–6], evolution in model organisms [7–9],

and high-throughput genetic screens [10, 11]. Yet, in addition to the targets of selection, evolu-

tion also depends on population genetic processes that describe how mutations spread through

a population of gut bacteria, both within individual hosts and across the larger population.

These dynamical processes can strongly influence which mutations are likely to fix within a

population, and the levels of genetic diversity that such populations can maintain. Under-

standing these processes is the goal of our present work.

Previous studies of pathogens [12], laboratory evolution experiments [13], and some envi-

ronmental communities [14–17] have shown that microbial evolutionary dynamics are often

dominated by rapid adaptation, with new variants accumulating within months or years [7,

14, 18–25]. However, it is not clear how this existing picture of microbial evolution extends to

a more complex and established ecosystem like the healthy gut microbiome. On the one hand,

hominid gut bacteria have had many generations to adapt to their host environment [26], and
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they may not be subjected to the same immune pressures as pathogens. The large number of

potential competitors in the gut ecosystem may also provide fewer opportunities for a strain to

adapt to new conditions before an existing strain expands to fill the niche [27, 28] or a new

strain invades from outside the host. On the other hand, it is also possible that small-scale envi-

ronmental fluctuations, either driven directly by the host or through interactions with other

resident strains, might increase the opportunities for local adaptation [29]. If immigration is

restricted, the large census population size of gut bacteria could allow residents to produce and

fix adaptive variants rapidly before a new strain is able to invade. In this case, one could

observe rapid adaptation on short timescales, which is eventually arrested on longer timescales

as strains are exposed to the full range of host environments. Additional opportunities for

adaptation can occur if the range of host environments also shifts over time (e.g., due to urban-

ization, antibiotic usage, etc.). Determining which of these scenarios apply to gut communities

is critical for efforts to study and manipulate the microbiome.

While traditional amplicon sequencing provides limited resolution to detect within-species

evolution [30], whole-genome shotgun metagenomic sequencing is starting to provide the raw

polymorphism data necessary to address these questions [31]. In particular, several reference-

based approaches have been developed to detect genetic variants within individual species in

larger metagenomic samples [31–36]. While these approaches enable strain-level comparisons

between samples, they have also documented substantial within-species variation in individual

metagenomes [31, 35, 37]. This makes it difficult to assign an evolutionary interpretation to

the genetic differences between samples, because they arise from unobserved mixtures of dif-

ferent bacterial lineages.

Several approaches have been developed to further resolve these mixed populations into

individual haplotypes or "strains." These range from simple consensus approximations [35, 37,

38], to sophisticated clustering algorithms [39, 40] and the incorporation of physical linkage

information [41]. However, while these methods are useful for tracking well-defined strains

across samples, it is not known how their assumptions and failure modes might bias inferences

of evolutionary dynamics, particularly among closely related strains. As a result, the evolution-

ary processes that operate within species of gut bacteria remain poorly characterized.

In this study, we take a different approach to the strain detection problem that is specifically

designed for inferring evolutionary dynamics in a large panel of metagenomes. Building on

earlier work by [4, 35], we show that many prevalent species have a subset of hosts for which a

portion of the dominant lineage is much easier to identify. By focusing only on this subset of

samples, we develop methods for resolving small differences between the dominant lineages

with a high degree of confidence.

We use this approach to analyze a large panel of publicly available human stool samples

[42–46], which allows us to quantify evolutionary dynamics within and across hosts in approx-

imately 40 prevalent bacterial species. We find that the long-term evolutionary dynamics

across hosts are broadly consistent with models of quasi-sexual evolution and purifying selec-

tion, with relatively weak geographic structure in many prevalent species. However, our quan-

titative approach also reveals interesting departures from standard population genetic models

of these processes, suggesting that new models are required to fully understand the evolution-

ary dynamics that take place across the larger population.

We also use our approach to detect examples of within-host adaptation, in which nucleotide

variants or gene gains or losses rapidly sweep to high frequency on 6-month timescales. We

find evidence that some within-host sweeps may be seeded by recombination, in addition to

de novo mutations, as might be expected for a complex ecosystem with frequent horizontal

exchange. However, by analyzing differences between adult twins, we find that short-term evo-

lution can eventually be overwhelmed by the invasion of distantly related strains on multi-
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decade timescales. This suggests that resident strains are rarely able to become so well adapted

to a particular host that they prevent future replacements. Together, these results show that the

gut microbiome is a promising system for studying the dynamics of microbial evolution in a

complex community setting. The framework we introduce may also be useful for characteriz-

ing evolution of microbial communities in other environments.

Materials and methods

Resolving within-host lineage structure in a panel of metagenomic samples

To investigate evolutionary dynamics within species in the gut microbiome, we analyzed shot-

gun metagenomic data from a panel of stool samples from 693 healthy individuals sequenced

in previous work (S1 Table). This panel includes 250 North American subjects sequenced by

the Human Microbiome Project (HMP) [42, 44], a subset of which were sampled at 2 or 3 time

points roughly 6–12 months apart. To probe within-host dynamics on longer timescales, we

also included data from a cohort of 125 pairs of adult twins from the TwinsUK registry [45],

and 4 pairs of younger twins from [46]. As we describe below, the differences between these

cohorts provide a proxy for the temporal changes that accumulate in adult twins over longer

timescales. Finally, to further control for geographic structure, we also included samples from

185 Chinese subjects sequenced at a single time point [43].

We used a standard reference-based approach to measure single nucleotide variant (SNV)

frequencies and gene copy number across a panel of prevalent species for each metagenomic

sample (see S1A Text for details on the bioinformatic pipeline, including mapping parameters

and other filters). Descriptive summaries of this genetic variation have been reported else-

where [31, 33–35, 37, 44]. Here, we revisit these patterns to investigate how they emerge from

the lineage structure set by the host colonization process. Using these results, we then show

how certain aspects of this lineage structure can be inferred from the statistics of within-host

polymorphism, which enable measurements of evolutionary dynamics across samples.

As an illustrative example, we first focus on the patterns of polymorphism in Bacteroides
vulgatus, which is among the most abundant and prevalent species in the human gut. These

properties ensure that the B. vulgatus genome has high coverage in many samples, which

enables more precise estimates of the allele frequencies in each sample (Fig 1A–1D). The over-

all levels of within-host diversity for this species are summarized in Fig 1E, based on the frac-

tion of synonymous sites in core genes with intermediate allele frequencies (white region in

Fig 1A–1D). This measure of within-host genetic variation varies widely across the samples:

some metagenomes have only a few variants along the B. vulgatus genome, while others have

mutations at more than 1% of all synonymous sites (comparable to the differences between

samples, S5 Fig). Similar patterns are observed in many other prevalent species (S3 Fig).

We first asked whether these patterns are consistent with a model in which each host is col-

onized by a single B. vulgatus clone, so that the intermediate frequency variants represent

mutations that have arisen since colonization. Using conservatively high estimates for per-site

mutation rates (μ~10−9 [47]), generation times (approximately 10 per day [48]), and time since

colonization (<100 years), this model predicts that the neutral polymorphism rate at synony-

mous sites should be no greater than 0.1% (S1B Text, part ii). This is at odds with the higher

levels of diversity observed in many samples (Fig 1E and S3 Fig). Instead, we conclude that the

samples with higher synonymous diversity have been colonized by multiple divergent bacterial

lineages that accumulated mutations for many generations before coming together in the same

gut community.

As a plausible alternative, we next asked whether the data are consistent with a large num-

ber of colonizing lineages (nc�1) drawn at random from the broader population. However,
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this process is expected to produce fairly consistent polymorphism rates and allele frequency

distributions in different samples, which is at odds with the variability we observe even among

the high-diversity samples (e.g., Fig 1A, 1B, S1 Fig and S2 Fig). Instead, we hypothesize that

many of the high-diversity hosts have been colonized by just a few diverged lineages [i.e.,

ðnc � 1Þ � Oð1Þ]. Consistent with this hypothesis, the distribution of allele frequencies in

each host is often strongly peaked around a few characteristic frequencies, suggesting a mix-

ture of several distinct lineages (Fig 1A–1C, S1 Fig and S2 Fig). Similar findings have recently

been reported in a number of other host-associated microbes, including several species of gut

bacteria [4, 35, 49, 50]. Fig 1A–1C shows that hosts can vary both in the apparent number of

colonizing lineages and the frequencies at which they are mixed together. As a result, we can-

not exclude the possibility that even the low-diversity samples (e.g., Fig 1D) are colonized by

multiple lineages that happen to fall below the detection threshold set by the depth of

sequencing.

Quasi-phaseable samples

Compared with the extreme cases of single-colonization (nc = 1) or colonization by many

strains (nc�1), it is more difficult to identify evolutionary changes between lineages when

there are only few strains at intermediate frequency. In this scenario, within-host populations

are not clonal, but the corresponding allele frequencies derive from idiosyncratic colonization

Fig 1. Genetic diversity within hosts. Bacteroides vulgatus is shown as an example in panels A–E; examples for 24 other species are shown in S1 Fig, S2 Fig, and S3 Fig.

(A–D) The distribution of major allele frequencies at synonymous sites in the core genome for four different samples, with the median read depth �D listed above each

panel. Major allele frequencies are estimated by max{f,1−f}, where f is the frequency of the base on the reference genome (S1A Text, part iii). To emphasize the

distributional patterns, the vertical axis is scaled by an arbitrary normalization constant in each panel, and it is truncated for visibility. The white region denotes the

intermediate frequency range used for the polymorphism calculations below. (E) The average fraction of synonymous sites in the core genome with major allele

frequencies�80% (white region in A–D), for all samples with �D � 20. Vertical lines denote 95% posterior confidence intervals based on the observed number of counts

(S1B Text). The letters indicate the corresponding values for the samples in panels (A–D) for comparison. (F) The distribution of quasi-phaseable (QP) samples among

the 35 most prevalent species, arranged by descending prevalence; the distribution across hosts is shown in S7 Fig. For comparison, panels (C) and (D) are classified as

QP, while panels (A) and (B) are not.

https://doi.org/10.1371/journal.pbio.3000102.g001
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processes rather than a large random sample from the population (as, e.g., in [16]). To disen-

tangle genetic changes between lineages from these host-specific factors, we must estimate

phased haplotypes (or "strains") from the distribution of allele frequencies within individual

hosts. This is a complicated inverse problem, and we will not attempt to solve the general case

here. Instead, we adopt an approach similar to [35] and others, and leverage the fact that the

lineage structure in certain hosts is sufficiently simple that we can assign alleles to the domi-

nant lineage with a high degree of confidence.

Our approach is based on the simple observation that two high-frequency variants must co-

occur in an appreciable fraction of cells (S1C Text, part i). This "pigeonhole principle" suggests

that we can estimate the genotype of one of the lineages in a mixed sample by taking the major

alleles present above some threshold frequency, f��50%, and treating the remaining sites as

missing data. Although the potential errors increase with the length of the inferred haplotype,

we will not actually require genome-length haplotypes for our analysis here. Instead, we lever-

age the fact that significant evolutionary information is already encoded in the marginal distri-

butions of one- and two-site haplotypes, so that these "quasi-phased" lineages will be sufficient

for our present purposes.

The major challenge with this approach is that we do not observe the true allele frequency

directly but must instead estimate it from a noisy sample of sequencing reads. This can lead to

phasing errors when the true major allele is sampled at low frequency by chance and is

assigned to the opposite lineage (S4 Fig). We will refer to these as "polarization errors," because

they stem from an incorrect inference of the major allele. The probability of a polarization

error will vary dramatically depending on the sequencing coverage and the true frequency of

the major allele (S1C Text, part ii). Previous approaches based on consensus alleles [35, 37]

can therefore induce an unknown number of errors that make it difficult to confidently detect

a small number of evolutionary changes between samples.

In S1C Text, we show that by explicitly modeling the sampling error process, the expected

probability of a polarization error in our cohort can be bounded to be sufficiently low if we

take f� = 80%, and if we restrict our attention to samples with sufficiently high coverage and

sufficiently low rates of intermediate-frequency polymorphism. We will refer to these as quasi-

phaseable (QP) samples. In the B. vulgatus example above, Fig 1C and 1D are classified as QP,

while Fig 1A and 1B are not. Note that quasi-phaseability is separately defined for each species

in a metagenomic sample, rather than for the sample as a whole. For simplicity, we will still

refer to these species-sample combinations as QP samples, with the implicit understanding

that they refer to a particular focal species.

In Fig 1F, we plot the distribution of QP samples across the most prevalent gut bacterial

species in our panel. The fraction of QP samples varies between species, ranging from about

50% in the case of Prevotella copri to nearly 100% for B. fragilis [4], and it accounts for much of

the variation in the average polymorphism rate between species (S6 Fig). Most individuals

carry a mixture of QP and non-QP species (S7 Fig), suggesting that quasi-phaseability arises

independently for each species in a sample, rather than for the sample as a whole. Thus,

although many species-sample combinations are not QP, our approximately 500-sample

cohort still contains tens to hundreds of QP samples in many prevalent species, yielding about

3,000 quasi-phased haplotypes in total. Consistent with previous studies of the stability of per-

sonal microbiomes [31, 35, 51], a majority of the longitudinally sampled species maintain their

QP classification at both time points, although this pattern is not universal (S8 Fig). We will

revisit the peculiar properties of this within-host lineage distribution in “Discussion.” For the

remainder of the analysis, we will take the distribution in Fig 1F as given and focus on leverag-

ing the QP samples to quantify the evolutionary changes that accumulate between lineages in

different samples.
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We investigate two types of evolutionary changes between lineages in different QP samples.

The first class consists of single nucleotide differences, which are defined as SNVs that segre-

gate at frequencies�1−f� in one sample and�f� in another, with f��80% as above (S4 Fig).

These thresholds are chosen to ensure a low genome-wide false positive rate given the typical

coverage and allele frequency distributions among the QP samples in our panel (S1C Text,

part iv). The second class consists of differences in gene presence or absence, in which the rela-

tive copy number of a gene, c, is below the threshold of detection (c<0.05) in one sample and

is consistent with a single-copy gene (0.6<c<1.2, see S9 Fig) in the other sample. These thresh-

olds are chosen to ensure a low genome-wide false positive rate across the QP samples, given

the typical variation in sequencing coverage along the genome (S1C Text, part v), and to mini-

mize mapping artifacts (S1A Text, part ii).

Note that these SNV and gene changes represent only a subset of the potential differences

between lineages. We neglect other evolutionary changes (e.g., indels, genome rearrangements,

or changes in high copy number genes) that are more difficult to quantify in a metagenomic

sample, as well as more subtle changes in allele frequency and gene copy number that do not

reach our stringent detection thresholds. We will revisit these and other limitations in more

detail in “Discussion”.

Results

Long-term evolution across hosts

By focusing on the QP samples for each species, we can measure genetic differences between

lineages in different hosts, as well as within hosts over short time periods. Descriptive summa-

ries of this variation have been reported elsewhere [31, 33–35, 37, 44]. Here, we aim to leverage

these patterns (and the increased resolution of the QP samples) to quantify the evolutionary

dynamics that operate within species of gut bacteria, both within and across hosts.

To interpret within-host changes in an evolutionary context, it will be useful to first under-

stand the structure of genetic variation between lineages in different hosts. This variation

reflects the long-term population genetic forces that operate within each species, presumably

integrating over many rounds of colonization, growth, and dispersal. To investigate these

forces, we first analyzed the average nucleotide divergence between strains of a given species in

different pairs of QP hosts (Fig 2A). In the case of twins, we included only a single host from

each pair, to better approximate a random sample from the population.

Fig 2B shows the distribution of pairwise divergence, averaged across the core genome, for

about 40 of the most prevalent bacterial species in our cohort. In a panmictic, neutrally evolving

population, we would expect these distances to be clustered around their average value, d�2μTc,
where Tc is the coalescent timescale for the across-host population [52]. By contrast, Fig 2 shows

striking differences in the degree of relatedness for strains in different hosts. Even at this coarse,

core-genome-wide level, the genetic distances vary over several orders of magnitude.

Some species show multiple peaks of divergence for high values of d, consistent with the

presence of subspecies [36], ecotypes [53, 54], or other strong forms of population structure.

These coarse groupings have been observed previously and are not our primary focus here.

Rather, we seek to understand the population genetic forces that operate at finer levels of taxo-

nomic resolution.

From this perspective, the more surprising parts of Fig 2 are the thousands of pairs of line-

ages with extremely low between-host divergence (e.g., d≲0.01%), more than an order of mag-

nitude below the median values in most species. Similar observations have recently been

reported by [35] and are often interpreted as strain sharing across hosts. However, the evolu-

tionary interpretation of these closely related strains remains unclear.
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Closely related strains reflect population genetic processes, rather than

cryptic host relatedness

The simplest explanation for a long tail of closely related strains is cryptic relatedness [55], aris-

ing from a breakdown of random sampling. For microbes, this can occur when two cells are

sampled from the same clonal expansion, e.g., when strains are transferred between mothers

and infants [33, 56], between cohabitating individuals [46], or within a hospital outbreak [57].

While these transmission events have been observed in other studies, they are unlikely to

account for the patterns here. All of the lineages in Fig 2 are sampled from individuals in dif-

ferent households, and more than a third of the closely related pairs derive from individuals on

different continents (Fig 2B).

Of course, there could still be some other geographic variable, beyond household or conti-

nent of origin, that could explain an elevated probability of transmission between two individ-

uals. Fortunately, our metagenomic approach allows us to rule out these additional sources of

Fig 2. Between-host divergence across prevalent species of gut bacteria. (A) Schematic illustration. For a given pair of hosts (h1, h2),

core-genome nucleotide divergence (d) is computed for each species (s1, s2, etc.) that is quasi-phaseable (QP) in both hosts. (B)

Distribution of d across all pairs of unrelated hosts for a panel of prevalent species. Species are sorted according to their phylogenetic

distances [33], with the number of QP hosts indicated in parentheses; species were only included if they had at least 33 QP hosts (>500 QP

pairs). Symbols denote the median (dash), 1 percentile (small circle), and 0.1 percentile (large circle) of each distribution and are connected

by a red line for visualization; for distributions with<103 data points, the 0.1 percentile is estimated by the second-lowest value. The shaded

region denotes our ad hoc definition of "closely related" divergence, d�2×10−4. (C) The distribution of the number of species with closely

related strains in distinct hosts present in the same or different continents. The null distribution is obtained by randomly permuting hosts

within each species. Although the observed values are significantly different than the null (P<10−4), the large contribution from different

continents shows that closely related strains are not solely a product of geographic separation. (D) The distribution of the number of species

with closely related strains for each pair of hosts. The null distribution is obtained by randomly permuting hosts independently within each

species (n = 103 permutations, P�0.9). This shows that there is no tendency for the same pairs of hosts to have more closely related strains

than expected under the null distribution above.

https://doi.org/10.1371/journal.pbio.3000102.g002
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cryptic host relatedness by leveraging multiple species comparisons for the same pair of hosts.

If there were a hidden geographic variable, then we would expect that individuals with closely

related strains in one species would be much more likely to share closely related strains in

other species as well. However, we observe only a small fraction of hosts that share multiple

closely related strains (Fig 2C), consistent with a null model in which these strains are ran-

domly and independently distributed across hosts. This suggests that host-wide sampling

biases are not the primary driver of the closely related strains in Fig 2.

Although the rates of nucleotide divergence are low, the vast majority of these strains are

still genetically distinguishable from each other. The absolute number of SNV differences typi-

cally exceeds our estimated false positive rate (S10A Fig, S1C Text, part iv), and these SNV dif-

ferences are often accompanied by ≳10 differences in gene content (S10B Fig). Furthermore,

we found that closely related strains frequently differed in their collections of private marker

SNVs (S11 Fig), which are often used to track strain transmission events [33, 46]. Together,

these lines of evidence suggest that closely related strains are often genetically distinct and do

not arise from a simple clonal expansion. Instead, the data suggest that there are additional

population genetic timescales beyond Tc that are relevant for microbial evolution.

This hypothesis is bolstered by the large number of species, particularly in the Bacteroides
genus, with anomalously low divergence rates between some pairs of hosts. However, we note

that this pattern is not universal: some genera, like Alistipes or Eubacterium, show more uni-

form rates of divergence between hosts. Apart from these phylogenetic correlations, we cannot

yet explain why some species have low-divergence host pairs and others do not. Natural candi-

dates such as sample size, abundance, vertical transmissibility [33], or sporulation score [58]

struggle to explain the differences between Bacteroides and Alistipes species.

Closely related strains have distinct signatures of natural selection

We next examined how natural selection influences the genetic diversity observed between

hosts. Previous work has suggested that genetic diversity in many species of gut bacteria is

strongly constrained by purifying selection, which purges deleterious mutations that accumu-

late between hosts [31]. However, the temporal dynamics of this process remain poorly under-

stood. We do not know whether purifying selection acts quickly enough to prevent deleterious

mutations from spreading to other hosts, or if deleterious mutations typically spread across

multiple hosts before they are purged. In addition, it is plausible that the dominant mode of

natural selection could be different for the closely related strains above (e.g., if they reflect

recent ecological diversification [15]).

To address these questions, we analyzed the relative contribution of synonymous and non-

synonymous mutations that comprise the overall divergence rates in Fig 2A. We focused on

the ratio between the per-site divergence at nonsynonymous sites (dN) and the corresponding

value at synonymous sites (dS). Under the assumption that synonymous mutations are effec-

tively neutral, the ratio dN/dSmeasures the average action of natural selection on mutations at

nonsynonymous sites.

In Fig 3, we plot these dN/dS estimates across every pair of QP hosts for each of the prevalent

species in Fig 2A. The values of dN/dS are plotted as a function of dS, which serves as a proxy

for the average divergence time across the genome. We observe a consistent negative relation-

ship between these two quantities across the prevalent species in Fig 2.

For large divergence times (dS~1%), we observe only a small fraction of nonsynonymous

mutations (dN/dS~0.1), indicating widespread purifying selection on amino acid replacements

[31]. Yet, among more closely related strains, we observe a much higher fraction of nonsynon-

ymous changes, with dN/dS approaching unity when dS~0.01% (we observe a similar trend if
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we restrict our attention to singleton SNVs, S12 Fig). Moreover, this negative relationship

between dN/dS and dS is much more pronounced than the between-species variation in the typ-

ical values of dN/dS (black crosses in Fig 3). While between-species variation may be driven by

mutational biases, the strong within-species signal indicates that there are consistent differ-

ences in the action of natural selection as a function of time.

In principle, the dN/dS increases in the recent past could be driven by interesting biological

processes, such as enhanced adaptation or ecological diversification on short timescales, or a

recent global shift in selection pressures caused by host-specific factors (e.g., the introduction

of agriculture). However, the data in Fig 3 appear to be well explained by an even simpler null

model of purifying selection, in which deleterious mutations are purged over a timescale

inversely proportional to their cost (S1D Text). This dynamical model can explain the varying

signatures of natural selection without requiring that the selective pressures themselves vary

over time. We find reasonable quantitative agreement for a simple distribution of fitness

effects, in which 10% of nonsynonymous sites are neutral and the remaining 90% have fitness

costs on the order of s/μ~105. Although the true model is likely more complicated, we argue

that this simple null model should be excluded before more elaborate explanations are

considered.

For example, unambiguous proof of recent adaptation could be observed if dN/dS consis-

tently exceeded 1 among the most closely related strains (because this can only occur by

chance under purifying selection). While a few of the individual comparisons in Fig 3A have

Fig 3. Signatures of selective constraint within species as a function of core-genome divergence. Ratio of divergence at

nondegenerate nonsynonymous sites (dN) and 4-fold degenerate synonymous sites (dS) as a function of dS (S1D Text) for all

species × host1 × host2 combinations in Fig 2 (gray circles). Crosses (x) denote species-wide estimates obtained from the ratio of the

median dN and dS within each species. The red line denotes the theoretical prediction from the purifying selection null model in S1D

Text. Inset shows the ratio between the cumulative private dN and dS values for all quasi-phaseable host pairs with core-genome-wide

synonymous divergence less than dS. The narrow shaded region denotes 95% confidence intervals estimated by Poisson resampling

(S1D Text), which shows that dN/dS≲1, even for low dS.

https://doi.org/10.1371/journal.pbio.3000102.g003
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dN/dS>1, the cumulative version in Fig 3B shows that dN/dS does not significantly exceed 1,

even for the lowest values of dS. This suggests that, if positive selection is present, it is not suffi-

ciently widespread to overpower the signal of purifying selection in these global dN/dSmea-

surements. However, there is also substantial variation around the average trend in Fig 3,

which could hide important biological variation among species (or among different genomic

regions in the same species). Resolving the signatures of natural selection at these finer scales

remains an important avenue for future work.

Quasi-sexual evolution on intermediate timescales. In principle, the large range of

genome-wide divergence in Figs 2 and 3 could arise in a model with strong population struc-

ture, in which all but the most closely related strains are genetically isolated from each other

[59]. Such isolation can be driven by geography as well as ecological diversification [15]. Here,

we leverage our quasi-phasing approach to show that genetic isolation cannot account for the

patterns in Figs 2 and 3. Instead, we find that the core genomes of many prevalent gut bacterial

species evolve in a "quasi-sexual" manner [16], with frequent genetic exchange among individ-

ual strains.

Recombination alters the genealogical relationships between strains in different portions

of the genome [52]. We therefore sought evidence for recombination by searching for incon-

sistencies between the genealogies encoded in individual SNVs and those encoded in the

genome-wide divergences in Fig 2. To do so, we developed an approach for directly quantify-

ing phylogenetic inconsistency between individual SNVs and the pairwise divergence distribu-

tion in Fig 2B, without requiring a full genealogical reconstruction (S13 Fig, S1E Text, part i).

This method also provides an estimate of the maximum age of each SNV (in divergence units),

assuming purely clonal evolution. By combining these estimates, we quantified the inconsis-

tency of SNVs in each species as a function of time (Fig 4A).

An illustrative example is again provided by B. vulgatus. At the highest divergence values,

we observe little phylogenetic inconsistency for this species (Fig 4A), consistent with the strong

population structure suggested by Fig 2B and previous subspecies analyses [36]. For intermedi-

ate values of divergence, in contrast, we find that a large majority of all SNVs are inconsistent

with the genome-wide divergence estimates. Similarly high values of inconsistency are

observed in most of the other species as well (Fig 4A).

While these signals are suggestive of recombination, phylogenetic inconsistencies can also

arise from purely clonal mechanisms (e.g., recurrent mutation), or from statistical uncertain-

ties in the genome-wide tree. We therefore sought additional evidence of recombination by

examining how phylogenetic inconsistency varies for pairs of SNVs in different locations

in the genome. We quantified phylogenetic inconsistency between pairs of SNVs using a

standard measure of linkage disequilibrium (LD), defined by the ratio of averages s2
d ¼ E

½ðfAB � fAfBÞ
2
�=E½fAð1 � fAÞfBð1 � fBÞ�, with an unbiased estimator to control for varying sam-

ple size (S1F Text). The overall magnitude of s2
d is not directly informative of recombination,

because it also depends on demographic factors, the extent of recurrent mutation, etc. How-

ever, if the relative values of s2
d consistently decrease for SNVs that are separated by greater

genomic distances, then we can conclude that recombination, rather than recurrent mutation,

is responsible for the phylogenetic inconsistency that we observe [60].

With traditional metagenomic approaches, it is difficult to measure LD between SNVs

unless they co-occur on the same sequencing read. By focusing on QP samples, we can now

estimate s2
d between SNVs that are separated by greater distances along the reference genome.

However, because the synteny of individual lineages may differ substantially from the refer-

ence genome, we only assigned coordinate distances (‘) to pairs of SNVs in the same gene,

which are more likely to be nearby in the genomes in other samples; all other pairs of SNVs are

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 11 / 29

https://doi.org/10.1371/journal.pbio.3000102


Fig 4. Recombination between strains across hosts. (A) Phylogenetic inconsistency between individual single nucleotide variants (SNVs) and core-genome-

wide divergence for each of the species in Fig 2. The fraction of inconsistent SNVs is plotted for all 4-fold degenerate synonymous SNVs in the core genome

with estimated age�d (S1E Text, part i). Singleton SNVs are excluded, because inconsistency can only be assessed for SNVs with�2 minor alleles. (B, inset)

Linkage disequilibrium (LD) (s2
d) as a function of distance (‘) between pairs of 4-fold degenerate synonymous sites in the same core gene (S1F Text). Individual

data points are shown for distances<100 bp, while the solid line shows the average in sliding windows of 0.2 log units. The gray line indicates the values

obtained without controlling for population structure, while the blue line is restricted to the largest top-level clade (S2 Table, S1E Text, part ii). The solid black

line denotes the neutral prediction from S1F Text; the only free parameters in this model are vertical and horizontal scaling factors, which have been shifted to

enhance visibility. For comparison, the core-genome-wide estimate for SNVs in different genes is depicted by the dashed line and circle. (B) Summary of LD in

the largest top-level clade for all species with�10 quasi-phaseable hosts. Species are sorted phylogenetically as in Fig 2B. For each species, the three dashes
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grouped together in a single category ("core-genome-wide"). We then estimated s2
d as a func-

tion of ‘ for each of these distance categories (S1F Text) and analyzed the shape of this

function.

As an example, the inset of Fig 4B illustrates the estimated values of s2ð‘Þ for synonymous

SNVs in the core genome of B. vulgatus; similar curves are shown for several other species in

S15 Fig. As anticipated by our analysis in Fig 4A, it is crucial to account for the presence of

strong population structure. LD among all samples decays only slightly with ‘, as expected

from a mixture of genetically isolated subpopulations. However, if we restrict our attention to

the lineages in the largest subpopulation, we observe a pronounced decay in LD. To account

for these confounding effects, we manually annotated top-level clades for each species using

the genome-wide divergence distribution (S1E Text, part ii) using standard criteria for identi-

fying ecotype clusters [36, 61, 62].

In Fig 4B, we plot summarized versions of the s2ð‘Þ curves across a panel of about 40 preva-

lent species. In almost all cases, we find that core-genome-wide LD is significantly lower than

for pairs of SNVs in the same core gene, suggesting that much of the phylogenetic inconsis-

tency in Fig 2 is caused by recombination. Qualitatively similar results are obtained if we

repeat our analysis using isolate genomes from some of the more well-characterized species

(S16 Fig, S1G Text). In principle, signatures of recombination between genes could be driven

by the exchange of intact operons or other large clusters of genes (e.g., on an extra-chromo-

somal plasmid). However, Fig 4 and S16 Fig also show a significant decay in LD within indi-

vidual genes, suggesting a role for homologous recombination within genes as well.

The magnitude of the decay of LD within core genes is somewhat less than has been

observed in other bacterial species [16] and only rarely decays to genome-wide levels by the

end of a typical gene. Moreover, by visualizing the data on a logarithmic scale, we see that the

shape of s2
dð‘Þ is inconsistent with the predictions of the neutral model (Fig 4A), decaying

much more slowly with ‘ than the� 1=‘ dependence expected at large distances [63]. Thus,

while we can obtain rough estimates of r/μ by fitting the data to a neutral model (which gener-

ally support 0.1≲r/μ≲10, see S17 Fig), these estimates should be regarded with caution because

they vary depending on the length scale on which they are measured (S1F Text). This suggests

that new theoretical models will be required to fully understand the patterns of recombination

that we observe.

Short-term succession within hosts

So far, we have focused on evolutionary changes that accumulate over many host colonization

cycles. In principle, evolutionary changes can also accumulate within hosts over time. Longitu-

dinal studies have shown that strains and metagenomes sampled from the same host are more

similar to each other on average than to samples from different hosts [31, 33, 35, 44, 64, 65].

This suggests that resident populations of bacteria persist within hosts for at least a year

(approximately 300 to 3,000 generations), which is potentially enough time for evolutionary

adaptation to occur [7]. However, the limited resolution of previous polymorphism- [31] or

consensus-based comparisons [35, 44] has made it difficult to quantify the individual changes

that accumulate within hosts and to interpret these changes in an evolutionary context.

Within-host dynamics reflect a mixture of replacement and modification. To address

this issue, we focused on the species in longitudinally sampled HMP subjects that were QP at

denote the value of s2
dð‘Þ for intragenic distances of ‘ ¼ 9, 99, and 2,001 bp, respectively, while the core-genome-wide values are depicted by circles. Points

belonging to the same species are connected by vertical lines for visualization.

https://doi.org/10.1371/journal.pbio.3000102.g004
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consecutive time points. This yields a total of 801 resident populations (host × species × time

point pairs) across 45 of the most prevalent species (S8 Fig). Our calculations show that the

false positives caused by sampling noise should be sufficiently rare that we can resolve a single

nucleotide difference between two of these time points in a genome-wide scan (S1C Text, part

iv). In contrast to existing reference-based approaches, we have also imposed additional filters

to minimize false positives from mapping artifacts (S1A Text).

We first examined the SNV differences that accumulated within each resident population

over time. We considered SNVs in both core and accessory genes on the reference genome,

because the latter are plausibly enriched for host-specific targets of selection [66]. Consistent

with previous work [31, 44], the average number of within-host differences is about 100-fold

smaller than the average number of differences between unrelated hosts (S19 Fig). However, the

within-host changes are distributed across the different resident populations in a highly skewed

manner (Fig 5 and S20 Fig). Visualized on a logarithmic scale, the data reveal a striking multi-

modal pattern, suggesting that the within-host differences arise from two separate processes.

Most of the resident populations did not have any detectable SNV differences over the

roughly 6-month sampling window (i.e., the median is zero). Yet, in a small minority of cases

(3%), the resident populations accumulated several thousand mutations, comparable to the

typical number of differences between hosts (Fig 5A). This is consistent with previous notions

of strain replacement [35], in which the dominant resident strain is succeeded by an effectively

unrelated strain from the larger metapopulation. This operational definition includes both the

invasion of a new strain (e.g., from other hosts or body sites) or a sudden rise in frequency of a

previously colonized strain that had been segregating at low frequency.

In addition to rare replacement events, a larger fraction of resident populations in Fig 5A

(about 10% of the total) have a moderate number of SNV differences (on the order of 20 or

fewer). We will refer to these as modification events, in order to distinguish them from the

replacement events above. In contrast to replacements, modifications preserve most of the

genetic information in a lineage when a new genetic change is added. This is true at the level of

nucleotide divergence but also for gene content (Fig 5B) and the sharing of private marker

SNVs (S11 Fig). We therefore hypothesize that the modification events in Fig 5 reflect heritable

evolutionary changes that have risen to high frequency within the host.

The fact that these Oð1Þ frequency changes occur within 6-month timescales already pro-

vides some information about their possible evolutionary causes. For example, if the frequency

changes were caused by genetic drift, the effective population size would have to be as small as

Ne~200λ, where λ is the number of generations that take place per day (λ≲20). These numbers

are difficult to reconcile with the large census sizes of many gut bacteria (N≳109 [67, 68])

unless extreme population bottlenecks have occurred. On the other hand, if the frequency

changes were caused by natural selection, then the corresponding fitness benefits must be at

least S~1% per day. Even in this case, however, the observed SNVs may not be the direct tar-

gets of selection themselves: given the limitations of our reference-based approach, and our

aggressive filtering scheme, the observed mutations may simply be passengers that are linked

to an unseen selected locus.

To further probe the dynamics of within-host evolution, we therefore pooled the 248 SNV

differences observed across the 75 modification events in our cohort, and we stratified them

according to two additional criteria. We first partitioned the SNVs according to how prevalent

the sweeping allele was among the other hosts in our cohort (Fig 5C and S21 Fig). By compar-

ing this distribution against the null expectation for randomly selected sites, we find that there

are significantly more intermediate- and high-prevalence mutations than expected for random

de novo mutations (P<10−4, S1H Text, part i). One potential explanation for this signal could

be parallel evolution [69], e.g., if the same strongly beneficial mutations independently arose
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and fixed in different hosts. However, we can rule out this recurrent sweep hypothesis by fur-

ther partitioning the SNVs into synonymous and nonsynonymous mutations (Fig 5C). The

relative fractions of the two types are distributed across the different prevalence classes in a

highly nonuniform manner (P<10−4, S1H text, part ii). Among rare alleles (<1% prevalence),

we observe an excess of nonsynonymous mutations [dN/dS�1.3 (0.8,2.4)], consistent with posi-

tive selection and/or hitchhiking. By contrast, nonsynonymous mutations are depleted and

synonymous mutations enriched for alleles with intermediate prevalence (0.1<f<0.9), pre-

cisely where the recurrent sweep hypothesis requires the strongest selection pressures. These

low values (dN/dS�0.1) are surprising even for pure passenger mutations, because purifying

selection should be rendered inefficient over these short timescales [70], similar to what we

observed in Fig 3.

Fig 5. Within-host changes across prevalent species of gut bacteria. (a) Within-host nucleotide differences over 6-month timescales. The blue line shows the

distribution of the number of single nucleotide variant (SNV) differences between consecutive quasi-phaseable (QP) time points for different combinations of

species, host, and nonoverlapping time interval (if more than two samples are available) for the 45 prevalent species in S20 Fig. The distribution of the number of

sites tested in each comparison is shown in S18 Fig. For comparison, the red line shows a matched distribution of the number of SNV differences between each

initial time point and a randomly selected Human Microbiome Project host, and the purple line shows the distribution of the number of SNV differences between

QP lineages in pairs of adult twins. The shaded regions indicate replacement events (light red, 3% of all within-host comparisons), modification events (light blue,

9% of within-host comparisons), and no detected changes (gray, 88% of within-host comparisons); these ad hoc thresholds were chosen to be conservative in calling

modifications. (B) Within-host gene content differences (gains + losses). The blue lines show the distribution of the number of gene content differences within hosts

for the samples in (A), with the putative modifications highlighted in light blue, the putative replacements highlighted in light red, and the samples with no SNV

changes highlighted in gray. The distribution of the number of genes tested in each comparison is shown in S18 Fig. For comparison, the corresponding between-

host and twin distributions are shown as in (A). (C) The total number of nucleotide differences at nondegenerate nonsynonymous sites (1D), 4-fold degenerate

synonymous sites (4D), and other sites (2D and 3D) aggregated across the modification events in (A). Sites are stratified based on their prevalence across hosts (S1H

Text). For comparison, the gray bars indicate the expected distribution for random de novo mutations (S1H text, part i). (D) The total number of gene loss and gain

events among the gene content differences in (B), stratified by the prevalence of the gene across hosts. The de novo expectation for gene losses is computed as in (C);

by definition, there are no de novo gene gains.

https://doi.org/10.1371/journal.pbio.3000102.g005
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Together, these observations suggest an alternate hypothesis, in which some of the within-

host sweeps are driven by much older DNA fragments that were acquired through recombina-

tion. This could explain the intermediate prevalence of some sweeping alleles, because stand-

ing variants can arrive through recombination. It can also explain their low dN/dS values,

because there is more time for deleterious mutations to be purged (and for synonymous muta-

tions to accumulate) before the fragment is transferred.

Consistent with this hypothesis, we also found evidence for a small number of gene content

differences between the two time points in many of the non-replacement samples (Fig 5B).

Gene content differences were twice as likely to occur in populations in which we observed

one or more SNV differences (P�0.025, Fisher exact test), although the overall rates are still

modest under our current filtering criteria (about 10%). We observed a roughly equal contri-

bution from gains and losses (Fig 5D). The gene losses could be consistent with simple clonal

processes (e.g., a large deletion mutation) as well as recombination (e.g., if the incorporated

homologous fragment lacks the gene in question). Gene gains, on the other hand, must either

reflect a recombination event or a more complex sweep involving the sudden decline of a pre-

viously successful deletion. The genes that are gained and lost tend to be drawn from the acces-

sory portion of the genome (Fig 5D and S21 Fig), consistent with the expectation that these

genes are more likely to be gained or lost over time.

Replacement dominates over longer within-host timescales. The successional dynamics

in the HMP cohort raise a number of questions about how these dynamics play out over longer

timescales. For example, does the probability of a replacement accumulate uniformly with

time, so that we would expect most strains to be replaced after 20 years? Or are replacements

concentrated in a few replacement-prone individuals, with a negligible rate among the larger

population? Alternatively, do resident populations eventually acquire enough evolutionary

changes that they become so well adapted the host that replacements become less likely to

succeed?

To fully address these questions, we would require a large longitudinal cohort with meta-

genomes collected over a period of decades. However, we can approximate this design in a

crude way by comparing metagenomes collected from a cohort of about 200 adult twins from

the TwinsUK project [45]. Comparisons of younger twins suggest that they may be colonized

by nearly identical strains in childhood [46] (S22 Fig). By comparing QP samples in adult

twins, we can therefore gain insight into the changes that have occurred in the 20–40 years

that the hosts have spent in separate households.

The numbers of SNV and gene changes between the resident populations in each twin pair

are illustrated in Fig 5A and 5B. We observe striking departures from the within-host distribu-

tion: while 3% of the resident populations experienced a replacement event on 6-month time-

scales in the HMP study, more than 90% of the resident populations in twins have more than

1,000 SNV differences between them. Compared with the modification events we observed in

the HMP study, these highly diverged twin strains have much lower rates of private marker

SNV sharing (S11 Fig), along with a higher proportion of SNVs with intermediate prevalence

(S23 Fig). Together, these lines of evidence suggest that the highly diverged strains in twins are

true replacement events, rather than an accumulation of many evolutionary changes. The 16

resident populations with fewer than 1,000 SNV differences were scattered across 13 twin

pairs. All had at least one SNV or gene difference between the twins (median 29 SNVs and 1.5

genes), which is significantly higher than the within-host distribution from the HMP cohort.

However, a larger sample size is required to determine what fraction of these SNVs accumu-

lated since colonization.

Together, these data suggest that a vast majority of the resident populations have experi-

enced a replacement over the 20–40 years that their hosts have spent in different households.
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This observation is consistent with a straightforward extrapolation of the short-term estimates

from the HMP cohort, which predicts that replacement should dominate over modification in

a typical population after about 20 years. In other words, replacement is not confined to a few

special hosts but will eventually occur for most (Western) individuals given enough time. This

suggests that the potential benefits of local adaptation do not compound indefinitely.

The high prevalence of twin replacements also provides insight into the two replacement

mechanisms described in the previous section. If replacements are primarily drawn from a set

of strains that colonized both twins during childhood, then the replacement probability should

saturate at 1−1/nc, where nc is the number of colonizing strains. The observed replacement

probability of 90% would then imply that the number of low-frequency colonizing strains for

each species must be as large as nc~10, or that most of the replacements are caused by the inva-

sion of new strains that arrive after initial colonization. It will be interesting to test these alter-

native mechanisms with deeper sequencing and longer time courses.

Discussion

Evolutionary processes can play an important role in many microbial communities. Yet,

despite increasing amounts of sequence data, our understanding of these processes is often

limited by our ability to resolve evolutionary changes in populations from complex communi-

ties. In this work, we quantify the evolutionary forces that operate within bacteria in the

human gut microbiome by characterizing in detail the lineage structure of approximately 40

species in metagenomic samples from individual hosts.

Building on previous work [35] and others, we found that many resident populations from

a variety of prevalent species are best described by an "oligo-colonization" model, in which a

few distinct strains from the larger population are present at intermediate frequencies, with

the identities and frequencies of these strains varying from person to person (Fig 1). The distri-

bution of strain frequencies in this oligo-colonization model is itself quite interesting: in the

absence of fine tuning, it is not clear what mechanisms would allow for a second or third strain

to reach intermediate frequency, while preventing a large number of other lineages from enter-

ing and growing to detectable levels at the same time. A better understanding of the coloniza-

tion process and how it might vary among the species in Fig 1F is an important avenue for

future work.

Given the wide variation among species and hosts, we chose to focus on a subset of samples

with particularly simple strain mixtures for a given species, in which we can resolve evolution-

ary changes in the dominant lineage with a high degree of confidence. Our quasi-phasing

approach can be viewed as a refinement of the consensus approximation employed in earlier

studies [4, 35, 37, 38] but with more quantitative estimates of the errors associated with detect-

ing genetic differences between lineages in different samples.

By analyzing genetic differences between lineages in separate hosts, we found that long-

term evolutionary dynamics in many gut bacteria are consistent with quasi-sexual evolution

and purifying selection, with relatively weak geographic structure. Earlier work had docu-

mented extensive horizontal transfer between distantly related species in the gut [71, 72], but

our ability to estimate rates of recombination within species was previously limited by the

small number of sequenced isolates for many species of gut bacteria [73]. The high rates of

homologous recombination we observed with our quasi-phasing approach are qualitatively

consistent with previous observations in other bacterial species [16, 73–77]; although the rates

of recombination are high relative to the typical divergence time, we note that they may still

allow for genome-wide sweeps or divergence between nascent ecotypes given sufficiently

strong selection pressures. Beyond the overall rates, our quantitative characterization of LD
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also revealed interesting departures from the standard neutral prediction that cannot be cap-

tured by any choice of recombination rate. Understanding the origin of this discrepancy is an

interesting topic for future work. It is also interesting to ask how these long-term rates of

recombination could emerge from the oligo-colonization model above, because it would seem

to limit opportunities for genetic exchange among strains of the same species.

In a complex community like the gut, a key advantage of our metagenomic approach is that

it can jointly measure genetic differences in multiple species for the same pair of hosts. By

leveraging this feature, we found that previous observations of highly similar strains in differ-

ent hosts [35, 44] are not driven by cryptic host relatedness. Instead, the presence of these

closely related strains and the genetic differences that accumulate between them may be driven

by more general population genetic processes in bacteria that operate on timescales much

shorter than the typical coalescent time across hosts. It is difficult to produce such closely

related strains in traditional population genetic models of loosely linked loci [78] (or "bags of

genes" [79]), although recent hybrid models of vertical and horizontal inheritance [77, 80] or

fine-scale ecotype structure [62] could potentially provide an explanation for this effect. Fur-

ther characterization of these short-term evolutionary processes will be vital for current efforts

to quantify strain sharing across hosts [33, 46, 56], which often require implicit assumptions

about how genetic changes accumulate on short timescales. Our results suggest that these

short-term dynamics of across-host evolution may not be easily extrapolated by comparing

average pairs of strains.

The other main advantage of our quasi-phasing approach is its ability to resolve a small

number of evolutionary changes that could accumulate within hosts over short timescales. Pre-

vious work has shown that on average, longitudinally sampled metagenomes from the same

host are more similar to each other than metagenomes from different hosts [31, 33, 64, 65],

and that some within-host changes can be ascribed to replacement by distantly related strains

[35, 44]. However, the limited resolution of previous polymorphism- [31] or consensus-based

comparisons [35, 44] had made it difficult to determine whether resident strains also evolve

over time.

Our quasi-phasing approach overcomes this limitation, enabling finely resolved estimates

of temporal change within individual species in individual hosts. This increased resolution

revealed an additional category of within-host variation, which we have termed modification,

in which resident strains acquire modest numbers of SNV and gene changes over time. This

broad range of outcomes shows why it is essential to understand the distribution of temporal

variation across hosts: even though modification events were about 3 times more common

than replacements in our cohort, their contributions to the total genetic differences are quickly

diluted as soon as a single replacement is included (S19 Fig). As a result, we expect that previ-

ous metagenome-wide [31] or species-averaged [44] estimates of longitudinal variation largely

reflect the rates and genetic differences associated with replacement events, rather than evolu-

tionary changes.

Although we have interpreted modifications as evolutionary events (i.e., mutations to an

existing genome), it is possible that they could also reflect replacement by extremely closely

related strains, as in Fig 2. The present data seem to argue against this scenario: modifications

are not only associated with different patterns of SNV sharing (S11 Fig), but we also observe

significant asymmetries in the prevalence distributions in Fig 5C and 5D that depend on the

temporal ordering of the 2 samples (see Fig 5). This temporal directionality arises naturally in

certain evolutionary models (e.g., the de novo mutation model in Fig 5C), but it is less likely to

emerge from steady-state competition between a fixed set of strains. Unambiguous proof of

evolution could also be observed in a longer time course, because subsequent evolutionary
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changes should eventually accumulate in the background of earlier substitutions. Further

investigation of these nested substitutions remains an interesting topic for future work.

The signatures of the sweeping SNVs, along with the presence of gene gain events, suggest

that some of the within-host sweeps we observed were seeded by recombination, rather than

de novo mutation. In particular, many of the alleles that swept within hosts were also present

in many other hosts, yet their dN/dS values indicated strong purifying selection, consistent with

an ancient polymorphism (Fig 3). Sweeps of private SNVs, by contrast, were associated with a

much higher fraction of nonsynonymous mutations, consistent with adaptive de novo evolu-

tion. Interestingly, we also observe a slight excess of private nonsynonymous mutations

between closely related strains in different hosts (S12 Fig). This suggests that some of the dif-

ferences observed between hosts may reflect a record of recent within-host adaptation.

Recombination-seeded sweeps would stand in contrast to the de novo mutations observed

in microbial evolution experiments [13] and some within-host pathogens [21, 22]. Yet in hind-

sight, it is easy to see why recombination could be a more efficient route to adaptation in a

complex ecosystem like the gut microbiome, given the large strain diversity [42], the high rates

of DNA exchange [71, 72], and the potentially larger selective advantage of importing an exist-

ing functional unit that has already been optimized by natural selection [11]. Consistent with

this hypothesis, adaptive introgression events have also been observed on slightly longer time-

scales in bacterial biofilms from an acid mine drainage system [14], and they are an important

force in the evolution of virulence and antibiotic resistance in clinical settings [81].

While the data suggest that some within-host changes may be seeded by a recombination

event, it is less clear whether ongoing recombination is relevant during the sweep itself. Given the

short timescales involved, we would expect many of the observed sweeps to proceed in an essen-

tially clonal fashion, because recombination would have little time to break up a megabase-sized

genome given the typical rates inferred in S17 Fig. If this were the case, it would provide many

opportunities for substantially deleterious mutations (with fitness costs of order Sd~1% per day)

to hitchhike to high frequencies within hosts [70], thereby limiting the ability of bacteria to opti-

mize to their local environment. The typical fitness costs inferred from Fig 2D lie far below this

threshold and would therefore be difficult to purge within individual hosts. In this scenario, the

low values of dN/dS observed between hosts (as well as the putative introgression events) would

crucially rely on the competition process across hosts [82]. Although the baseline recombination

rates suggest clonal sweeps, there are also other vectors of exchange (e.g., transposons, prophage,

etc.) with much higher rates of recombination. Such mechanisms could allow within-host sweeps

to behave in a quasi-sexual fashion, preserving genetic diversity elsewhere in the genome. These

sweeps of local genomic regions are predicted in certain theoretical models [83, 84] and have been

observed in a few other bacterial systems [15, 17, 85]. If sweeps of local genomic regions were also

a common mode of adaptation in the gut microbiome, they would allow bacteria to purge delete-

rious mutations more efficiently than in the clonal scenario above.

Although evolution was more common than replacement on 6-month timescales, our anal-

ysis of adult twins suggests that the rare replacement events eventually dominate on multi-

decade timescales. This suggests that resident strains are limited in their ability to evolve to

become hyper-adapted to their host, because most strains were eventually susceptible to

replacement. Such behavior would be consistent with theoretical models in which strains of

the same species only partially overlap in their ecological niches [27, 54]. Although our results

indicate that the long-term probability of replacement is largely uniform across hosts, it

remains an open question whether these events occur more or less uniformly in time or

whether they occur in punctuated bursts during major ecosystem perturbations (e.g., antibi-

otic treatment). This would be an interesting question to address with denser and longer time

series data.

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 19 / 29

https://doi.org/10.1371/journal.pbio.3000102


Finally, while we have identified many interesting signatures of within-host adaptation,

there are several important limitations to our analysis. One class concerns the events that we can-

not observe with our approach (i.e., false negatives). These are particularly relevant here, because

we have discarded substantial amounts of data in an attempt to overcome the traditional problems

of metagenomic inference (S24 Fig). For example, our reference-based method only tracks SNVs

and gene copy numbers in the genomes of previously sequenced isolates of a given species. Within

this subset, we have also imposed a number of stringent bioinformatic filters, further limiting the

sequence space that we consider. Thus, it is likely that we are missing many of the true targets of

selection, which might be expected to be concentrated in the host-specific portion of the micro-

biome, multi-copy gene families, or in genes that are shared across multiple prevalent species. A

further limitation is that we can only analyze the evolutionary dynamics of QP samples (although

the consistency of our results for species with different QP fractions suggests that this might not

be a major issue). Finally, a potentially more important false negative is that our current method

can only identify complete or nearly complete sweeps within individual hosts. While we observed

many within-host changes that matched this criterion, we may be missing many other examples

of within-host adaptation in which variants do not completely fix. Given the large population

sizes involved, such sweeps can naturally arise from phenotypically identical mutations at multiple

genetic loci [69, 86], or through additional ecotype partitioning between the lineages of a given

species [23, 25]. Both mechanisms have been observed in experimental populations of Escherichia
coli adapting to a model mouse microbiome [7].

In addition to these false negatives, the other limitation of our approach concerns potential

false positives inherent in any metagenomic analysis. With short-read data, it is difficult to

truly know whether a paticular DNA fragment is linked to a particular species or whether it

resides in the genome of another species (perhaps an uncultured one) that is fluctuating in

abundance. False SNV and gene changes can therefore occur because of these read donating

effects. The temporally asymmetric prevalence distributions in Fig 5C and 5D suggest that our

filters were successful in eliminating many of these events (S1H Text, part iii). However, isolate

or long-read sequences are required to unambiguously prove that these variants are linked to

the population of interest.

Fortunately, two concurrent studies have also documented short-term evolution of gut bac-

teria within healthy human hosts using an isolate-based approach [87, 88]. Each study focused

on a single bacterial species, E. coli in [87] and B. fragilis in [88]. Although E. coli was not suffi-

ciently abundant in our cohort to be included in our within-host analysis, the observations in

B. fragilis are largely consistent with our findings that within-host evolution can be rapid and

that it can be mediated by recombination in addition to new mutations. Crucially, because

these observations were obtained using an isolate-based approach, they are not subject to the

same methodological limitations described above, and they therefore serve as an independent

verification of our results. However, because our statistical approach provides simultaneous

observations across more than 40 prevalent species, our results show that these general pat-

terns of within-host evolution are shared across many species of gut bacteria, and they demon-

strate a general approach for investigating these forces in widely available metagenomic data.

Future efforts to combine metagenomic- and isolate-based approaches, e.g., by incorporating

long-range linkage information [41, 89, 90], will be crucial for building a more detailed under-

standing of these evolutionary processes.
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S1 Fig. Example within-host allele frequency distributions for 24 additional species (1/2).

Analogous versions of Fig 1A–1D for 24 additional species from Fig 1F. For each species, 6
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randomly chosen non–quasi-phaseable samples are plotted.

(PDF)

S2 Fig. Example within-host allele frequency distributions for 24 additional species (2/2).

This figure is a continuation of S1 Fig.

(PDF)

S3 Fig. Rates of within-host polymorphism for 24 additional species. Analogous versions of

Fig 1E for the 24 species in S1 Fig and S2 Fig.

(PDF)

S4 Fig. Schematic depiction of phasing and substitution errors. (a) An example of a haplo-

type phasing error, in which an allele with true within-host frequency f [drawn from a hypo-

thetical genome-wide prior distribution, p0(f), blue] is observed with a sample frequency f̂ ,
with the opposite polarization. (b) An example of a falsely detected nucleotide substitution

between 2 samples, in which an allele with true frequency f1 = f2 = f [drawn from a hypothetical

genome-wide null distribution, p0(f), blue] is observed with a sample frequency f̂ 1 < 20% in

one sample and f̂ 2 > 80% in another. Allele frequency pairs that fall in the pink region are

counted as nucleotide differences between the 2 samples, while pairs in the gray shaded region

are counted as evidence for no nucleotide difference; all other values are treated as missing

data.

(PDF)

S5 Fig. Average genetic distance between B. vulgatus metagenomes. (a) The fraction of

4-fold degenerate synonymous sites in the core genome that have major allele frequencies

�80% and differ in a randomly selected sample (see S1C Text for a formal definition). (b) The

corresponding rate of intermediate-frequency polymorphism for each sample, reproduced

from Fig 1B. In both panels, samples are plotted in the same order as in Fig 1B.

(PDF)

S6 Fig. Correlation between within-host diversity and the fraction of non–quasi-phaseable

(QP) samples per species. Circles denote the average rate of within-host polymorphism (as

defined in Fig 1E) for each species as a function of the fraction of non-QP samples in that spe-

cies.

(PDF)

S7 Fig. Distribution of the number of quasi-phaseable (QP) species per sample. Left: the

distribution of the fraction of QP species per sample (blue line). The gray line denotes the cor-

responding null distribution obtained by randomly permuting the QP classifications across

the samples. We conclude that QP species are not strongly enriched within specific hosts.

Right: the number of species classified as QP in each sample on the left as a function of the

number of species with sufficient coverage in that sample. A small amount of noise is added to

both axes to enhance visibility.

(PDF)

S8 Fig. Distribution of quasi-phaseable (QP) samples in longitudinal samples and adult

twin pairs. Bars show the number of sample pairs for each species that are QP for both sam-

ples (QP!QP), non-QP for both samples (non!non), mixed samples (QP!non or

non!QP), and pairs in which the species did not have sufficient coverage in one of the two

time points (dropout). The left panel shows data from longitudinally sampled individuals in

the Human Microbiome Project cohort [42, 44], while the right panel compares contemporary

samples from pairs of adult twins [45]. Species are ordered in decreasing order of prevalence
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in the HMP cohort. Species are only included if they have at least 10 QP samples and at least 3

QP time point pairs.

(PDF)

S9 Fig. Distribution of estimated gene copy numbers for the 4 samples in Fig 1. The gray

region denotes the copy number range required in at least one sample to detect a difference in

gene content between a pair of samples (see S1C Text, part v).

(PDF)

S10 Fig. Single nucleotide variant (SNV) and gene content differences between closely

related strains. (a) Cumulative distribution of the total number of core genome SNV differ-

ences between closely related strains in Fig 2. (b) Cumulative distribution of the number of

gene content differences for the closely related strains in panel a (red line). For comparison,

the corresponding distribution for all pairs of strains in Fig 2 is shown in black, while the gray

line denotes a “clocklike” null distribution for the closely related strains, which assumes that

genes and SNVs each accumulate at constant rates.

(PDF)

S11 Fig. Private marker single nucleotide variant (SNV) sharing within and between hosts.

Given an ordered pair of quasi-phaseable strains, we define private marker SNVs to be core

genome SNVs that (i) are phaseable in both strains, (ii) have the derived allele in strain 1, and

(iii) do not have the derived allele in any other host outside the pair. The marker sharing frac-

tion p is then defined as the fraction of private marker SNVs that also have the derived allele in

strain 2. (a) Private marker SNV sharing between unrelated hosts. Solid lines show the distri-

bution of marker sharing fraction p between all pairs of strains in Fig 2 (black) and between

the subset of closely related strains (red). Separate sharing fractions are calculated for both

orderings of a given strain pair, and we only include pairs with at least 10 marker SNVs. (b)

Distribution of marker SNV sharing for replacement and modification events in longitudinally

sampled Human Microbiome Project hosts (blue lines), using the replacement and modifica-

tion thresholds in Fig 5A. For comparison, the distribution of marker SNV sharing between

strains in pairs of adult twins is shown in purple. For twins, we use modified definitions of

replacement (>103 SNV differences) and modification (<103 SNV differences). As above,

sharing fractions are only computed for samples with at least 10 marker SNVs.

(PDF)

S12 Fig. Signatures of selective constraint within private single nucleotide variants (SNVs).

An analogous version of Fig 3 computed for private SNVs. For each quasi-phaseable (QP)

species × host combination, dN/dS is computed for the subset of alleles that are not found in

any other hosts. These private dN/dS ratios are plotted as a function of d�S , an estimate of the

minimum synonymous divergence from other QP lineages of that species. The inset shows the

ratio between the cumulative dN and dS values for all lineages with d�S less than the indicated

value. The narrow shaded region denotes 95% confidence intervals estimated by Poisson

resampling. The resampling procedure uses an analogous version of the thinning scheme

employed in Fig 3 to ensure that the x and y axes are statistically independent (see S1D Text).

(PDF)

S13 Fig. Schematic illustration of phylogenetic inconsistency between individual single

nucleotide variants (SNVs) and core-genome-wide divergence. Two examples are shown,

illustrating phylogenetically consistent and inconsistent SNVs, respectively, in a sample of 4

lineages. The lineages at the leaves of each tree are labeled according to whether they have the

major (M) or minor (m) allele. Thunderbolts depict the most parsimonious introduction of
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the derived allele on the genealogy. Different colors indicate the core-genome-wide divergence

between lineages with different combinations of alleles, as described in S1E Text, part i.

Highlighted in purple is dB, which is the minimum divergence between two lineages bearing

different alleles. Highlighted in red and green are dMW and dmW , which are the maximum diver-

gence between individuals bearing the same allele (major and minor, respectively). In practice,

we do not know which allele is ancestral and which is derived, so we define dW ¼ minðdmW ;d
M
WÞ.

If dW�dB, we say that the SNV is phylogenetically inconsistent.

(PDF)

S14 Fig. Top-level clade structure among lineages in different quasi-phaseable hosts. Core-

genome-wide Fst between manually assigned top-level clades in each species (S2 Table, S1E

Text, part ii). Species are only included if there are at least 2 clades with more than 2 individu-

als in each of them.

(PDF)

S15 Fig. Decay of linkage disequilibrium in three example species. Analogous versions of

the insets in Fig 4B for Bacteroides fragilis, Parabacteroides distasonis, and Alistipes shahii.
(PDF)

S16 Fig. Recapitulating patterns of between-host evolution from sequenced isolates. (a) An

analogous version of Fig 2B constructed from the genomes of sequenced isolates in 6 represen-

tative species, as described in S1G Text. (b) An analogous version of Fig 3 constructed from

the pairs of isolate genomes in panel a. (c-h) Analogous versions of Fig 4B inset for the 6 spe-

cies in (a).

(PDF)

S17 Fig. Recombination rate estimates based on the decay of linkage disequilibrium. For

each species, the two dashes represent effective values of r/μ estimated from the neutral predic-

tion for the decay of s2
dð‘Þ, using the half-maximum and quarter-maximum decay lengths (see

S1F Text). The 2 estimates are connected by a vertical line for visualization. The overall rates of

recombination are qualitatively consistent with observations in several other bacterial species

[16, 73–77].

(PDF)

S18 Fig. Distribution of the number of sites (a) and genes (b) tested in each of the within-host

comparisons in Fig 5.

(PDF)

S19 Fig. Average number of single nucleotide variant (SNV) differences within and

between hosts. Blue and red bars denote the average of the within- and between-host distribu-

tions in Fig 5A. Consistent with previous work [31, 44], the within-host average is about

100-fold lower than the between-host average. However, the average is a poor summary of the

typical values in the between-host distribution in Fig 5A. Instead, the within-host average is

well approximated by the product of the typical number of SNV differences per replacement

and the overall fraction of replacement events.

(PDF)

S20 Fig. Comparable rates of within-host single nucleotide variant (SNV) and gene

changes across prevalent species. Summary of within-host SNV changes (top) and gene

changes (bottom) across all species with at least 10 quasi-phaseable samples and at least 3 pairs

of longitudinal QP samples. Each row in each bar represents a different longitudinal pair from

the Human Microbiome Project cohort, and rows are colored according to the total number of
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SNV changes (top) and gene changes (bottom), with gray indicating no detected changes. A

star indicates that the total number of non-replacement changes is�10 times the total esti-

mated error rate across samples from that species (see S1C Text, part iv, and S1C Text, part v),

in which replacements are defined as in Fig 5.

(PDF)

S21 Fig. Prevalence distributions of within-host single nucleotide variant and gene content

differences without binning. (a) The empirical survival function for the raw prevalence values

in Fig 5C. For comparison, the gray line shows the time-reversal symmetric version described

in S1H Text, part iii. (b) Empirical prevalence distributions for synonymous (1D) and nonsy-

nonymous (4D) differences in Fig 5C. (c) Empirical prevalence distributions for gene gains

and losses in Fig 5D.

(PDF)

S22 Fig. Single nucleotide variant and gene content differences between younger twins.

Light purple lines denote analogous versions of Fig 5A and 5B for 4 twin pairs from [46],

which range from about 5 to about 20 years of age. The results are consistent with the original

findings in [46]. For comparison, the dark purple lines reproduce the adult twin distributions

from Fig 5A and 5B. These data show that strains from younger twins are significantly more

similar to each other than strains from adult twins (P<10−4, permutation Kolmogorov–Smir-

nov test [91]).

(PDF)

S23 Fig. Prevalence of single nucleotide variant (SNV) and gene content differences

between adult twins. Analogous versions of Fig 5C and 5D computed using the SNV and

gene content differences observed between all adult twin pairs (purple lines in Fig 5A and 5B).

In contrast to the within-host changes in Fig 5C and 5D, the prevalence distributions and the

relative fraction of nonsynonymous differences between twins are more consistent with

replacement by a distantly related strain.

(PDF)

S24 Fig. Schematic figure illustrating the data discarded at various steps in our pipeline.

(PDF)

S1 Table. Metagenomic samples used in study. We analyzed a total of 1,013 samples from

693 individuals. This included samples from 250 individuals from the Human Microbiome

Project (HMP) [42, 44], 250 individuals from [45], 185 individuals from [43], and 8 individuals

from [46]. Listed are the subject identifiers, sample identifiers, run accessions, country of the

study, continent of the study, visit number, and study (HMP, Xie and colleagues, Korpela and

colleagues, or Qin and colleagues, 2012).

(TXT)

S2 Table. Top-level clade definitions. This table contains the manually defined top-level

clades described in S1E Text, part ii. Rows list the various combinations of species and hosts

plotted in Fig 2 along with their corresponding numeric clade label.

(TXT)

S1 Text. Methods and supplemental information. (A) Metagenomic pipeline. (B) Quantify-

ing within-species diversity in individual samples. (C) Quasi-phasing metagenomic samples.

(D) Population genetic null model of purifying selection for pairwise divergence across hosts.

(E) Phylogenetic inconsistency and clade structure across hosts. (F) Population genetic null

model for the decay of linkage disequilibrium. (G) Validation of between-host patterns using

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 24 / 29

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s021
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s022
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s023
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s024
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s025
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s026
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000102.s027
https://doi.org/10.1371/journal.pbio.3000102


isolate sequences. (H) Quantifying prevalence of within-host single nucleotide variant and

gene changes.

(PDF)

Acknowledgments

We thank S. Wyman for assistance with sample metadata and S. Greenblum, S. Venkataram,

A. Harpak, J. Ladau, I. Cvijović, T. Lieberman, J. Plotkin, and members of the Pollard, Hal-

latschek, and Petrov labs for feedback.

Author Contributions

Conceptualization: Nandita R. Garud, Benjamin H. Good, Oskar Hallatschek, Katherine S.

Pollard.

Data curation: Nandita R. Garud.

Formal analysis: Nandita R. Garud, Benjamin H. Good.

Funding acquisition: Benjamin H. Good, Oskar Hallatschek, Katherine S. Pollard.

Investigation: Nandita R. Garud, Benjamin H. Good.

Methodology: Nandita R. Garud, Benjamin H. Good, Katherine S. Pollard.

Resources: Katherine S. Pollard.

Software: Nandita R. Garud, Benjamin H. Good, Katherine S. Pollard.

Supervision: Oskar Hallatschek, Katherine S. Pollard.

Writing – original draft: Nandita R. Garud, Benjamin H. Good.

Writing – review & editing: Nandita R. Garud, Benjamin H. Good, Oskar Hallatschek,

Katherine S. Pollard.

References
1. David LA, Maurice CF, Carmody RN, Gootenberg DB, et al. Diet rapidly and reproducibly alters the

human gut microbiome. Nature. 2013; 505:559–563. https://doi.org/10.1038/nature12820 PMID:

24336217

2. Seedorf H, Griffin NW, Ridaura VK, Reyes A, et al. Bacteria from Diverse Habitats Colonize and Com-

pete in the Mouse Gut. Cell. 2014; 159:253–266. https://doi.org/10.1016/j.cell.2014.09.008 PMID:

25284151

3. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota.

Nature. 2016; 533:255–259. https://doi.org/10.1038/nature17626 PMID: 27111508

4. Verster AJ, Ross BD, Radey MC, Bao Y, et al. The Landscape of Type VI Secretion across Human Gut

Microbiomes Reveals Its Role in Community Composition. Cell Host & Microbe. 2017; 22:411–419.

5. Bradley PH, Nayfach S, Pollard KS. Phylogeny-corrected identification of microbial gene families rele-

vant to human gut colonization. PLoS Comput Biol. 2018; 14(8):e1006242. https://doi.org/10.1371/

journal.pcbi.1006242 PMID: 30091981

6. Matamouros S, Hayden HS, Hager KR, Brittnacher MJ, Lachance K, Weiss EJ, et al. Adaptation of

commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Pro-

ceedings of the National Academy of Sciences. 2018; p. 201714373.

7. Barroso-Batista J, Sousa A, Lourenço M, Bergman ML, Sobral D, Demengeot J, et al. The first steps of

adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 2014; 10(3):

e1004182. https://doi.org/10.1371/journal.pgen.1004182 PMID: 24603313

8. Barroso-Batista J, Demengeot J, Gordo I. Adaptive immunity increases the pace and predictability of

evolutionary change in commensal gut bacteria. Nature Communications. 2015; 6:8945. https://doi.org/

10.1038/ncomms9945 PMID: 26615893

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 25 / 29

https://doi.org/10.1038/nature12820
http://www.ncbi.nlm.nih.gov/pubmed/24336217
https://doi.org/10.1016/j.cell.2014.09.008
http://www.ncbi.nlm.nih.gov/pubmed/25284151
https://doi.org/10.1038/nature17626
http://www.ncbi.nlm.nih.gov/pubmed/27111508
https://doi.org/10.1371/journal.pcbi.1006242
https://doi.org/10.1371/journal.pcbi.1006242
http://www.ncbi.nlm.nih.gov/pubmed/30091981
https://doi.org/10.1371/journal.pgen.1004182
http://www.ncbi.nlm.nih.gov/pubmed/24603313
https://doi.org/10.1038/ncomms9945
https://doi.org/10.1038/ncomms9945
http://www.ncbi.nlm.nih.gov/pubmed/26615893
https://doi.org/10.1371/journal.pbio.3000102


9. Lescat M, Launay A, Ghalayini M, Magnan M, Glodt J, Pintard C, et al. Using long-term experimental

evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural

isolate in the streptomycin-treated mouse gut. Molecular ecology. 2017; 26(7):1802–1817. https://doi.

org/10.1111/mec.13851 PMID: 27661780

10. Goodman AL, McNulty NP, Zhao Y, Leip D, et al. Identifying Genetic Determinants Needed to Establish

a Human Gut Symbiont in Its Habitat. Cell Host & Microbe. 2009; 6:279–289.

11. Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, et al. Genetic determinants of in vivo fitness and diet

responsiveness in multiple human gut Bacteroides. Science. 2015; 350:aac5992. https://doi.org/10.

1126/science.aac5992 PMID: 26430127

12. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat

Rev Microbiol. 2016; 14:150–162. https://doi.org/10.1038/nrmicro.2015.13 PMID: 26806595

13. Jerison ER, Desai MM. Genomic investigations of evolutionary dynamics and epistasis in microbial evo-

lution experiments. Current Opinion in Genetics & Development. 2015; 35:33–39.

14. Denef VJ, Banfield JF. In Situ Evolutionary Rate Measurements Show Ecological Success of Recently

Emerged Bacterial Hybrids. Science. 2012; 336:462–466. https://doi.org/10.1126/science.1218389

PMID: 22539719

15. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, et al. Population genomics of early events in the

ecological differentiation of bacteria. Science. 2012; 336:48–51. https://doi.org/10.1126/science.

1218198 PMID: 22491847

16. Rosen MJ, Davison M, Bhaya D, Fisher DS. Fine-scale diversity and extensive recombination in a qua-

sisexual bacterial population occupying a broad niche. Science. 2015; 348:1019–1023. https://doi.org/

10.1126/science.aaa4456 PMID: 26023139

17. Bendall ML, Stevens SLR, Chan LK, Malfatti S, et al. Genome-wide selective sweeps and gene-specific

sweeps in natural bacterial populations. The ISME Journal. 2016; 10:1589–1601. https://doi.org/10.

1038/ismej.2015.241 PMID: 26744812

18. Herron MD, Doebeli M. Parallel Evolutionary Dynamics of Adaptive Diversification in Escherichia coli.

PLoS Biol. 2013; 11:e1001490. https://doi.org/10.1371/journal.pbio.1001490 PMID: 23431270

19. Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, et al. Pervasive genetic hitch-

hiking and clonal interference in forty evolving yeast populations. Nature. 2013; 500:571–574. https://

doi.org/10.1038/nature12344 PMID: 23873039

20. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, et al. Tempo and mode of genome

evolution in a 50,000-generation experiment. Nature. 2016; 536:165–170.

21. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, et al. Genetic variation of a bacte-

rial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nature

Genetics. 2014; 46:82–87. https://doi.org/10.1038/ng.2848 PMID: 24316980

22. Zanini F, Brodin J, Thebo L, Lanz C, Bratt G, Albert J, et al. Population genomics of intrapatient HIV-1

evolution. eLife. 2015; 4:e11282. https://doi.org/10.7554/eLife.11282 PMID: 26652000

23. Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. Tangled bank of experimentally evolved Burkhol-

deria biofilms reflects selection during chronic infections. Proc Natl Acad Sci USA. 2013; 110:E250–

E259. https://doi.org/10.1073/pnas.1207025110 PMID: 23271804

24. Xue KS, Stevens-Ayers T, Angela P, Campbell JA, et al. Parallel evolution of influenza across multiple

spatiotemporal scales. eLife. 2017; 6:e26875. https://doi.org/10.7554/eLife.26875 PMID: 28653624

25. Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over

60,000 generations. Nature. 2017; 551(7678):45. https://doi.org/10.1038/nature24287 PMID:

29045390

26. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, et al. Cospeciation of gut microbiota with homi-

nids. Science. 2016; 353:380–382. https://doi.org/10.1126/science.aaf3951 PMID: 27463672

27. Tikhonov M, Monasson R. A collective phase in resource competition in a highly diverse ecosystem.

Phys Rev Lett. 2017; 118:048103. https://doi.org/10.1103/PhysRevLett.118.048103 PMID: 28186794

28. Taillefumier T, Posfai A, Meir Y, Wingreen NS. Microbial consortia at steady supply. eLife. 2017; 6:

e22644. https://doi.org/10.7554/eLife.22644 PMID: 28473032

29. Koskella B, Hall LJ, Metcalf CJE. The microbiome beyond the horizon of ecological and evolutionary

theory. Nat Ecol Evol. 2017; 1(11):1606–1615. https://doi.org/10.1038/s41559-017-0340-2 PMID:

29038487

30. Tikhonov M, Leach RW, Wingreen NS. Interpreting 16S metagenomic data without clustering to

achieve sub-OTU resolution. The ISME journal. 2015; 9(1):68. https://doi.org/10.1038/ismej.2014.117

PMID: 25012900

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 26 / 29

https://doi.org/10.1111/mec.13851
https://doi.org/10.1111/mec.13851
http://www.ncbi.nlm.nih.gov/pubmed/27661780
https://doi.org/10.1126/science.aac5992
https://doi.org/10.1126/science.aac5992
http://www.ncbi.nlm.nih.gov/pubmed/26430127
https://doi.org/10.1038/nrmicro.2015.13
http://www.ncbi.nlm.nih.gov/pubmed/26806595
https://doi.org/10.1126/science.1218389
http://www.ncbi.nlm.nih.gov/pubmed/22539719
https://doi.org/10.1126/science.1218198
https://doi.org/10.1126/science.1218198
http://www.ncbi.nlm.nih.gov/pubmed/22491847
https://doi.org/10.1126/science.aaa4456
https://doi.org/10.1126/science.aaa4456
http://www.ncbi.nlm.nih.gov/pubmed/26023139
https://doi.org/10.1038/ismej.2015.241
https://doi.org/10.1038/ismej.2015.241
http://www.ncbi.nlm.nih.gov/pubmed/26744812
https://doi.org/10.1371/journal.pbio.1001490
http://www.ncbi.nlm.nih.gov/pubmed/23431270
https://doi.org/10.1038/nature12344
https://doi.org/10.1038/nature12344
http://www.ncbi.nlm.nih.gov/pubmed/23873039
https://doi.org/10.1038/ng.2848
http://www.ncbi.nlm.nih.gov/pubmed/24316980
https://doi.org/10.7554/eLife.11282
http://www.ncbi.nlm.nih.gov/pubmed/26652000
https://doi.org/10.1073/pnas.1207025110
http://www.ncbi.nlm.nih.gov/pubmed/23271804
https://doi.org/10.7554/eLife.26875
http://www.ncbi.nlm.nih.gov/pubmed/28653624
https://doi.org/10.1038/nature24287
http://www.ncbi.nlm.nih.gov/pubmed/29045390
https://doi.org/10.1126/science.aaf3951
http://www.ncbi.nlm.nih.gov/pubmed/27463672
https://doi.org/10.1103/PhysRevLett.118.048103
http://www.ncbi.nlm.nih.gov/pubmed/28186794
https://doi.org/10.7554/eLife.22644
http://www.ncbi.nlm.nih.gov/pubmed/28473032
https://doi.org/10.1038/s41559-017-0340-2
http://www.ncbi.nlm.nih.gov/pubmed/29038487
https://doi.org/10.1038/ismej.2014.117
http://www.ncbi.nlm.nih.gov/pubmed/25012900
https://doi.org/10.1371/journal.pbio.3000102


31. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape

of the human gut microbiome. Nature. 2013; 493:45–50. https://doi.org/10.1038/nature11711 PMID:

23222524

32. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial

community profiling using unique clade-specific marker genes. Nature methods. 2012; 9(8):811. https://

doi.org/10.1038/nmeth.2066 PMID: 22688413

33. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain

profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;

26:1612–1625. https://doi.org/10.1101/gr.201863.115 PMID: 27803195

34. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and

population genomics from shotgun metagenomics. Nature methods. 2016; 13(5):435. https://doi.org/

10.1038/nmeth.3802 PMID: 26999001

35. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and

genetic diversity from metagenomes. Genome Res. 2017; 27:626–638. https://doi.org/10.1101/gr.

216242.116 PMID: 28167665

36. Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta-Cepas J, Forslund K, et al. Subspecies in the

global human gut microbiome. Mol Syst Biol. 2017; 13(12):960. https://doi.org/10.15252/msb.

20177589 PMID: 29242367

37. Nayfach S, Pollard KS. Population genetic analyses of metagenomes reveal extensive strain-level vari-

ation in prevalent human-associated bacteria. bioRxiv. 2015;.

38. Zolfo M, Tett A, Jousson O, Donati C, Segata N. MetaMLST: multi-locus strain-level bacterial typing

from metagenomic samples. Nucleic Acids Res. 2017; 45(2):e7. https://doi.org/10.1093/nar/gkw837

PMID: 27651451

39. Luo C, Knight R, Siljander H, Knip M, et al. ConStrains identifies microbial strains in metagenomic data-

sets. Nat Biotechnol. 2015; 33:1045–52. https://doi.org/10.1038/nbt.3319 PMID: 26344404

40. Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, et al. Strain Tracking Reveals the

Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation.

Cell Host & Microbe. 2018; 23(2):229–240.

41. Kuleshov V, Jiang C, Zhou W, Jahanbani F, Batzoglou S, Snyder M. Synthetic long-read sequencing

reveals intraspecies diversity in the human microbiome. Nature Biotechnology. 2016; 34(1):64–69.

https://doi.org/10.1038/nbt.3416 PMID: 26655498

42. Consortium HMP. A framework for human microbiome research. Nature. 2012; 486:215–221. https://

doi.org/10.1038/nature11209 PMID: 22699610

43. Qin J, Li Y, Cai Z, Li S, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes.

Nature. 2012; 490:55–60. https://doi.org/10.1038/nature11450 PMID: 23023125

44. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and

dynamics in the expanded Human Microbiome Project. Nature. 2017; 550(7674):61. https://doi.org/10.

1038/nature23889 PMID: 28953883

45. Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, et al. Shotgun Metagenomics of 250 Adult Twins Reveals

Genetic and Environmental Impacts on the Gut Microbiome. Cell Syst. 2016; 3(6):572–584 e3. https://

doi.org/10.1016/j.cels.2016.10.004 PMID: 27818083

46. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective mater-

nal seeding and environment shape the human gut microbiome. Genome Res. 2018; 28(4):561–568.

https://doi.org/10.1101/gr.233940.117 PMID: 29496731

47. Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. Drift-barrier hypothesis and mutation-rate evolu-

tion. Proc Natl Acad Sci USA. 2012; 109:18488–18492. https://doi.org/10.1073/pnas.1216223109

PMID: 23077252

48. Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S. Physiological state of Escherichia coli BJ4 growing

in the large intestines of streptomycin-treated mice. J Bacteriol. 1995; 177:5840–5845. PMID: 7592332

49. Russell SL, Cavanaugh CM. Intrahost Genetic Diversity of Bacterial Symbionts Exhibits Evidence of

Mixed Infections and Recombinant Haplotypes. Molecular Biology and Evolution. 2017;msx188.

50. Olm MR, Brown CT, Brooks B, Firek B, et al. Identical bacterial populations colonize premature infant

gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Research. 2017;

27:601–612. https://doi.org/10.1101/gr.213256.116 PMID: 28073918

51. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term

stability of the human gut microbiota. Science. 2013; 341(6141):1237439. https://doi.org/10.1126/

science.1237439 PMID: 23828941

52. Wakeley J. Coalescent Theory, an Introduction. Greenwood Village, CO: Roberts and Company;

2009.

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 27 / 29

https://doi.org/10.1038/nature11711
http://www.ncbi.nlm.nih.gov/pubmed/23222524
https://doi.org/10.1038/nmeth.2066
https://doi.org/10.1038/nmeth.2066
http://www.ncbi.nlm.nih.gov/pubmed/22688413
https://doi.org/10.1101/gr.201863.115
http://www.ncbi.nlm.nih.gov/pubmed/27803195
https://doi.org/10.1038/nmeth.3802
https://doi.org/10.1038/nmeth.3802
http://www.ncbi.nlm.nih.gov/pubmed/26999001
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1101/gr.216242.116
http://www.ncbi.nlm.nih.gov/pubmed/28167665
https://doi.org/10.15252/msb.20177589
https://doi.org/10.15252/msb.20177589
http://www.ncbi.nlm.nih.gov/pubmed/29242367
https://doi.org/10.1093/nar/gkw837
http://www.ncbi.nlm.nih.gov/pubmed/27651451
https://doi.org/10.1038/nbt.3319
http://www.ncbi.nlm.nih.gov/pubmed/26344404
https://doi.org/10.1038/nbt.3416
http://www.ncbi.nlm.nih.gov/pubmed/26655498
https://doi.org/10.1038/nature11209
https://doi.org/10.1038/nature11209
http://www.ncbi.nlm.nih.gov/pubmed/22699610
https://doi.org/10.1038/nature11450
http://www.ncbi.nlm.nih.gov/pubmed/23023125
https://doi.org/10.1038/nature23889
https://doi.org/10.1038/nature23889
http://www.ncbi.nlm.nih.gov/pubmed/28953883
https://doi.org/10.1016/j.cels.2016.10.004
https://doi.org/10.1016/j.cels.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27818083
https://doi.org/10.1101/gr.233940.117
http://www.ncbi.nlm.nih.gov/pubmed/29496731
https://doi.org/10.1073/pnas.1216223109
http://www.ncbi.nlm.nih.gov/pubmed/23077252
http://www.ncbi.nlm.nih.gov/pubmed/7592332
https://doi.org/10.1101/gr.213256.116
http://www.ncbi.nlm.nih.gov/pubmed/28073918
https://doi.org/10.1126/science.1237439
https://doi.org/10.1126/science.1237439
http://www.ncbi.nlm.nih.gov/pubmed/23828941
https://doi.org/10.1371/journal.pbio.3000102


53. Cohan FM. What are bacterial species? Annual Reviews in Microbiology. 2002; 56(1):457–487.

54. Cohan FM. Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiology

spectrum. 2017; 5(5).

55. Voight BF, Pritchard JK. Confounding from cryptic relatedness in case-control association studies.

PLoS Genet. 2005; 1(3):e32. https://doi.org/10.1371/journal.pgen.0010032 PMID: 16151517

56. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome

transmission from mothers to infants by strain-level metagenomic profiling. MSystems. 2017; 2(1):

e00164–16. https://doi.org/10.1128/mSystems.00164-16 PMID: 28144631

57. Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM, Cookson BT, et al. A year of infection in the

intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic

transmissions and novel microbiota. PLoS Genet. 2015; 11(7):e1005413. https://doi.org/10.1371/

journal.pgen.1005413 PMID: 26230489

58. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ’unculturable’

human microbiota reveals novel taxa and extensive sporulation. Nature. 2016; 533(7604):543–546.

https://doi.org/10.1038/nature17645 PMID: 27144353

59. Smith JM, Smith NH, O’Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA. 1993;

90(10):4384–4388. PMID: 8506277

60. Slatkin M. Linkage disequilibrium–understanding the evolutionary past and mapping the medical future.

Nature Reviews Genetics. 2008; 9:477–485. https://doi.org/10.1038/nrg2361 PMID: 18427557

61. Palys T, Nakamura L, Cohan FM. Discovery and classification of ecological diversity in the bacterial

world: the role of DNA sequence data. International Journal of Systematic and Evolutionary Microbiol-

ogy. 1997; 47(4):1145–1156.

62. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, et al. Identifying the fundamental units

of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proceedings of

the National Academy of Sciences. 2008; 105(7):2504–2509.

63. Ohta T, Kimura M. Linkage disequilibrium at steady state determined by random genetic drift and recur-

rent mutation. Genetics. 1969; 63:229–238. PMID: 5365295

64. Zhu A, Sunagawa S, Mende DR, Bork P. Inter-individual differences in the gene content of human gut

bacterial species. Genome Biol. 2015; 16:82. https://doi.org/10.1186/s13059-015-0646-9 PMID:

25896518

65. Voigt AY, Costea PI, Kultima JR, Li SS, Zeller G, Sunagawa S, et al. Temporal and technical variability

of human gut metagenomes. Genome Biol. 2015; 16:73. https://doi.org/10.1186/s13059-015-0639-8

PMID: 25888008

66. Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut

microbiome species. Cell. 2015; 160:583–94. https://doi.org/10.1016/j.cell.2014.12.038 PMID:

25640238

67. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature Reviews

Microbiology. 2016; 14(1):20. https://doi.org/10.1038/nrmicro3552 PMID: 26499895

68. Cremer J, Arnoldini M, Hwa T. Effect of water flow and chemical environment on microbiota growth and

composition in the human colon. Proceedings of the National Academy of Sciences. 2017;

p. 201619598.

69. Tenaillon O, Rodrguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, et al. The Molecular

Diversity of Adaptive Convergence. Science. 2012; 335:457–461. https://doi.org/10.1126/science.

1212986 PMID: 22282810

70. Good BH, Desai MM. Deleterious passengers in adapting populations. Genetics. 2014; 198:1183–

1208. https://doi.org/10.1534/genetics.114.170233 PMID: 25194161

71. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of

gene exchange connecting the human microbiome. Nature. 2011; 480(7376):241–4. https://doi.org/10.

1038/nature10571 PMID: 22037308

72. Brito IL, Yilmaz S, Huang K, Xu L, Jupiter SD, Jenkins AP, et al. Mobile genes in the human microbiome

are structured from global to individual scales. Nature. 2016; 535(7612):435–439. https://doi.org/10.

1038/nature18927 PMID: 27409808

73. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J.

2009; 3(2):199–208. https://doi.org/10.1038/ismej.2008.93 PMID: 18830278

74. Guttman DS, Dykhuizen DE. Clonal divergence in Escherichia coli as a result of recombination, not

mutation. Science. 1994; 266:1380–1383. PMID: 7973728

75. Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, et al. Free recombination

within Helicobacter pylori. Proc Natl Acad Sci U S A. 1998; 95(21):12619–24. PMID: 9770535

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 28 / 29

https://doi.org/10.1371/journal.pgen.0010032
http://www.ncbi.nlm.nih.gov/pubmed/16151517
https://doi.org/10.1128/mSystems.00164-16
http://www.ncbi.nlm.nih.gov/pubmed/28144631
https://doi.org/10.1371/journal.pgen.1005413
https://doi.org/10.1371/journal.pgen.1005413
http://www.ncbi.nlm.nih.gov/pubmed/26230489
https://doi.org/10.1038/nature17645
http://www.ncbi.nlm.nih.gov/pubmed/27144353
http://www.ncbi.nlm.nih.gov/pubmed/8506277
https://doi.org/10.1038/nrg2361
http://www.ncbi.nlm.nih.gov/pubmed/18427557
http://www.ncbi.nlm.nih.gov/pubmed/5365295
https://doi.org/10.1186/s13059-015-0646-9
http://www.ncbi.nlm.nih.gov/pubmed/25896518
https://doi.org/10.1186/s13059-015-0639-8
http://www.ncbi.nlm.nih.gov/pubmed/25888008
https://doi.org/10.1016/j.cell.2014.12.038
http://www.ncbi.nlm.nih.gov/pubmed/25640238
https://doi.org/10.1038/nrmicro3552
http://www.ncbi.nlm.nih.gov/pubmed/26499895
https://doi.org/10.1126/science.1212986
https://doi.org/10.1126/science.1212986
http://www.ncbi.nlm.nih.gov/pubmed/22282810
https://doi.org/10.1534/genetics.114.170233
http://www.ncbi.nlm.nih.gov/pubmed/25194161
https://doi.org/10.1038/nature10571
https://doi.org/10.1038/nature10571
http://www.ncbi.nlm.nih.gov/pubmed/22037308
https://doi.org/10.1038/nature18927
https://doi.org/10.1038/nature18927
http://www.ncbi.nlm.nih.gov/pubmed/27409808
https://doi.org/10.1038/ismej.2008.93
http://www.ncbi.nlm.nih.gov/pubmed/18830278
http://www.ncbi.nlm.nih.gov/pubmed/7973728
http://www.ncbi.nlm.nih.gov/pubmed/9770535
https://doi.org/10.1371/journal.pbio.3000102


76. Didelot X, Meric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in

the genomic evolution of Escherichia coli. BMC Genomics. 2012; 13:256. https://doi.org/10.1186/1471-

2164-13-256 PMID: 22712577

77. Dixit PD, Pang TY, Studier FW, Maslov S. Recombinant transfer in the basic genome of Escherichia

coli. Proc Natl Acad Sci U S A. 2015; 112(29):9070–5. https://doi.org/10.1073/pnas.1510839112 PMID:

26153419

78. Neher RA, Shraiman BI. Statistical genetics and evolution of quantitative traits. Rev Mod Phys. 2011;

83:1283–1300.

79. Huynen MA, Bork P. Measuring genome evolution. Proceedings of the National Academy of Sciences.

1998; 95(11):5849–5856.

80. Dixit PD, Pang TY, Maslov S. Recombination-driven genome evolution and stability of bacterial species.

Genetics. 2017; 207:281–295. https://doi.org/10.1534/genetics.117.300061 PMID: 28751420

81. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation.

Nature. 2000; 405:299–304. https://doi.org/10.1038/35012500 PMID: 10830951

82. Whitlock MC. Fixation probability and time in subdivided populations. Genetics. 2003; 164:967–779.

83. Majewski J, Cohan FM. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence

diversity. Genetics. 1999; 152(4):1459–1474. PMID: 10430576

84. Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units.

Trends in microbiology. 2014; 22(5):235–247. https://doi.org/10.1016/j.tim.2014.02.006 PMID:

24630527

85. Cohan FM. Bacterial speciation: genetic sweeps in bacterial species. Current Biology. 2016; 26(3):

R112–R115. https://doi.org/10.1016/j.cub.2015.10.022 PMID: 26859266

86. Karasov T, Messer PW, Petrov DA. Evidence that adaptation in Drosophila is not limited by mutation at

single sites. PLoS Genet. 2010; 6:e1000924. https://doi.org/10.1371/journal.pgen.1000924 PMID:

20585551

87. Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E, Lescat M, et al. Evolution of a

dominant natural isolate of Escherichia coli in the human gut over a year suggests a neutral evolution

with reduced effective population size. Applied and environmental microbiology. 2018; p. AEM–02377.

88. Zhao S, Lieberman TD, Poyet M, Groussin M, Gibbons SM, Xavier RJ, et al. Adaptive evolution within

the gut microbiome of individual people. bioRxiv. 2017; p. 208009.

89. Press MO, Wiser AH, Kronenberg ZN, Langford KW, Shakya M, Lo CC, et al. Hi-C deconvolution of a

human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions.

bioRxiv. 2017; p. 198713.

90. Moss E, Bishara A, Tkachenko E, Kang JB, Andermann TM, Wood C, et al. De novo assembly of micro-

bial genomes from human gut metagenomes using barcoded short read sequences. bioRxiv. 2017; p.

125211.

91. Praestgaard JT. Permutation and bootstrap Kolmogorov-Smirnov tests for the equality of two distribu-

tions. Scandinavian Journal of Statistics. 1995; p. 305–322.

Evolutionary dynamics of bacteria in the gut microbiome within and across hosts

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000102 January 23, 2019 29 / 29

https://doi.org/10.1186/1471-2164-13-256
https://doi.org/10.1186/1471-2164-13-256
http://www.ncbi.nlm.nih.gov/pubmed/22712577
https://doi.org/10.1073/pnas.1510839112
http://www.ncbi.nlm.nih.gov/pubmed/26153419
https://doi.org/10.1534/genetics.117.300061
http://www.ncbi.nlm.nih.gov/pubmed/28751420
https://doi.org/10.1038/35012500
http://www.ncbi.nlm.nih.gov/pubmed/10830951
http://www.ncbi.nlm.nih.gov/pubmed/10430576
https://doi.org/10.1016/j.tim.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24630527
https://doi.org/10.1016/j.cub.2015.10.022
http://www.ncbi.nlm.nih.gov/pubmed/26859266
https://doi.org/10.1371/journal.pgen.1000924
http://www.ncbi.nlm.nih.gov/pubmed/20585551
https://doi.org/10.1371/journal.pbio.3000102

