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ABSTRACT

Where do such fermion properties as colour and flavour come from? We attempt to give a possible
answer to this question in our paper. For that purpose we use the reducible ( 1

2
, 1
2
) representation

of the Lorentz group. Then the fermion corresponds to a doublet, each component of which can be
described by the standard Dirac equation. In this way we conclude that quark and lepton, when
being considered as doublets, originate from the discussed multiple representations of the Lorentz
group (LG) and the related Clifford algebra. In particular the threefold colour degree of freedom
emerges naturally, and similarly the threefold generation degree, both being enabled essentially by
the fact that the SU(2) group has three generators given by the Pauli matrices. The Dirac spinor,
or for zero mass the chiral Weyl spinor, remains the building block of that theory.
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1 INTRODUCTION

Among the key open questions in modern
elementary particle physics are those basic ones
addressing the physical origin of such striking
fermion properties as colour and flavour. Why
do quarks just come in three colours, and why
do leptons and quarks occur in three generations
or six flavours? Why are all elementary fermions
found empirically to be ordered in doublets, like
the electron and neutrino, or the up and down
quark, as well as their heavier relatives? What
are the physical reasons for the appearance
of the two gauge groups SU(2) and SU(3)?
These important questions have been around for
decades, and are competently discussed for the
non-expert physicist or educated layman in the
excellent popular books by [1] and [2], and of
course in depth addressed in modern textbooks
of quantum field theory (QFT), like the ones by
[3] and [4]. A lucid description of the history and
detection of quark colour was recently given by
[5], including the important relevant references.

We attempt to give a possible answer to the
above questions in our paper. In brief, these
properties are all connected and originate from
permutation symmetries associated with the
reducible ( 1

2
, 1
2
) representations of the Lorentz

group and related Clifford algebra. Yet, the
Dirac spinor, or for zero mass the chiral Weyl
spinor, remains the building block of the extended
theory. The fundamental SU(2) group and the
representation of the angular momentum algebra
in terms of the Pauli matrix vector [6], σ =
(σx, σy, σz), plays an eminent role in this subject.
Permutation of its three components naturally
yields the empirically rather puzzling threefold
multiplicity of colour and flavour. But to establish
this notion requires to consider the fermion at the
outset as a doublet.

Thus both colour and flavour essentially emerge
from this duality, and owing to the simple fact that
the related SU(2) group has three generators.

These traits are not included in the standard Dirac
equation (in Weyl or Dirac representation), which
describes the fermion as a doublet of particle and
antiparticle, both having a spin either up or down.
However, spin is not a relativistic property, but just
related to the spinor representation of the rotation
group SO(3), which is obvious from the relation

(σ · p)2 = p212, (1.1)

with the momentum vector p and 2 × 2 unit
matrix 12. The doublet nature of the fermion
is intimately related to the structure of space-
time, and naturally emerges in the symmetric
SU(2) ⊕ SU(2) representation of the SO(3, 1)
Lorentz group.

When considering the Clifford algebra
subsequently, we do not have to pay attention
to the fermion mass m, the square of which is a
Casimir operator, i.e., an invariant property of a
particle under Lorentz transformation (LT). But all
fermions occurring in the standard model (SM)
including the neutrino (as inferred from neutrino
oscillations, see e.g. [7]) are known to have
mass, though showing a huge spread in their
values, which can now be calculated ab initio
within the SM, for references see e.g. the paper
by [8]. According to these calculations baryon
masses can be understood as arising mainly from
“condensation” of gauge-field energy, whereas
lepton and quark masses are mainly determined
by the Yukawa coupling to the Higgs field [4].

These important issues are not dealt with here,
but we shall concentrate on the origin of the
multiplicity of the Clifford algebra that is mirrored
in the fermion properties. We start with two
more tutorial sections on the generators of the
LG and the Dirac equation in general abstract
form. Then we discuss the various forms of the
Clifford algebra, yielding different versions of the
Dirac equation. Two appendices address specific
issues and provide relevant matrices appearing
in the representations of the LG.
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2 THE FOUR-VECTOR GENE-
RATORS OF THE LORENTZ
GROUP

The purpose of this introduction is to remind
the reader of the origin of the generators of
the Lorentz group (LG) from the four-vector
representation in Minkowski space. We therefore
quote in the appendix for completeness the
component matrices of the hermitian three-vector
rotation operator J, which is the generator of the
SO(3) rotation subgroup of the Lorentz group,
and of the anti-hermitian three-vector boost
operator K. According to their definitions, the
rotation and boost operators obey the well known
linked three-vector equations of the Lorentz
algebra, which can be written concisely as J ×
J = iJ, K×K = −iJ, J×K = K×J = iK. We
can thus define the following linear combinations

J± =
1

2
(J± iK), (2.1)

which obey the corresponding relations

J± × J± = iJ±, J± × J∓ = 0. (2.2)

These commutation relations are constitutive
for the Lie algebra so(3, 1) = su(2) ⊕
su(2) associated with the Lorentz Transformation
(LT). Apparently, this Lie algebra can be
decomposed into two commuting su(2) sub-
algebras consisting of the generators of the
SU(2) group.

The related 4 × 4-matrices J± define generators
of the irreducible SU(2) ⊕ SU(2) representation
of the LG in Minkowski spacetime. These
symmetric (and constitutive for the Lorentz
algebra) four-vector generators can be rewritten
after [17] as matrix operator J± = 1

2
Σ±, with

J2
± = s(s + 1)14 and s = 1

2
. Here 14 means

the 4 × 4 unit matrix. We shall call J+ the
right-chiral, respectively, J− the left-chiral spin
operator, involving the novel and generalized 4×4
spin matrices,

Σ± x =


0 ±1 0 0
±1 0 0 0
0 0 0 −i
0 0 i 0

 , Σ± y =


0 0 ±1 0
0 0 0 i
±1 0 0 0
0 −i 0 0

 , Σ± z =


0 0 0 ±1
0 0 −i 0
0 i 0 0
±1 0 0 0

 ,

(2.3)
with the commutator [Σ± i,Σ∓ j ] = 0. Also, Σ± ×Σ± = 2iΣ±. By complex conjugation of the Sigma
matrices in (2.3), we can see that they obey (Σ±)

∗ = −Σ∓. Moreover, the Sigma matrices fulfill, like
the Pauli matrices, a metric condition in real space, namely

Σ± jΣ± k +Σ± kΣ± j = 2δj,k14. (2.4)

Thus the sigma component matrices squared give unity, and their sum yields, Σ2
± = 3 14. The

related four-vector Lorentz transformation is a real 4 × 4 matrix operator since it operates on a real
four-vector V µ in Minkowski space. Finally note that the matrices in (2.3) cannot together be made
block-diagonal, which is obvious from their origin in the matrices of J and K given in the appendix.
This fact simply reflects the so(3, 1) algebra.

According to the seminal work by [9], [10], [11], and [12], one can extend the above representation of
the LG by using any other adequate version of the involved su(2) algebra, which is the fundamental
one for angular momentum. Consequently, various more general representations of the Lorentz
group can be constructed and then classified as (m

2
, n
2
) with integer m and n. This subject is dealt

with exhaustively in the cited papers and in any modern textbook [4, 3] of quantum field theory (QFT).

In what follows, we will construct some novel versions of the Lorentz algebra and the related matrix
representations of the Clifford algebra, among them some which involve the original four space-time
dimensions of the Minkowski space. These matrices then act on complex four-component vectors.
Conveniently, we shall call the related vector doublets Minkowski spinors. They are reducible to
doublets of Dirac spinors.
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3 REVISITING THE DIRAC
EQUATION DESCRIBED IN
TERMS OF THE ABSTRACT
CLIFFORD ALGEBRA

This section does contain merely things that can
be found in any modern textbook on QFT [4, 3],
Yet we believe it is helpful in and needed for
setting the scene for the subsequent key topics
appearing in this paper. Here we are concerned
with a discussion of the main properties of
the Dirac equation, yet based solely on the
abstract Clifford algebra. Various specific matrix
representations of this algebra are considered
subsequently. For a free fermion (i.e., a spin
1/2 particle) of mass m the key Casimir operator
of the LG is the mass squared, which leads to
the so called mass-shell condition of the four-
momentum as follows

pµpµ = m2, (3.1)

with pµ = (E,−p). This relation can be
linearized by help of the Clifford algebra which
can be expressed in standard terms as

ΓµΓν + ΓνΓµ = 2 gµν . (3.2)

Then we can write

Γµpµ = m, Γµ = (Γ0,Γ). (3.3)

Here gµν is the metric tensor in Minkowski
space in standard notation. When we now
square Eq. (3.3) and use the metric properties
of the above Clifford algebra, we retain the
Casimir operator (3.1). The Dirac [13]
equation is obtained from (3.3) by insertion of
the the relativistic quantum mechanical four-
momentum operator as Pµ = i∂µ = i( ∂

∂t
, ∂
∂x

),
whereby we use standard symbols, notations and
conventional units as in the textbooks [4, 3] for
quantum field theory, and we also set ~ = c =
1. Thus we obtain for the fermion the linear
covariant wave equation

ΓµPµΨ = Γµi∂µΨ = mΨ, (3.4)

for the spinor Ψ. Conventionally, one introduces
the so called Γ5 matrix as Γ5 = iΓ0ΓxΓyΓz, which
obeys (Γ5)

2 = 1 and mutually anticommutes

with the four other Gamma matrices by definition.
We may by its help also define the important
projection operator

P± =
1

2
(1± Γ5), (3.5)

which is idempotent and has the effect that
P±Γ

µ = ΓµP∓, i.e., its sign switches
by commutation with the Gamma matrices.
Conventionally, Γ5 bears the name chirality
operator. The reason being that according to
(5.17) in the appendix, the spinor Ψ can be
decomposed into its right-chiral part ΨR = P−Ψ
and left-chiral part ΨL = P+Ψ , which always
transform independently under the LT. Related
relevant information about the spinorial Lorentz
transformation of the Dirac equation in abstract
form is contained in the appendix.

4 VARIOUS VERSIONS OF
THE CLIFFORD ALGEBRA
FOR A FERMION

4.1 The Standard Dirac
Equation for a Fermion and
Various Clifford Algebras

At this point we have to remind the reader that
in the Dirac equation [13, 4] the two simplest
possible spinor representations of the LG are
employed. They are given by the two generator
pairs for the rotation operator J = 1

2
σ and the

boost operator K = ± i
2
σ. They are based on

the fundamental two-dimensional representation
of SU(2) as generated by the Pauli matrix
vector [6], which acts on left- and right-chiral
two-component Weyl spinors usually denoted as
ϕR,L. It is assumed that either J+ = J, and the
trivial one then is J− = 0 or vice versa, which
just yield the two well known asymmetric ( 1

2
, 0) or

(0, 1
2
) irreducible representations of the LG. Their

matrix dimensions are reduced to two instead of
four as in the original four-vector representation
given above in (2.3). However, the use of the
combined fundamental and trivial representation
of SU(2) breaks at the outset chiral symmetry,
which is yet guaranteed if the J± are treated
equally, like in the genuine representation (2.3).
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In this paper we shall make frequent use of the three hermitian Pauli matrices again (defining the
SU(2) group generators), but we will give them, to avoid confusion with the nomenclature, the new
name tau matrices defined as follows

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (4.1)

Of course we have τiτj + τjτi = 2δi,j12, and thus τ2i = 12. Moreover, τ1τ2 = iτ3, cyclically.
Furthermore, we introduce the associated similarity transformations

Uj =
1√
2
(12 − iτj), U†

j = U−1
j =

1√
2
(12 + iτj), (4.2)

with j = 1, 2, 3, and with UjU
−1
j = 12. Thus we obtain the cyclic relations

U1τ2U
−1
1 = τ3, U2τ3U

−1
2 = τ1, U3τ1U

−1
3 = τ2, (4.3)

for the tau matrices. And similarly, we find that

U1τ3U
−1
1 = −τ2, U2τ1U

−1
2 = −τ3, U3τ2U

−1
3 = −τ1. (4.4)

We are going to use these expressions throughout the paper. Given the Pauli matrices for the physical
spin vector σ, we can easily write down exactly three different gamma-matrix doublets, with γµ =
(γ0,γ), as follows

γ01 = τ1 ⊗ 12, γ2 = iτ2 ⊗ σ,
γ01 = τ1 ⊗ 12, γ3 = iτ3 ⊗ σ,
γ02 = τ2 ⊗ 12, γ3 = iτ3 ⊗ σ,
γ02 = τ2 ⊗ 12, γ1 = iτ1 ⊗ σ,
γ03 = τ3 ⊗ 12, γ1 = iτ1 ⊗ σ,
γ03 = τ3 ⊗ 12, γ2 = iτ2 ⊗ σ.

(4.5)

The first is known as the Weyl representation, the sixth as the Dirac representation. The other four
bear no name yet and have to our knowledge not been used in the literature. In the sequence given
above, they are obtained by cyclic permutation of the index pairs at the gamma matrices with a
spatial index. The threefold multiplicity just reflects the fact that the SU(2) group has exactly three
generators. We suggest that this striking permutation symmetry corresponds to the “flavour” degrees
of freedom (which are just twice three) of a fermion in the standard model. By means of the similarity
transformations in (4.3) and (4.4), the representations are all mutually connected, separate from
unimportant phase factors of plus or minus.

To give only one well known example, the corresponding equations for the standard Dirac spinor
(ψ† = (ϕ†

1, ϕ
†
2)) read in the Weyl, also named chiral, representation in terms of Pauli spinors as

follows
i( ∂

∂t
− σ · ∂

∂x
)ϕ1 = mϕ2

i( ∂
∂t

+ σ · ∂
∂x

)ϕ2 = mϕ1
. (4.6)

For vanishing mass, m = 0, the equations decouple. Permutations among the six representations
in (4.5) would not change the physical content of the Dirac equation, describing a particle and its
antiparticle with their spin up and down duality.

The dual nature of the representations in (4.5) suggests to lump them together into three doublets,
because the difference in representation may not be a mathematical redundancy but have physical
meaning. This idea was already proposed by [14]. This notion becomes even more convincing by
the results of the subsequent sections. Therefore, we may write an extended Dirac equation for the
fermion as a doublet in the form

Γµ
1 i∂µΨ1 = mΨ1, Γµ

1 =

(
(γ01,γ2) 0

0 (γ01,γ3)

)
, (4.7)

5
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with Ψ†
1 = (ψ†

2, ψ
†
3). Now any of the

three couples which can be composed of the
six gamma matrices in (4.5) may be used.
Cyclic permutation of the indices in (4.7) yields
three different versions, which we interpret as
corresponding to three fermion generations. By
help of (4.3) and (4.4), equation (4.7) can also be
written as γµi∂µΨ̃ = mΨ̃, with γµ = (γ01,γ3),
and Ψ̃† = ((U1 ⊗ 12 ψ2)

†, ψ†
3). Therefore, the

doublet theory is related to the SU(2) symmetry,
to which the Yang-Mills [15] gauge theory can
be applied. This result is in compliance with
the Coleman-Mandula theorem [16], after which
the connected symmetry of a field can only be a
direct product of the internal symmetry group with
the Lorentz (Poincaré) group.

4.2 Different Gamma Matrices
for the Lepton

The aim of this section is to construct various
versions of the Clifford algebra for a fermion
based on the chiral spin matrices (2.3). In
order to do so we have to use both spin
matrices and employ them on an equal footing
in the subsequent calculation. Our goal can be
achieved by a linear combination of them, while
acting both on a complex Minkowski vector. So
we define the new hermitian 8 × 8-matrix vector
operator

Σ1 =
1√
2
(τ2 ⊗Σ+ + τ3 ⊗Σ−). (4.8)

The factor
√
2 is required to normalize Sigma

such that we have (Σ1)
2 = 14. We stress that

Σ1 has the same metric properties as the Pauli
matrices, yielding

Σ1 jΣ1 k +Σ1 kΣ1 j = 2δj,k18, (4.9)

whereby the fact that the commutator [Σ± j ,Σ∓ k]
vanishes has been exploited. But note that
these sigma matrices do not obey the su(2) spin
algebra, and thus 1

2
Σ1 is not a spin operator. It

just corresponds to a linear combination of the
right-chiral and left-chiral spin operators J+ and
J−. Yet in order to ensure the essential property
(4.9), the coefficients τ2 and τ3 in (4.8) ought to
be Pauli matrices, because the scalar product
of the chiral spin matrices is a non-vanishing
diagonal matrix Σ+ · Σ− = diag[−3, 1, 1, 1]. We

are now in the position to define the desired
Gamma matrices for the Dirac equation by tensor
multiplication in the following way

Γ0 = τ1 ⊗ 14, Γ†
0 = Γ0, Γ2

0 = 12 ⊗ 14 = 18
(4.10)

and similarly

Γ = iΣ1, Γ† = −Γ, Γ2 = −3 12 ⊗ 14 = −3 18,
(4.11)

in formal analogy to the usual Dirac γ matrices.
By definition we have ΓµΓµ = (Γ0)2 − Γ2 = 4 18.
Given that the chiral spin discussed above has
four components, we required two more degrees
of freedom to construct these Gamma matrices.
They correspond of course to the particle and
antiparticle doublet, as we know it well from the
standard Dirac equation. The Dirac equation
based on the above Clifford algebra has been
studied extensively by [17].

Close inspection of equations (4.8), (4.10) and
(4.11) reveals a striking permutation symmetry,
namely we can permute the indices of the tau
matrices without changing the physics. By
definition, the tau matrices are connected by the
formula iτ1 = τ2τ3, whereby the indices can be
cyclically permuted.

Application of the transformations (4.2), (4.3) and
(4.4) on the Gamma matrix (4.10) and (4.11)
yields three physically equivalent representations
of the Clifford algebra. As there are only
three SU(2) generators, we obtain consequently
a triple of Gamma matrices. The lepton is
apparently coming in six “flavours” or three
generations. This result is in agreement with
the key empirical property of elementary particle
physics that the leptons in the SM come in six
flavours. The multiplicity originates from, and in
fact is enabled by, the chiral spin (2.3), i.e., by the
notion that the lepton exists as a doublet.

Use of the chiral spin matrices (2.3) leads to
somewhat awkward algebra, and therefore it
seems more convenient to make use of the
Pauli matrices to describe the physical spin.
For example, when using Γµ

1 = (τ1 ⊗ 14, iΣ1),
we obtain the connected equations (with the
Minkowski spinor Φ† = (Φ†

1,Φ
†
2)) for the particle

and antiparticle in the form

6
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i( ∂
∂t

− 1√
2
Σ+ · ∂

∂x
)Φ1 = (− 1√

2
Σ− · ∂

∂x
+m)Φ2

i( ∂
∂t

+ 1√
2
Σ+ · ∂

∂x
)Φ2 = (+ 1√

2
Σ− · ∂

∂x
+m)Φ1

.

(4.12)

These twin equations are analogous to the
standard Weyl ones given in (4.6). When
multiplying them up and exploiting the properties
of the Sigma matrices, we of course retain the
Klein-Gordon [18] equation for each of them. The
above chirally symmetric equations can be made
more transparent by an adequate replacement of
the chiral spin by σ. When solving them in terms
of the plane wave solutions, we have to deal with
the helicities H± = Σ± · p̂, with the momentum
unit vector p̂. Obviously, H2 = 14, and thus the
eigenvalues are ±1 and twofold degenerate. As
the two chiral spin matrices in (2.3) commute,
the H± can have common eigenfunctions. The
following four eigenvalue pairs are thus possible
in (4.8) and (4.12), namely

(+,+), (+,−), (−,+), (−,−).

They can be captured and described by the
replacement

τ2⊗Σ++τ3⊗Σ− 7−→ (τ2±τ3)⊗12⊗σ. (4.13)

This replacement leaves the physical content
unchanged. If we introduce τ± = 1√

2
(τ2 ± τ3),

with τ2± = 12 and τ1τ± + τ±τ1 = 0, and
τ+τ− = −iτ1, we can decompose the Minkowski
spinor Φ into a doublet of two Dirac spinors,
Φ† = (ψ†

+, ψ
†
−). They obey the Dirac equation

coming in a new representation guise in a right-
and left-chiral version as

(τ1(i
∂

∂t
) + iτ±(σ · i ∂

∂x
))ψ± = mψ±. (4.14)

Since U1τ±U
−1
1 = −τ∓, these versions are

physically equivalent, including a spin flip, and
thus the chiral invariance of (4.14) becomes
obvious. Furthermore, a permutation of
the indices at the taus indicates that three
representations are possible, corresponding to
the already mentioned flavour degrees. Yet, it is
not obvious to us whether they can be connected
by a similarity transformation.

The main conclusion of this analysis is that, when
the chiral symmetry is enforced at the outset
and maintained, the fermion comes as a doublet,
and thus has two new independent degrees of
freedom, in addition to the common four degrees
described by a single Dirac spinor.

4.3 Different Gamma Matrices
for the Quarks

Are there possible four-dimensional
representations of the LG generators other than
the genuine ones, which are given by the normal
LT in Minkowski space-time after (2.2) and (2.3)?
To recall, we are looking for mathematical objects
obeying the angular momentum commutation
relation (2.2) and commute with each other.
Indeed one can obtain lucid representations,
where the requested 4 × 4 matrix is constructed
by tensor multiplication. Let us first define the
following projection operators

P±
j =

1

2
(12 ± τj); (P±

j )2 = P±
j . (4.15)

The index j runs from 1 to 3. The idempotence is the key enabling property, since we can define

J± j =
1

2
P±
j ⊗ σ. (4.16)

Then we obtain by taking the cross product of this three-vector the result

J± j × J± j =
1

4
(P±

j )2 ⊗ (σ × σ) = i
1

2
P±
j ⊗ σ = iJ± j . (4.17)

Since P±
j P

∓
j = 0, we herewith ensure that J± j × J∓ j = 0. These three representations of the

Lorentz algebra are connected through similarity transformations which were already presented in
equations (4.2) and (4.3). They can easily be transferred to the above projection operators. This
procedure yields

7
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U1P
±
2 U

−1
1 = P±

3 , U2P
±
3 U

−1
2 = P±

1 , U3P
±
1 U

−1
3 = P±

2 . (4.18)

We may enhance the similarity transformation to act, formally but trivially, also on the spin operator σ
as follows

Ũj =
1√
2
(12 − iτj)⊗ 12, Ũ−1

j =
1√
2
(12 + iτj)⊗ 12. (4.19)

Thus we obtain finally that

Ũ1J± 2Ũ
−1
1 = J± 3, Ũ2J± 3Ũ

−1
2 = J± 1, Ũ3J± 1Ũ

−1
3 = J± 2. (4.20)

As the result of this somewhat tedious procedure
we find that the three angular momentum
relations (4.17) are equivalent and closely related
by similarity transformations. Apparently, the
fermion constructed this way is coming in three
versions. This is in agreement with the empirical
result of elementary particle physics that the
quarks come in three different “colours” (and
the baryons in the SM come as colourless
composites of three quarks). The related
symmetry group is SU(3), to which the Yang-
Mills gauge theory can be applied. The threefold
multiplicity in colour originates from, and is
facilitated by, the fact that the key group SU(2)
in terms of the tau matrices has exactly three
generators.

So, the threefold chiral-spin representation (4.16)
of the fermion can describe the quark as a
colour triplet. It remains to construct the
corresponding Gamma matrices and to define the
related Clifford algebra. Before we do this in the
subsequent paragraphs we may define the chiral
spin matrices for the three quarks by inspection
of (4.16) as follows

σ±
j = P±

j ⊗ σ. (4.21)

They obey (σ±
j )

2 = 3P±
j ⊗ 12, and thus

by summing up over the plus and minus
sign one obtains three times the unit matrix
14. Furthermore, the scalar product of them
with opposite sign index vanishes due to the
projectors involved, i.e., we have σ+

j · σ−
j = 0.

The resulting sigma matrices for the three colour
indices j = 1, 2, 3 are listed in the appendix.

The aim then is to construct various versions of
the Clifford algebra for a fermion based on the
chiral spin matrices (4.21). Again, we ought to
use both chiral spin matrices and employ them

on an equal footing in our calculation. This goal
can be achieved by a linear combination of them,
while both are acting on a complex Minkowski
vector. So, we define the new hermitian 8 × 8-
matrix vector operator

Σ1j = τ2⊗σ+
j +τ3⊗σ−

j = (τ2⊗P+
j +τ3⊗P−

j )⊗σ,
(4.22)

which can be described as a triple tensor product
of the particle-antiparticle, left- and right-chiral,
and spin-up and -down doublets. Consequently,
Σ1j ·Σ1j = 3 18.

We emphasize again that Σ1j has the same
metric properties as the Pauli matrices, and
thus as the fermion matrices (4.9) based on the
four-vector representation of the LG. This metric
condition is prerequisite for the validity of the
Clifford algebra (3.2). It is worth stressing that the
degrees of freedom associated with chirality and
particle type become entangled via the definition
(4.22).

We omit the colour index j in what follows. We
can now define the Gamma matrices for the Dirac
equation by tensor multiplication in the following
way

Γ0 = τ1 ⊗ 14, Γ = iΣ1. (4.23)

According to the derivations in the appendix we
can after a unitary transformation rewrite this as

Σ01 =

(
τ1 0
0 τ1

)
⊗12, Σ1 =

(
τ2 0
0 τ3

)
⊗σ.

(4.24)
Close inspection of equation (4.24) reveals the
permutation symmetry, namely we can permute
the indices of the tau matrices without changing
the physical content. As there are only
three SU(2) generators, we obtain a threefold
multiplicity of the constructed representations,
and consequently a triple of Gamma matrices
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describing the quark. It is apparently coming in
six flavours or three generations. This multiplicity
originates essentially from the triple chirality-
particle-spin as expressed by (4.16) and (4.22),
i.e., it is enabled by the notion that the quark (of
any colour) exists as a chiral-spin doublet. The
Gamma matrices of the Clifford algebra for the
flavours are given explicitly in the appendix.

Are the three (or six) flavour states physically
equivalent and perhaps connected by a similarity
transformation? To answer this question we used
again (4.3) and (4.4), but we did not succeed in
finding an appropriate similarity transformation.
Apparently, flavour is not related to the SU(3)
symmetry, and cannot be gauged or described
by Yang-Mills theory.

5 DISCUSSION AND
CONCLUSION

Our analysis indicates that the fermion may
have another dual degree of freedom, which
is not apparent in the standard Dirac equation
but emerges from the use of manifestly four-
dimensional generators of the LG, by which chiral
symmetry is entirely ensured in our calculations.
The resulting doublet is related to the SU(2)
group and thus can be gauged. Technically
speaking, this doublet can for a free fermion
be decomposed into two Dirac spinors. Yet this
important relativistic dual trait is missing in the
original Dirac equation, because it consists of two
Weyl spinors, and thus employs the chiral ( 1

2
, 0)

or the chiral (0, 1
2
) irreducible representations of

the LG.

When use is made at the outset of the ( 1
2
, 1
2
)

reducible representation of the LG, the Pauli
spinors are replaced by what we called complex
Minkowski vectors, related to the combined chiral
and physical spin, and two such spinors are
assembled into the 8-component spinor Φ. It
turns out that this “blown-up” description of the
fermion reveals two permutation symmetries
which are intimately linked to the SU(2)
symmetry, namely a threefold (due to three
generators of SU(2)) permutation symmetry,
yielding three generations (flavour) and three
colours. This procedure naturally produces
colour triplicity, given by the three possible

versions of the J± generators of the LG,
which can be transformed into each other by a
similarity transformation. Thus colour represents
a permutation symmetry related to SU(3) that
can be gauged.

As emphasized in the paper, the various
presented representations of the Clifford algebra
or gamma matrices are connected by similarity
transformations. Therefore, one can make
use of just one of these representations as
a standard, of which nowadays the most
convenient choices are the chiral or Weyl and the
Dirac representations. In the case of the SU(2)
and SU(3) symmetry groups, the resulting single
Lagrangian consequently is just the usual one of
the SM, and one does not have to worry about
using different gamma matrix representations in
Feynman diagrams.

In conclusion, when use is made of the chirally
symmetric ( 1

2
, 1
2
) representation of the LG,

the resulting fermion is endowed with another
dual degree of freedom, which induces the
SU(2) symmetry, and furthermore comes as
lepton singlet and as quark triplet with three
colours, which induces the SU(3) symmetry.
Also, the flavour degrees of freedom naturally
emerge from permutation symmetry, but are not
connected by a similarity transformation. The
theoretical consequences of our study require
further investigation.
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APPENDIX: IMPORTANT MATRICES

Matrices of the Rotation and Boost Operators in Minkowski Space
We quote here for completeness the component matrices for the rotation operator J, which read

Jx =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , Jy =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , Jz =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (5.1)

The component matrices of the boost vector operator K are

Kx =


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 ,Ky =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 ,Kz =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 . (5.2)

These formulas can be found in the textbook of [4], for example.

Chiral Spin Matrices for the Quarks
After equations (4.15) and (4.21) the chiral spin matrices were defined as

σ±
j =

1

2
(12 ± τj)⊗ σ. (5.3)

By insertion of the tau matrices after (4.1) we thus obtain for the three colours the results

σ±
1 =

1

2

(
σ ±σ
±σ σ

)
, (5.4)

σ±
2 =

1

2

(
σ ∓iσ

±iσ σ

)
, (5.5)

and finally

σ+
3 =

(
σ 0
0 0

)
, σ−

3 =

(
0 0
0 σ

)
. (5.6)

Therefore we obtain, (σ+
j )

2 + (σ−
j )

2 = 3 14. Let us just consider the last colour index j = 3. The
associated flavour matrices defining the gamma matrix vector after (4.24) read

Σ1 = τ2 ⊗ σ+
3 + τ3 ⊗ σ−

3 = Σ̃1 ⊗ σ, (5.7)

Σ2 = τ3 ⊗ σ+
3 + τ1 ⊗ σ−

3 = Σ̃2 ⊗ σ, (5.8)

Σ3 = τ1 ⊗ σ+
3 + τ2 ⊗ σ−

3 = Σ̃3 ⊗ σ. (5.9)

The three resulting hermitian 4×4 matrices, which combine the chiral spin and the particle type, then
have the following simple form

Σ̃1 =


0 0 −i 0
0 1 0 0
i 0 0 0
0 0 0 −1

 , Σ̃2 =


1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

 , Σ̃3 =


0 0 1 0
0 0 0 −i
1 0 0 0
0 i 0 0

 (5.10)
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Their squares all give the unit matrix 14, and they obey cyclically the relation Σ̃1Σ̃2 = iΣ̃3, and thus
have all the properties of the Pauli matrices. By help of the unitary matrix

U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (5.11)

they can therefore be brought into block-diagonal form reading finally

Σ̃1 =

(
τ2 0
0 τ3

)
, Σ̃2 =

(
τ3 0
0 τ1

)
, Σ̃3 =

(
τ1 0
0 τ2

)
. (5.12)

Similarly we obtain for the Σ0j matrices

Σ̃01 =

(
τ1 0
0 τ1

)
, Σ̃02 =

(
τ2 0
0 τ2

)
, Σ̃03 =

(
τ3 0
0 τ3

)
. (5.13)

These equations exactly correspond to the six ones of (4.5) for the standard Dirac equation, whereby
the previously only assumed doublets now appear naturally as chiral-spin related doublets. The
corresponding Gamma matrices for the three generations (with index f = 1, 2, 3) read

Γ0f = Σ̃0f ⊗ 12; Γf = iΣ̃f ⊗ σ. (5.14)

These Gammas obey the Clifford algebra (3.2). As the chiral spins are equivalent for the three colours
due to the similarity transformations after (4.17), we can choose (5.14) as the standard representation
of the Gammas for all three colours.

APPENDIX: LORENTZ TRANSFORMATION OF THE DIRAC
SPINOR AND SOLUTION OF THE DIRAC WAVE EQUATION
In completion of the discussion of the Dirac equation in terms of the abstract Clifford algebra, we
introduce here the hermitian spin (rotation) operator and antihermitian rapidity (boost) operator associ-
ated with the spinor wave equation (3.4) as follows

S =
i

4
(Γ× Γ), R =

i

2
Γ0Γ. (5.15)

According to their definitions, the spin and rapidity operators obey the linked three-vector equations
of the Lorentz algebra, i.e., we have S × S = iS, R × R = −iS, S × R = R × S = iR. This
can be shown by straightforward application of the rules given by the Clifford algebra (3.2). Moreover,
S2 = 3

4
as expected for a fermion. We define like in (2.2) the right- and left-chiral spin and find that

S± =
1

2
(S± iR) = SP∓, (5.16)

involving the projection operators. The associated spinorial LT named Λ acts on the spinor Ψ and can
after some algebra (exploiting the properties of the projection operator) be written

Λ = exp (iθ · S+ iβ ·R) = exp (iθ+ · S)P− + exp (iθ− · S)P+ , (5.17)

with the complex angle θ± = θ ± iβ. Because of this complex angle, the LT is not a hermitian
operator.

The linear wave equation (3.4) has two fundamental plane wave solution with positive (antiparticle)
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and negative (particle) frequency. We make for the particle and its antiparticle the standard plane
wave ansatz

Ψ(t,x) = U±(p) exp (∓i(E(p)t− p · x)). (5.18)

Here the positive relativistic energy reads E(p) =
√
m2 + p2. Thus we obtain the algebraic equation

for the two related polarization spinors, reading

(Γµpµ ∓m)U±(p) = 0, (5.19)

which just differ by the sign in front of the mass. Here pµ = (E(p),−p) is the covariant four
momentum. To calculate explicitly the polarization spinors U±(p) we need to know the detailed form
of the gamma matrices. When operating with Γ5 on the wave equation (3.4) or its Fourier version
(5.19), we find that ΓΨ solves it for a negative sign at the mass. So, we may also call the operator Γ5

the mass conjugation operator.
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