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Abstract

In this work, fifth-order Boundary-Value Problems (BVPs) in Ordinary Differential Equation
are solved numerically using Boundary Value Method. Continuous linear multistep methods are
developed with continuous coefficients. This constitutes appropriate methods termed the main
and additional methods, which are applied sequentially in blocks to approximate the solution.
The method is shown to be flexible in handling linear and nonlinear fifth order BVPs. The
convergence of the method is discussed. Several numerical examples are shown to illustrate the
superiority of the method developed as the approximate solutions derived from the method are
compared to the exact solutions of the problem, and other methods from existing literature.
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1 Introduction

In this paper, the numerical solution for the fifth-order boundary value problems of the type:
v = f@y v "y ™), a<e<b (1)
y(a) = a0, y'(a) = a1, y'(a) =0z, y(b)=pFo, y(b)=7

is considered, where s, Bj, (i =0,1,2, j=0,1) are finite real arbitrary constants while f(z) is
a continuous function defined on the interval z € [a, b].

Higher order boundary value problems occur in sciences, for example, in the modeling of induction
motors in current electricity. Other applications of this type of boundary value problems arise in the
mathematical modeling of the viscoelastic flows and other branches of mathematical, physical and
engineering sciences. Several numerical methods for solution of (1.1) exist in the literature, and some
are specially designed to solve fifth order ordinary differential equations. Fyfe [1] developed quintic
polynomial spline functions for the solution of special type of fifth-order boundary-value problems.
Caglar et al. [2] developed numerical solution of fifth-order boundary-value problems with sixth-
degree B-spline functions, as did [3] who presented a class of methods based on non-polynomial
sextic spline functions for the solution of a special fifth-order boundary-value problems. Finite
difference solutions were provided by Khan [4]. Many researchers [5, 6] presented approximate
analytical solutions of fifth-order boundary value problems by the variational iteration method.
Xueqin and Minggen [7] provided an algorithm to solve general linear fifth-order boundary-value
problems in the reproducing kernel space W& [a,b]. In this paper, solution to fifth order boundary
value problems of the type (1.1) using boundary value methods is proposed. The boundary value
method has been extensively studied by several researchers and have only used the BVMs to solve
initial value problems. see [8], [9], [10], [11], [12], [13] and [14, 15].

2 Derivation of the Method

In this section, a 5-step boundary value method for the solution of fifth-order boundary value
problems with appropriate conditions on the interval from x, to x,1s5 is developed. It is initially
assumed that the solution on the interval [z, Zzn+5] is locally approximated by polynomial of the
form,

11
y(@) =3 a5 (2.1)
§=0
which also yield

11

vy (@) => G- - 1)@ - 3)( — aa’° (2.2)

j=5

where a; are unknown coefficients to be determined. Interpolating (2.1) at the points xn44, ¢ = 0(1)4
and collocating (2.2) at the points x4, ¢ = 0(1)5 gives the following interpolation/collocation
equations;
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ao + @125 + axwp + azwh + -+ anz,' —y, =0

ao + a1Tni1 + a2z g +azzh g+ Fanrpy — Yngr =0

ap + a1Tny2 + a2$i+2 + asxiﬂ +--+ a11~13311+2 — Ynt2 =0

ag + a1Tn+3 + a2xi+3 + a3$i+3 R a11$7111+3 — Ynt3 =0

ao + a1Tn1a + 02$i+4 + a3xi+4 4+ auxilH — Ynta =0

120as + 720aszn + 2520a722 + 6720asz> + - - - + 55440a1128 — f = 0

120as + 720a6xn11 + 2520arx; 4 + 6720asxs 4 + - - - + 5544001125 11 — fag1 =0
120a5 + 720a6Tn 12 4 2520a7x0 45 4 6720asxs 4o 4 - - - + 554401125 15 — frie = 0
120a5 + 720a6Tn 13 + 2520a7x0 45 4 6720asxs 45 4 - - - + 554401125 15 — fris = 0
120a5 + 720a6Tnta 4 2520a7x0 44 4 6720asxs 4y 4 - - - + 5544001125 14 — frpa = 0
120a5 + 720a6Tn 45 + 2520a7x0 45 4+ 6720asxs 45 4 - - - + 554401125 15 — fris = 0

(2.3)
which translates into the matrix equation Ax = b, where;
1 Ty z2 .1731 zd x5 .rzl e 1}1
1
1 @np1 @h41 Thg1 Thgr Tpgr Tpga o Ty I
20
9 :
1 2 3 4 5 6 11 a3 1
A= | 1 Teta Togs Tois Tngs Tpgs Tngy T Tt . b= Z;"Jr“
0 0 0 0 0 120 72025 ... 5544028 PE : P2 e
0 0 0 0 0 120 720Ty 41 ce 55440zn+1 g%(l) .
. Fr+s
0 0 0 0 0 120 720@,45 - 5544028

Let the basis function space be given as Using the Gaussian elimination method, we obtained
the values of the a;’s, j = 0(1)11. Then substituting all the a;’s into (2.1), and after some
simplifications, we obtain the continuous linear multistep method of the form

Y(2) =3 ai@)ynsi + 1’ Zﬂl )i (2.4)

=0

where o and ( are continuous function of z, ynt+i = y(zn + th), fnti = 1’>(acn + th). Note
that frn4: = f(:vnﬂ,ynﬁ,yilﬂ,...,yfﬂz) i = 0,...,5. The continuous coefficients «;(x), Bi(z),
expressed as functions of ¢ obtained are given below;

o = 55 (6t + 11¢2 +6t3 +t ) = 1(—8t — 148> — 7% —t*), o = 1(12t + 19t% + 8t% + t*)

az = }5( 24t — 26t — 9t — ¢ ), s = 55(24 + 50t + 35t% + 10t° + t*)

Bo = 7257600 (720t + 948> — 820t — 1405t* 4 504t° 4 1207 — 45¢° — 20¢° — 2t'°)

B = 1451520 (14256t + 26460t + 16104t> + 4387t* — 672t% — 14417 4 63t + 24¢° + 2t'°)

B2 = 725760(8164& + 153084¢> 4 84532t% 4 12329t* + 1008t° + 168t7 — 99¢° — 28t° — 2¢1°0)

Bs = mzarag (57168t + 133764¢t% + 109168t> + 34417¢* — 2016t° — 487 + 153t% + 32t° + 2t'7)

Bs = Tists 020( 2160t + 4068t% + 20700t> + 24215¢* + 12096t° + 2184t° — 360t" — 225t — 36t° — 2¢1°)
Bs = wzzra00 (2160t + 1932t — 3400t> — 4265t* + 2016¢° + 1200t7 + 315¢t% + 40t° + 2¢1°)

where t = Lt Evaluating Y () and the derivatives Y *)(z), u = 1(1)4 in (2.4) at the point
ZTn+s and after some algebraic simplification, the following discrete 5-step LMM are obtained as the
main method;



Modebei and Adeniyi; ARJOM, 12(2): 1-14, 2019; Article no. ARJOM. 46477

Ynts = —Yn + 5Ynt1 — 10Unt2 + 10¥nt3 — 5Ynta + 55 h° (Frgr + 1 fngo + 11 fngs + frta)

’ _ 25yp 6lyn41 39n42 107y5 43 TTYn4
hynys = ~15% — 6 + 2 - 6 + 12

5
— s (3fn — 894 fni1 — 9679 fnto — 10819 fnts — 1624fn4a — 3fnts)

2 _ 35yp _ Alynyl A9Ynt2  59%ny43 Yniq
h yn+5 = 12 3 + 2 3 + 13

— o (161 f, — 37795 fn 1 — 412860 f 15 — 535040 f, 15 — 145805 fn 14 — 2661 fny5)

h3 "

Ynts = 3n — 11ynt1 + 18yYnt2 — 13ynts + %

5
+ s (170 f + 5239 frup1 + 75876 fr i 2 + 108166 fr 3 + 63434 frya + 4155 0y 5)
Ryt =y, — 4 6 -4

Ynis = Yn Yn+1 + 6Ynt2 Yn+3 + Ynt4

5l (853 fn — 2879 fry1 + 44902, 42 + 35318 f, 13 + 84149 f, 4 + 19097 f, 1 5)

(2.5)

Evaluating Y™ (), p = 1(1)4 of (2.4) at the point x;, i = 0(1)4 and after some algebraic
simplification, the following discrete 5-step LMM are obtained as the additional method;

25

Ryl - - 4y —syp + 2B Y2y g b (3f0 + TA9F1 + 1194f5 + 545 + 19f4 — 3f5)

hyf = —%1 - %, %2 A} + ‘1‘4 + 1lsg (3fo — 12041 — 361f3 — 213 — 654 + f5)

hyl, =Yg _ 212w ys 10080 (fo ~ 4441 = 250f5 — 44f3 + 1)

hyl =-¥ 4+ 4 3”2 + 2 v 10 50 (36f1 + 34165 + 13573 — 944 + f5)

hyl =% _ 4“ + 3y2 - 4y3 + 25y + 1ss <f0 +99f1 + 11341 4 T94f3 — 1574 + 3f5)

n2yl = 3?% - 26“ + 19y2 - 14”3 + 11y4 - 302400 (2661 fo + 109055 f1 + 130790 f5 + 86103 + 1045f4 — 161 f5)
h21;1 = ligﬂ - 5”1 + %22 + - ’{—g - 3024 (161fg — 9855f1 — 15580 fg + 520f3 — 525f4 + 79f5)

h2yY =-¥ 4 “%’Tl - 592 + 4—& — Y4 4 o (7950 — 1685f1 — 510f5 + 2450f3 — 38574 + 51F5)

h2yY = 7%21 + 971 + y22 - 5%3 + 1154 - 30’2400 (51f0 + 665f1 + 14000f5 + 11040f3 — 635f4 + 79f5)

h2yY = 1130 - 14y1 + 19y2 - 251’3 + 35y4 + 302400 (79f0 4+ 11025 f1 + 127570f5 + 111470 f3 + 1695 f4 + 161f5)
h3y o’ = _2Y0 4 9y1 — 12y2 + Ty3 — 3— + 5 480 (4155 fg + 57134 f1 + 38866 fo + 6576 f3 — 1061f4 + 170f5)

h3y ”’ =— 3g0 +5y; — 6yg + 3yz — yT‘* - 60480 (170fg — 1395f1 — 13004 fy — 686 f3 — 246f4 + 41f5)

h3y§” = ’0 +y1 —y3 + 12 + 604580 (41fg — 1676f1] — 11850 f9 — 1676 f3 + 41f4)

h3yy’ = %1 — 3y + 6us — Sy + B4 4 £hD o (13017 + 12184f5 + 2010f5 — 4167, + 41f5)

hSyZ, = S—ZQ — 7yy + 12yp — 9y3 + E’yT‘l — 604580 (41fp — 4026f1 — 42266f5 — 54584f3 — 5175f4 + 170f5)

h4y[(;.'v) = yo — 4yq + 6ys — 4ys + yg — eé%so (19097 fo + 81629 f + 7598 fo + 17182 f3 — 5399f4 + 853 f5)

h4y§“’) =yo — 4yq + 6ys — 4yg + yg + GO@W (853f0 — 21695f1 — 41114 f5 + 3062f5 — 1867 f4 + 281f5)

r4y$Y) = yo — 4yy + 6ug — duz +ys — G(ﬁ@ (281f0 — 5059f1 — 1810fg + T774f5 — 1367f4 + 181f5)

h4yéiv) =yo — 4yq + 6ys — 4yg + yg + 60’5@ (181fg + 1153f1 + 35494 f5 + 25910 f3 — 2539 f4 + 281f5)

h4yyv) = yo — 4y + 6ys — 4yz + yg — 6(;‘480 (281fg — 4387f1 — 24658 f5 — 68834f3 — 24215f4 + 853 f5)

Remark 2.1. All the formulae in (2.5) - (2.6) for n = 0(5)N — 5 considered together form the BVM
which gives a system of 5N equations, with additional five boundary conditions leads to a system
of 5N + 5 equations in 5N + 5 unknowns {y;} for j = 0(1)N.

3 Analysis of the Method

Method in (2.4) is associated with LMM of the form:

4 5
x) = Z QiYnti + B° Z Bifrti
i=0 i=0

Thus, the linear differential operator L[y(x); h] is defined by

4
Lly(zx); h] = h'y® (z +ih) — Zazy (z +1ih) +h5Zﬁ y(z+ih) | 1=
=0 =0

0(1)4 (3.2)

(2.6)
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Expanding (3.2) in Taylor series, we obtain

Lly(z); h] = Coy(z) + Crhy (z) + C2h®y" (z) + - - + Cphy™ (z) + O(L* ) (3.3)

The LMM (3.1) is of order p if Cy = C1 = Cy = -+- = Cpq4 = 0, and Cpy5 # 0 in which
Ly(z); h] = Cpresh? TPy () + O(LPT?) (3.4)
In this case, Cpys is the error constant, see [16].
T 79 2321 13 1 \7
prs = (Tnt1, Tt2, Tnts, Tt d, Tnts) 21760 73628807 907200’ 1152’ 6048
Cots = (Thi1s Thios Thsss Thids T 37 .
Pts nl T 2: Tntds Tty Tnts) 266112 71280 1330560’ 44352 570240
C J— (7_// T” 7_// 7_// 7_// 7 89 T
i mb s T 2s Tnt s Ty Tt s) 226800 "~ 201600’ 907200° 1814400 3780
C — (7_/ 7_/// 7_/// 7_/// 7_/// 3 23 22 337 T
pts nbt Tt 2s Tnkds Trtds Tnts) 453600 " 4536007 129600’ 907200’ 113400
; ; ; ; ; 361 181 67 341 277
C _ (iv) (iv) (zv) (iv) (iv)\T N _
prs = (Tnid Tot2) Tntds Tt ds Tnts) 120960’ 120960°  40320° 120960° 24192

We thus establish the convergence of the BVMs in the following theorem:

Theorem 3.1. (Jator and Manathunga [17]) Let Y, Y, and E be as defined above. Let Y be an
approximation of the solution vector Y for the system formed by combining the methods (2.5) and
(2.6) and es = y(es) —yil, hel, = |hy/ (o) —hal], h2el’ = B2y ()~ 2y, W€l = WSy (ws)— "
and he (4) = |[hty™ (z;) — h4y£4>| be as defined above for i = 1,...,N where the ezact solution
Y(z) € C"[a b]. Define ||E|loc = ||Y — Y||oo, then the BVMs is a sizth-order convergent method.
That is || E||ss = O(R®).

Proof. We write (2.5) together with (2.6) in the exact form
AY —h’BF(Y)+C+L(h) =0 (3.5)
where A is an 5N x 5N matrix defined by

A A Az As Ass
Ao1 Azx Asz Azs Ass
A= | As1 Az Ass Azs Ass

Ay Agp Asz Ags Asgs
As1 Asa Asz Asa Ass
with A;; an N x N matrices given as

—4/3 1/4 0 0 0 0 0 0 0 0 o0

26/3 719/2 4/3  —11/12 0 0 0 0 0 0 0 0 o0

-9 12 7 3/2 0 0 0 0 0 0 0 0 o0

4 6 4 2 0 0 0 0 0 0 0 0 o0

Ay = 5 —10 10 -5 0 0 0 0 0 0 0 0 o0

0 ~10 10 -5 0 0 0 0 0 0 0 L0

0 0 5 ~10 10 -5 0 0 0 0 0 0 L0

.0, 0 0 .5, o 10 -5 0 0 0 R

0 0 0 0 0 0 0 - 0 5 110 16 25 0

0 0 0 0 0 0 0 0 0 5 10 10 -5
5/6 3/2 1/2 —1/12 0 0 0 0 0 0 0 0
2/3 0 —2/3  —1/12 0 0 0 0 0 0 0 0
~1/2  3/2 —5/6  —1/4 0 0 0 0 0 0 0 0
4/3 -3 4 25/12 0 0 0 0 0 0 0 0
61/6 —39/2 107/6 77/12 0 0 0 0 0 0 0 0
A2y = 0 61/6 —39/2 107/6  77/12 0 0 0 0 0 0 0
0 0 61/6 —39/2 107/6 77/12 0 0 0 0 0 0
0 0 0 61/6 —39/2 107/6 77/12 0 0 0 0 0
0 0 0 0 0 0 . 0 61/6 —39/2 107/6 77/12 0

0 0 0 0 0 0 0 0 61/6 —39/2 107/6 77/12
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5/3 —1/2 —1/3 1/12 0 0 0 0 0 0 0
-4/3  5/2 —4/3 1/12 0 0 0 0 0 0 0
-1/3  —1/2  —5/3 —11/12 0 0 0 0 0 0 0
14/3  —19/2  26/3 —35/12 0 0 0 0 0 0 0
41/3  —49/2  59/3  71/12 0 0 0 0 0 0 0
Az = 0 41/3  —49/2  59/3 71/12 0 0 0 0 0 0
0 0 41/3  —49/2  59/3  71/12 0 0 0 0 0
0 0 0 41/3  —49/2 59/3 71/12 0 0 - 0 0
0 0 0 0 0 0 41/3 —49/2  59/3  71/12 0
0 0 0 0 0 0 0 41/3  —49/2 59/3 7T1/12
-5 6 -3 1/2 0 0 0 0 0 0 0
-1 0 1 —1/2 0 0 0 0 0 0 0
-3 -6 -5 —3/2 0 0 0 0 0 0 0
7 —-12 9  —5/2 0 0 0 0 0 0 0
11 —18 13 —7/2 0 0 0 0 0 0 0
Aq = 0 1 —18 13 —7/2 0 0 0 0 0 0
0 0 1 —18 13 —7/2 0 0 0 0 0
0 0 0 11 —18 13 —7/2 0 0 e 0 0
0 0 0 0 0 0 11 —18 13 —7/2 0
0 0 0 0 0 0 0 11 —18 13 —7/2
4 -6 4 1 0 0 0 0 0 0 0
4 -6 4 -1 0 0 0 0 0 0 0
4 -6 4 1 0 0 0 0 0 0 0
4 -6 4 -1 0 0 0 0 0 0 0
4 -6 4 -1 0 0 0 0 0 0 0
Asi=| 0 4 -6 4 -1 0 0 0 0 0 0
0 0 4 -6 4 -1 0 0 0 0 0
o 0 0 4 -6 4 -1 0 0 ... 0 0
0 0 0 0 0 0 4 -6 4 -1 0
0 0 0 0 0 0 0 4 -6 -1

Aoy = Aszz = Ays = Ass = I, where [ is an N x N identity matrices and A;; =0 for i = 1,2,3,4,5;
J=2,3,4,51i#].
Similarly, B is a 5N x 5N matrix defined by

Bi1 Biz2 Biz Bis Bis
B21 B2z B2z By DBos
B=| B31 B3 B33 B3 Bss
By Baz B4z Bas  Bas
Bs1 Bsz DBsz3 Bss DBss

with B;; an N x N matrices given as

|
—
'

r 107 199 3

19
YTt T e Tel TR P 0 0 0 0 0 0 0 0 0
L a8, W ogw o T o o o 0 0 o o o 0
60480 30240 1440 Gq%%q 43200
4081 19133 137 = 17 0 0 0 0 0 0 0 0 0
8, R4y 1ap, oypg sl o o o 0 0000 0
60480 30240 30240 60480 60480
B 57 54 ST 0 0 0 0 0 0 0 0 0 0
Bu = o 2 i i . 0 0 0 0 0 0 0 0 0
2 3 71 1t 1
0 51 = = 2 0 0 0 0 0 0 0 0
) 1
9. Y . 21 24 ;o220 0 0 0 0 0 0
0 0 0 0 0 0 0 0 = & i L 0 0
0 0 0 0 0 0 0 0 ooox o#H o #H oL
L 24 24 24 24 J
= —361 TR TE%U L 0 0 0 0 0 0 0 0 0
=5 s S oS 0 [} 0 0 [} [} o 0 0 o
2P 4 3 i R 0 0 0 0 o o 0 0 o
L‘lﬂf) 1(188() %%# li’ 0 1()(38[)
pre 8 Aitin, o2 T30 0 0 0 0 0 0 0 0 0
L abn 2L e 0 0 0 0 0 0 0 0 0
Bz = | P00 990 R 10 4380 - 0 0 0 0 0 0 0 B 0
0 wr 9E0 HEW 1hED 4460 . 0 0 0 0 0 0
0 0 w0 1m?g§n mld)é%) m16§9g 3135%) T 0 o 0 0 ‘e o
0 0 0 o o 0 0 . o A4 gemo Lozl 20 . 0
| o 0 0 0 0 0 0 0 YWY M iR 0 1|
T680 T00E0 TO080 T80 F360
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3 79 —13 1 . 0 a 0 0 0 0 0 0 0
22}11’ 15120 5 5 F0ZA00
B—T@ TE(T;% 37% =y Tm%yn 0 o 0 0 0 0 0 0 0
3—1;72-6 fﬂ% ?{5 Bﬁ%” TD—%UU 0 0 0 0 0 0 0 0 0
T L2iar Tlﬁ?zfi T T 0 0 0 0 0 0 0 0 0
BEJE%DTT = 2 = 0 a 0 1] 1] 0 0 0 0
Bay = 0 gE%) Bas if”,g ~H,m 887 a o 0 0 o o 0 0
0 0 57(7)%%0 ] ﬁfﬁ% 1'R'{;IIELD‘D 85T 0 0 0 0 0 0 e 0
0 0 724 L] T LT - 0 0 0 0 0 . 0
2 50450 720 EZH] 60280 T00S00 Y . o
0 0 a o 0 0 a . 0 T550 083 1673 20161 88T o
60480 % 0 (] ) 10
o 0 0o o o 0 e ST B
r 31 3251 49 41 —41 T
12&41% 15&3‘9 4%%% 1[]&80 60480 0 0 0 0 0 0 0 0 0
8 e 0 0o 0 0 0 0 0 0 0
BB O T a0 0 o o o o o o
WO O OBE T P 0 0 0 o o o o o 0
0 60450
o o A A S S 0
60150 BRdR  WRY G 4T o
Buy=| 0 28 b DA 9 0 0 0 0 0 0 0
o TEWE WP SR FE - o o0 o o o o o
oo TEODE W OIE OBE o2 0 o o o o o
F04s0 5040 30240 1320 032
0 0 0 0 0 0 0 0 5239 6323 54083 4531 277 0
e o e e o PO 7 R
L 50180 5010 30240 4320 4032 -
- —4330 — 20557 1531 — 1867 281 0 0 0 0 0 0 0 0 0 B
50 151 TR = 0 0 0 0 0 0 0 0 0
Y W TET Sel oo
sl e A 0
METoMR ®E LW B 0 0 o o o o o 0
B, — | TOBU  Sgm FEin G0y oisn 0 0 0 0 0 0 0 0 0
51 — 0 =2 22481 ITESD 84149 19097 0 0 0 0 0 0 0 0
A I 0N O A 0
2 o O s dgw  wme  semso a0 0 2 o 0 e 2
0 0 0 o 0 0 0 o —2870 22481 17658 841490 19097 0
soImD S0ty 383E0  9dES EER
L o0 0 0 0 0 0 0 0 0 0480 a0340 30840 60fA0 048 -
where B;; is an N x N zero matrix for i = 1,2,3,4,5; j = 2,3,4,5.

. 25y0 5 fo 2. 1 35y0 5 —887fo 3 /// 5y0 5277fo 4 (4) 5 —19097 fo
C= hyo, — »h” 3385, —h7vo, »h” Toos00 0 —h7vo VO 0, I’ —5os0
_ ¥ p5_fo  ¥o _¥o @ 5_fo  25y0 35 —fo 11y0 5 79f0 __ Yo

%0,0,...,0, h 33607 127 12 h 080> 121 33600055 0 s W 551000 — 19
_h5 ].7f() h5 79f0 35y0 h5 —23fo O 0 _ 3y0 h5 ].7?0 _ Yo h5 41f0 Yo 3¥%o _h5 41 fo
100800° 'Y 302400° 43200’ 2 6048 7 604807 27 2 60480
5y0 517 fo 58 5— 5181fy 5 —281f9 5853f
h” 5518505450, 90, h 0480 s Y0, h 60480 » Yo, h s0188 > Y0, h” om0 Yo, h o8, 0, - -, 0)
where L(h) is the truncation error of the formulas (2.5) and (2.6). defined as
i i 2 _n 2 _n 3 _m 3 4 (v 4 (iv)\T
Lh)y=(r1...,7n,h7 ... h7n, BT ... R TN, R°Ty ...,hTN,hTf )...,hTJ(V ))
and
Y= () uan) by @), hy () b2y @) 2 @) 3y @), m3 e ) @y, ) g T
_ / ’ 2 o1l 2 3 /// 3 /// 4 (w) 4 p(iv)\T
FY)=(f1,.--,fn,hf1,. .. hfN, B f1,. .., R fn, R RN ) SR fr LRI
The approximate form of the system is given as
5
AY — h BF( )+C =0 (3.6)
where Y is the approximate solution of the vector Y Define the vector F as
E=Y -Y =(e1,---,€en, he/l, ey he;\,, hzelll, e hze,]\l], hBe,l”7 BN hse;\/],, h4e<1iv), S, h4e§\§v))T
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where
? = (y17 ) uN7 hyi? ttt hy;\’7 h2y1/7 ) h2y;\/]7 h3y{”7 R h3y§<;7 h4y§Z’U)7 R h4y§\’;v))T

Subtracting (3.5) from (3.6) and applying the mean value theorem, we obtain the error system as

(A—BJy)E = L(h) (3.7)
where J is the Jacobian matrix
J11 s Jis
" ( | )
Js1 o Jss
ofy of1
9y oy N

whose entries J;; are N x N matrices given as Ji; = : : ;

of N ofn
dyq oyN
of1 of1
6y§J) 6y§\‘;)
Ji,j41 = : : for j =1,2,3,4
ofy ... 2fn
6y§J) . 31/5\3[) .
aff’(f)“ . aff‘(’_)”
oy}’ N
Jij+1 =ht : : ;for g =0,..., 4. and for i = 2,..., 5.
afz(\?fl) af](\jf)
B'ygj) ay%)

Let M = —BJ; be a matrix of dimension 5N so that (3.7) becomes
(A+ M)E = L(h) (3.8)
and for sufficiently small h, A+ M is a monotone matrix and thus nonsingular (see[18]). Hence

(A+M)™" =D=(dij)>>0

SoMdy =070,
E — DL(h), (3.9)
]| = |[DL(h)|| = O(h~*)O (')

— O(h®)

which shows that the method is 6th order convergent, that is, with a global error of order O(hﬁ). O

3.1 Computational aspects

Implementation
The method (2.5) and (2.6) can be expressed in block form as

AoV, = AiVy1 + B°B1F1 + i°BoF,,, p=1,....,T, n=0,5,...,N—5 (3.10)
where
VH = (y17 ce ey Ynts, hyiv sy hy;z+5a thYa BN} h23~/£{+5a hgyill7 LRI h’3yg:’-57 h4y§w>’ RN h4yr(1,l-t)5)T
Vu—l = (y07 sy Yn—4, hy67 RN hy'iz74, h2y(/)/, sty h2y'/r:747 h3y6//7 BRI h3y;7f/747 h4y(()lv)7 sy h4y7(113)4)T

F;_Lfl - (va"'7fn747hf63"')hf7/7.—47h2 6/3"'ah2 ’;L,—47h3 6”7"'7h3 1{1,”—4ah4‘ ézv)a,h4f,sli}i)T
FP‘:(f17"',fn+57hf{7"'7hf’:b+57h2 {l7~~'7h2f’r/1/+57h3 {//7"'7h3f'r/7,//+57h4 1(zv)7"'7h4f7(7,1::%)T

The positive integer I' = % is the number of blocks.
The Boundary Value Methods has been implemented using the system Mathematica, enhanced by
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the feature NSolve/] for linear problems while nonlinear problems were solved by Newton’s method
enhanced by the feature FindRoot[], as summarized in the algorithm below. We begin by noting
that the solution of the problem (1.1) is sought in the subinterval ny = {a =20 < 21 < ... < 2y =
b}, where h = 252 is a constant step-size of the partition of mn, N is a positive integer and n the

N
grid index.

We emphasize the methods (2.5) together with (2.6) lead to a single matrix of finite difference
equations, which is solved to provide all the solutions of (1.1) on the entire interval [a, b].
Step 1: Use the block of (3.10) for u = 1, n = 0 to obtain V1 on the rectangle [yo,ys] X [a, b],
similarly, for 4 = 2, n = 5 so that V3 is obtained on the rectangle [ys,y10] X [a,b], and on the
rectangle [yi0,y15] X [a,b], ..., [yn—5,yn] X [a,b] for p = 3,...T, n = 10,15,..., N — 5, we thus
obtain Vs,..., Vr.
Step 2: Solve the unified block given by the system Vi |JV2lJ...J Vr, obtained in step 1.
Step 3:The solution of (1.1) is approximated by the solutions in step 2 as y = [y(z1), y(z2), . . ., y(zn)],
n=12,...,N.

Algorithm.

Data: a, b (integration interval), N (number of steps)

Input: Impute boundary conditions from the problem.

Input: Adjust conditions so as to determine other unknown conditions
Output: sol, discrete approximate solution of BVMs (2.5)-(2.6)

1 Forn=0,5,...,N —5in (2.5), Combine (2.5) and (2.6), For . = 1,2, ..., r;
2 Generate Vi,Va, ..., Vr, for each n and y;

3 Set System Vy JValJ...JVr;

4 Solve NSolve[System, data] if linear, otherwise go to 5;

5 Solve FindRoot[System, datal,;

6 Letsol = y(an). forn=1,2,...,N;

7 if n = N then

8 | goto11

s else

10 | gotod;

11 end

12 End

4 Numerical Examples

In this section, some numerical examples are used to illustrate the accuracy and efficiency of the
method. It is found that the maximum absolute error (Err) of the approximate solution on the
partitions

v ={a=z0<z1 <2< --- <N =Db}
is given as Err = Max||y(zn) — ynl||, with constant step-size h = (b — a)/N. N is the number of
partitions or subintervals of [z, Zn+5]. This numerical experiments was done using codes written
in Wolfram® Mathematica 8.0.

Example 1. Consider the nonlinear fifth order boundary value problem

v (@) +y P () +e >y =2e"+1, 0<z<1
y(0)=1, y()=e ¢ 0)=1 yQ)=e y"(0)=1

The exact solution is given by y(z) = e®.

In this example, we have compared the BVM with Reproducing Kernel Space Method (RKSM) in
[19], the Embedded Perturbed Chebyshev Integral Collocation Method (EPCICM) and Embedded
Perturbed Bernstein Integral Collocation Method (EPBICM) both in [20]. It can be clearly seen
that the BVM is superior in terms of the maximum errors obtained for this problem.
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Table 1: Error for Problem 1, A = 0.1

Methods  Maximum Absolute error

BVM 1.306 x10~
RKSM 1.0178x107°7
EPCICM 1.121x107%
EPBICM 3.049x1079°

Example 2. Consider the nonlinear fifth order boundary value problem

with theoretical solution y(z) = €.

Table 2 shows the absolute errors obtained by using the Boundary Value Method (BVM),

Variational Iteration Method (VIM) in [21], Homotopy Perturbation Method (HPM) in [22],

Variation

of Parameters (VOP) in [23] and the Adomians Decomposition Method (ADM) in [24]. Is evident
that The BVM performs favourably well as compared to the other methods.

Table 2: Error of methods for Example 2, h = 0.1

z BVM VIM HPM VOP ADM

0.1 266 x10° 1.0x107%7 1.0x107%° 1.3x10"2 1.0x10~%
0.2 9.99 x1071%  2.0x107%? 2.0x107% 1.0x107'' 2.0x107%
0.3 239 x107*  1.0x107°%  1.0x107°® 3.2x107** 1.0x107%®
0.4 4.19 x107 2.0x107°% 2.0x107% 7.0x107'* 2.0x107%®
0.5 5.79 x1071*  3.1x107%® 3.1x107%® 1.2x107'% 3.1x107°8
0.6 651 x107*  3.7x107%°%  3.7x107° 1.9x107° 3.7x107%®
0.7 586 x1071  4.1x107°% 4.1x107%% 2.8x1071° 4.1x107°®
0.8 3.86 x107'* 3.1x107%® 3.1x107%® 3.7x107'% 3.1x1078
0.9 1.24 x107' 14x107°% 1.4x107° 4.7x107° 1.4x107°®
1.0 0.00 0.00000 0.00000  5.6x1071° 0.00000

Example 3. Consider the following fifth-order boundary value problem [5]

Y +24e7 = 5
y(0) =0, y(1) =2,
y'(0) =1, (1) =0.5,

y'(0) = -1

Its exact solution is y(z) = In (1 + x).
Table 3 presents the maximum absolute error obtained using the BVM, methods in [19] and [25].
The errors obtained show that the BVM is superior.

10
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Table 3: Error of methods for Problem 3

Method Maximum Error
BVM (h = 0.05) 1.1 x107 ™
RKSM (n=10) 9.2 x1079¢
Method in [25] 5.0 x107%

Example 4. Consider the following fifth-order boundary value problem [26]

y® (z) — 4y (z)
y(0) =0, y'(0) =
y"(0) =2, y(1) =exp(1)sin(1),

Its exact solution is y(x) = exp (z) sin(z). In Table 4, at different values of N as above, it shows the

Table 4: Maximum Absolute Error for Problem 4

N BVM Method in [26]
16  4.90719x10° ™  6.2513351x10 7
32 3.83693x107'%  1.6224384x107*
64  1.37772x1071Y  4.4584274x107°
128 2.77446x10710  1.1444092x10~°

maximum absolute errors obtained, in comparison with the BVM and the method of Pandey [26].
This shows the superiority of the BVM in terms of the errors obtained.

Example 5. Consider the following fifth-order boundary value problem [26]

6)(p) - W2 _ 23
Y (.T) (5+$)3/ - <5+11)57 0 <z< 17
y(0) =In(5), ¥'(0) =3,

y'(0) = =35, y(1) =In(6)sin (1),

~—

Its exact solution is y(z) = In(x + 5). Similarly, in Table 5, at different values of N, shows the

Table 5: Maximum Absolute Error for Problem 5

N BVM Method in [26]
16  3.37508x10° ™% 1.9752979x10~7
32 5.58664x107'°  4.3869019x107°
64  1.78328x1077  1.1444092x107°
128  6.60452x107*°  2.5033951x10~°

maximum errors obtained, in comparison with the BVM and the method of Pandey [26]. Again,
this shows the superiority of the BVM in terms of the errors obtained.

11
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Example 6. Consider the following fifth-order boundary value problem [5]

y® (z) = y(x) — 15¢® — 10z e”
y(0) =0, y(1) =1,

y(0) =1, y(1) =—e,

y"(0) =0.

Its exact solution is y(z) = x(1 — x)e®. The BVM for small h was compared to the Nonsymmetric

Table 6: Absolute Error for Problem 6. h = 0.001

Methods Maximum error
BVM 1.84x10 %
GJPGM 6.35x107%7
Sextic spline method 4.84%x1077

Cubic B-spline method 1.14x107°

Generalized Jacobi PetrovGalerkin method GJPGM in [27], Sextic spline method in [14] and Cubic
B-spline method in [18]. It is obvious that the BVM performed better in this problem.

5 Conclusion

We have derived continuous block finite difference methods which has be implemented as the
boundary value method (BVM) to solve y = f(z,y,y',9",...,y"")) subject to appropriate
boundary conditions. This was carried out without first reducing the ODE to an equivalent first
order system. The beauty of this method is that it is self starting as it does not require any starting
value as do by other methods. The implementation is less time costly. The numerical experiments
performed shows the efficiency, accuracy and advantages of the method over existing ones in the
literature as regards the problems considered.
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