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Abstract 
 

We manifest some fixed point and common fixed point results for non-Newtonian expansive maps 
defined on non-Newtonian metric spaces. The results offered in this article comprise non-Newtonian 
metric generalizations of some fixed point results in the literature. 
 

 
Keywords: Non-Newtonian metric space; non-Newtonian expansive mapping; fixed point. 
 

1. INTRODUCTION 
 
The idea of non-Newtonian calculus was firstly acquaint by Grossman and Katz [1]. Later, the non-
Newtonian calculus is studied by Bashirov et al. [2], Ozyapici et al. [3], Cakmak and Basar [4] and others    
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[5-17]. Cakmak and Basar [4] have studied the concept of non-Newtonian metric. Several statements about 
them are proven in [7]. Binbasıoglu et al. [18] defined the contractive mapping in non-Newtonian metric 
space. The non-Newtonian calculi are alternatives to the classical calculus of Newton and Leibnitz. They 
confer a wide variety of mathematical tools for usage in technology and mathematics. The non-Newtonian 
calculus has great applications in various areas including fractal geometry, the economics of climate change, 
image analysis, physics, quantum physics, growth/decay analysis, finance, the theory of elasticity in 
economics, marketing and gauge theory, information technology, pathogen counts in treated water, actuarial 
science, tumor therapy and cancer-chemotherapy in medicine, materials science/engineering, demographics, 
finite-difference methods, differential equations, averages of functions, calculus of variations, means of two 
positive numbers, least-squares methods, multivariable calculus, weighted calculus, meta-calculus, 
approximation theory, probability theory, utility theory, Bayesian analysis, complex analysis, functional 
analysis, stochastics, chaos theory, dimensional spaces, decision making, dynamical systems etc. 
 
The study of expansive maps is a very enthralling research area in fixed point theory. Wang et al. [19] 
deputized the concept of expanding maps and vouched some fixed point results in complete metric spaces. 
Daffer and Kaneko [20] vouched some common fixed point results in complete metric spaces for two 
expansive mappings. For more details, we refer the reader to [21-26]. 
 
In this article, we give some properties of the relevant non-Newtonian metric space and non-Newtonian 
normed space. We also introduce the concept of non-Newtonian expansive mappings and present some fixed 
point results in non-Newtonian metric space. These results also generalize some results obtained previously. 
 

2. PRELIMINARIES 
 
An injective function whose domain is ℝ, the set of all real numbers, and whose range is a subset of ℝ is 
called a generator. Each generator generates exactly one type of arithmetic, and conversely each type of 
arithmetic is generated by exactly one generator. As a generator, we choose the function ��� from ℝ to the 
set ℝ� of positive reals, that is to say, 
 

�:ℝ ⟶ ℝ�, 
� ⟼ �(�) = �� = � 

 
and    

���: ℝ� ⟶ ℝ, 
� ⟼ ���(�) = ln � = � 

 
If �(�) = � for all � ∈ ℝ, then � is called identity function and we know that inverse of the identity function 
is itself. If � = �, then � generates the classical arithmetic and if	� = ���, then �  generates geometrical 
arithmetic. All concepts of �-arithmetic have similar properties in classical arithmetic.	�-zero,	�-one and all 
�-integers are formed as 
 

. . . . . . , �(−2), �(−1), �(0), �(1), �(2). . . . . . .. 
 

The �-positive numbers are the numbers � ∈ � such that 0̇ <̇ � and the �-negative numbers are those for 

which � <̇ 0̇. The �-zero, 0̇, and the �-one, 1̇, turn out to be �(0) and �(1). The �-integers consist of 0̇ and 

all the numbers that result by successive �-addition of 1̇ and 0̇ and by successive �-subtraction of 1̇ and 0̇. 
 
We denote by ℝ(�)  the range of generator �  and write ℝ(�) = {�(�) ∶ � ∈ ℝ	} . ℝ(�)  is called Non-
Newtonian real line. Non-Newtonian arithmetic operations on ℝ(�) are represented as follows: 
 

�-addition                   � ∔ � = �����(�) + ���(�)�, 
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�-subtraction              � ∸ � = �����(�) − ���(�)�, 
 

�-multiplication         � ×̇ � = �����(�) × ���(�)�, 
 

�-division                   �/̇� = �(���(�) ���(�)⁄ ), 
 

�-order                       � <̇ �(� ≤̇ �) ⟺ ���(�) < ���(�)����(�) ≤ ���(�)�, 
 
The �-square of a number � ∈ � ⊂ ℝ(�) is denoted by � ×̇ � = ���. For each �-nonnegative number �, the 

symbol √�
�

 will be used to denote � = � �����(�)� which is the unique �-square is equal to � , which 

means that ��� = �. Throughout this paper, ��� denotes the �th non-Newtonian exponent. Thus we have 
 

��� = � ×̇ � = �����(�) × ���(�)� = �([���(�)]�), 
 

��� = ��� ×̇ � = �����(���) × ���(�)� 
 

                     = � ���� ������(�) × ���(�)�� × ���(�)� = �([���(�)]�), 

 
:
:
 

 
              ��� = ����� ×̇ � = �([���(�)]�) 
 

:
:
 

 
The �-absolute value of a number � ∈ � ⊂ ℝ(�) is defined as �(|���(�)|) and is denoted by |�|�. For each 

number � ∈ � ⊂ ℝ(�), √���
�
= |�|� = �(|�

��(�)|). In this case, 
 

                                         |�|� = �

�, if	� >̇ 0̇

0,̇ if	� = 0̇

0̇−̇�, 	if	� <̇ 0̇	

� 

 
Also ℝ�(�) denotes non-Newtonian positive real numbers and ℝ�(�) denotes non-Newtonian negative real 
numbers. �-intervals are represented by 
 

Closed �-interval         [̇�, �]̇ = [�, �]� = {� ∈ ℝ(�) ∶ 		� ≤̇ � ≤̇ �	} 
                                             = {� ∈ ℝ(�) ∶ 	���(�) ≤ ���(�) ≤ ���(�)	} 
 

Open �-interval          (̇�, �)̇ = (�, �)� = {� ∈ ℝ(�) ∶ 		� <̇ � <̇ �	} 
                                             = {� ∈ ℝ(�) ∶ 	���(�) < ���(�) < ���(�)	} 

 
Likewise semi-closed and semi-open �-intervals can be represented.  For the set ℝ(�) of non-Newtonian 
real numbers, the binary operations (∔) addition and (×̇) multiplication are defined by 
 
                       ∔			∶ 		ℝ × ℝ ⟶ ℝ 

                                (�, �) ⟼ � ∔ � = �����(�) + ���(�)� 
 
                       ×̇			∶ 		ℝ × ℝ⟶ ℝ 

                                (�, �) ⟼ � ×̇ � = �����(�) × ���(�)�. 
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The fundamental properties provided in the classical calculus is provided in non-Newtonian calculus, too. 
 
Lemma 2.1 (see [4]). (ℝ(�),∔,×̇) is a topologically complete field. 
 
Lemma 2.2 (see [4])|� ×̇ �|� = |�|� ×̇ |�|� ∀	�, � ∈ ℝ(�). 
 
Lemma 2.3 (see [4]) |�+̇�|� ≤̇ |�|�+̇|�|�, ∀	�, � ∈ ℝ(�) 
 
The non-Newtonian metric spaces provide an alternative to the metric spaces introduced in [4]. 
 
Definition 2.4 (see [4]). Let � be a non-empty set and ��:� × � ⟶ ℝ�(�) be a function such that for all 
�, �, � ∈ �; 
 

(NNN1). ��(�, �) = 0̇ ⟺ � = � 

(NNN2). ��(�, �) = ��(�, �) 

(NNN3). ��(�, �) ≤̇ ��(�, �)+̇��(�, �). 

Then, the map ��  is called non-Newtonian metric and the pair (�, ��) is called non-Newtonian metric 
space. 
 
Definition 2.5 (see [4]). Let � be a vector space on ℝ(�). If a function ‖	. ‖� ∶ 	�	 ⟶ ℝ�(�) satisfies the 
following axioms for all �, � ∈ � and � ∈ ℝ(�): 
  

(NNN1). ‖�‖� = 0̇ ⟺ � = 0̇ 

(NNN2). ‖� ×̇ �‖� = |�|� ×̇ ‖�‖� 

(NNN3). ‖�+̇�‖� ≤̇ ‖�‖�+̇‖�‖�. 

Then it is called a non-Newtonian norm on � and the pair (�, ‖	. ‖�) is called a non-Newtonian normed 
space. 
 
Remark 2.6 (see [4]). Here it is easily seen that every non-Newtonian norm ‖	. ‖� on � produces a non-
Newtonian metric �� on � given by 
 

��(�, �) = ‖�−̇�‖�, ∀	�, � ∈ � 
 
Definition 2.7 (see [4]). (Non-Newtonian convergent sequence) A sequence {��} in a non-Newtonian metric 
space (�, ��)  is said to be non-Newtonian convergent if for every given 	� >̇ 0̇ , there exists an �� =

��(�) ∈ ℕ and � ∈ � such that ��(��, �) <̇ �	for all � > �� and is denoted by Nlim�⟶�∞ �� = �	or ��
						�					
�⎯⎯⎯� � 

as �⟶ ∞. 
 
Definition 2.8 (see [4]). (Non-Newtonian Cauchy sequence) A sequence {��} in a non-Newtonian metric 

space (�, ��) is said to be non-Newtonian Cauchy if for every given � >̇ 0̇, there exists an �� = ��(�) ∈ ℕ 
such that ��(��, ��) <̇ � for all �, � > ��. 
 
Definition 2.9 (see [4]). (Non-Newtonian complete metric space) The space � is said to be non-Newtonian 
complete if every non-Newtonian Cauchy sequence in � converges. 
 
Definition 2.10 (see [4]). (Non-Newtonian bounded) Let (�, ��) be a non-Newtonian metric space. The 
space �  is said to be non-Newtonian bounded if there is a non-Newtonian constant � >̇ 0̇  such that 
��(�, �) ≤̇ � for all �, � ∈ �. The space � is said to be non-Newtonian unbounded if it is not non-Newtonian 
bounded. 
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Proposition 2.11 (see [4]). Suppose that the non-Newtonian metric ��  on ℝ(�) is such that ��(�, �) =
|�−̇�|� for all �, � ∈ ℝ(�), then (ℝ(�), ��) is a non-Newtonian metric space. 
 
Lemma 2.12 (see [18]). Let (�, ��) be a non-Newtonian metric space. Then, 
 

(1). A non-Newtonian convergent sequence in � is non-Newtonian bounded and its non-Newtonian 
limit is unique. 

(2). A non-Newtonian convergent sequence in � is a non-Newtonian Cauchy sequence in �. 
 
From the definition of non-Newtonian Cauchy sequence and Lemma 2.12, we can give the following 
corollary: 
 
Corollary 2.13 (see [18]) A non-Newtonian Cauchy sequence is non-Newtonian bounded. 
 
Lemma 2.14 (see [18]) Suppose (�, ��) is a non-Newtonian metric space and �, �, � ∈ �. Then 
 

|��(�. �)−̇��(�, �)|� ≤̇ ��(�, �) 
 
Definition 2.15 Let � be a set and � a map from � to �. A fixed point of � is a solution of the functional 
equation	�(�) = �, � ∈ �. A point � ∈ � is called common fixed point of two self-mappings � and � on � if 
�(�) = �(�) = �. 
 
Definition 2.16 (see [18]) Suppose (�, ��) is a non-Newtonian complete metric space. A mapping �:� →
� is called non-Newtonian Lipschitzian if there exists a non-Newtonian number � ∈ ℝ(�) such that 
 

                   ����(�), �(�)� ≤̇ � ×̇ ��(�, �), ∀	�, � ∈ �. 
 

The mapping � is called non-Newtonian contractive if	� <̇ 1̇. 
 
Binbasıoglu et al. [18] established following result in non-Newtonian metric space. 
 
Theorem 2.17 Let � be a non-Newtonian contraction mapping on a non-Newtonian complete metric space 
�. Then � has a unique fixed point. 

 

3. Main Results 
 
Now, we give some properties related to non-Newtonian metric spaces and non-Newtonian normed spaces. 

 
Proposition 3.1 The non-Newtonian distance is commutative. 

 
Proof Let � and � be any two non-Newtonian numbers. Then 

 
|�−̇�|� = �(|�

��(�) − ���(�)|) 
            = �(|���(�) − ���(�)|) 
            = |�−̇�|�                                                                                                                             (3.1) 

 
This shows that non-Newtonian distance is commutative. 

 
Proposition 3.2 Let (�, ��) be a non-Newtonian metric space and let �, �, �, � ∈ �. Then 

 
               |��(�, �)−̇��(�, �)|� ≤̇ ��(�, �)+̇��(�, �)                                                                      (3.2) 
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Proof The triangle inequality with the NNM axioms yields first 
 

        ��(�, �) ≤̇ ��(�, �)+̇��(�, �) 
                     ≤̇ ��(�, �)+̇��(�, �)+̇��(�, �) 
 

Using the symmetry axiom, rearrangement of the above inequality gives 
 
                                ��(�, �)−̇��(�, �) ≤̇ ��(�, �)+̇��(�, �)                                                                        (3.3) 
 
Similarly, we have  
 

��(�, �) ≤̇ ��(�, �)+̇��(�, �) 
≤̇ ��(�, �)+̇��(�, �)+̇��(�, �) 
= ��(�, �)+̇��(�, �)+̇��(�, �) 

 
Therefore  
 

��(�, �)−̇��(�, �) ≤̇ ��(�, �)+̇��(�, �)                                                                                         (3.4) 
 
Thus from (3.3) and (3.4) it follows that (3.2). 
 
Proposition 3.3 Let (�, ‖	. ‖�) be a non-Newtonian normed space. Then 
 

|‖�‖�−̇‖�‖�|� ≤̇ ‖�	−̇�‖�, ∀�, � ∈ �                                                                                             (3.5) 
 
Proof Observe that  
 

‖�‖� = ‖�	−̇�+̇�‖� ≤̇ ‖�	−̇�‖�+̇‖�‖� 
 
Therefore ‖�‖�−̇‖�‖� ≤̇ ‖�	−̇�‖�. Swapping the role of � and	�, we also obtain ‖�‖�−̇‖�‖� ≤̇ ‖�	−̇�‖�.This 
implies (3.5). 
 
Now, we introduce some definitions in non-Newtonian metric spaces. 
 
Definition 3.4 Suppose (�, ��) is a non-Newtonian complete metric space. A mapping �:� → � is called 
non-Newtonian expansive if there exists a non-Newtonian number � >̇ 1̇ such that  
 

��(��, ��) ≥̇ � ×̇ ��(�, �), ∀	�, � ∈ �.                                                                                       (3.6) 
 
Definition 3.5 Let (�, ��) be a non-Newtonian metric space and � be a self-mapping of �: (NN1) There 
exist non-Newtonian numbers �, �, � satisfying � ≥̇ 0̇, � ≥̇ 0̇	 and � >̇ 1̇ such that 
 

����(�), �(�)� ≥̇ � ×̇ ��(�, �)+̇� ×̇ ����, �(�)�+̇� ×̇ ����, �(�)�                                                (3.7) 
 
for each �, � ∈ �. In this case � is called non-Newtonian expansive type mapping. 
 
Now, we give a simple but a useful Lemma. 
 
Lemma 3.6 Let {��} be a sequence in a non-Newtonian metric space such that  
 

��(��, ����) ≤ � ×̇ ��(����, ��)                                                                                                     (3.8) 
 

where � <̇ 1̇ and � ∈ ℕ.Then {��} is a non-Newtonian Cauchy sequence in �. 
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Proof By the simple induction with the condition (3.8), we have 
 

 ��(��, ����) ≤̇ � ×̇ ��(����, ��) 
≤̇ ��� ×̇ ��(����, ����) 
≤̇ ����� ×̇ ��(��, ��)                                                                                                (3.9) 

 
Now, if � < �, we have 
 

��(��, ��) ≤̇ ��(��, ����)+̇��(����, ����)+̇. . . . +̇��(����, ��) 
≤̇ ����� ×̇ ��(��, ��)+̇�

���� ×̇ ��(��, ��)+̇. . . . +̇�
�� ×̇ ��(��, ��) 

≤̇ ��� ×̇ �1̇+̇�+̇���+̇. . . . . . . . +̇�������� ×̇ ��(��, ��) 

≤̇
���×̇��(��,��)

�̇�̇�
                                                                                                           (3.10) 

 

Since ��� <̇ 1̇ and ��(��, ��) ∈ ℝ(�) is fixed, we can make  
���×̇��(��,��)

�̇�̇�
 as small as we want by taking � 

sufficiently large. This shows that {��} is a non-Newtonian Cauchy sequence.  
 
Now, we give some fixed-point results for expansive mappings in a non-Newtonian complete metric space. 
Our first main result as follows. 
 
Theorem 3.7 Let �:� → � be a surjection and non-Newtonian expansive mapping on a non-Newtonian 
complete metric space �. Then � has a unique fixed point. 
 
Proof: Let �� ∈ �  be arbitrary. Since �  is surjection, then there exists �� ∈ �  such that �� = �(��) . By 
continuing this process, we get 
 

�� = �(����), � = 0, 1, 2, . . . ..                                                                                                      (3.11) 
 
In case ��� = ����� for some ��,	then it is clear that ��� is a fixed point of �. Now assume that  �� ≠ ����	 for 

all �. Since � non-Newtonian expansive mapping 
 

��(����, ��) = ����(��), �(����)� ≥̇ � ×̇ ��(��, ����) 
 
Consequently    
        

��(��, ����) ≤̇ �1̇/̇�� ×̇ ��(����, ��) = � ×̇ ��(����, ��)                                                          (3.12) 
 

where	� = 1̇/̇� <̇ 1̇. 
 

Then by Lemma 3.6, {��} is an NN-Cauchy sequence. Since (�, ��) is non-Newtonian complete, there 

exists a point � in � such that ��
						�					
�⎯⎯⎯� �. Since � is surjection on �, there exists � ∈ � such that � = �(�). 

We now show that � is a fixed point of the mapping �. It follows from (3.6) and (3.11) that  
 

��(��, �) = ����(����), �(�)� ≥̇ � ×̇ ��(	����, �) 
 

Since ��
						�					
�⎯⎯⎯� � , it follows that ��(����, �)

						�					
�⎯⎯⎯� 0̇  and hence ����

						�					
�⎯⎯⎯� � . By uniqueness of non-

Newtonian limit, we have � = �. This shows that � is a fixed point of �. We conclude the proof by showing 
that � is the only fixed point. Suppose that � is also a fixed point, that is, suppose �(�) = �, then 
  

��(�, �) = ����(�), �(�)� ≥̇ � ×̇ ��(�, �	) 
 

Since � >̇ 1̇, this implies that ��(�, �) = 0̇ and hence � = �.  
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Theorem 3.8 Let (�, ��) be a non-Newtonian complete metric space and let � be a surjective self-mapping 
of �. If � satisfies condition (��1), then � has a unique fixed point in �. 
 

Proof. Using the hypothesis, it can be easily seen that � is injective. Indeed, if we take �(�) = �(�), then, 
using (3.7), we get 
 

0̇ = ����(�), �(�)� ≥̇ � ×̇ ��(�, �)+̇� ×̇ ����, �(�)�+̇� ×̇ ����, �(�)� 
 

And so ��(�, �) = 0̇; that is, we have � = �, since � >̇ 1̇.  
 
Let us denote the inverse mapping of � by �. Let �� ∈ � and define the sequence {��} as follows: 
 

�� = �(��), �� = �(��) = �
�(��), 

�� = �(��) = ��
�(��) = �

�(��), . . . . . . . , ���� = �(��) = �
���(��),                                           (3.13) 

 
Suppose that �� ≠ ���� for all �. Using (3.7) and (3.13), we have 
 

	��(����, ��) = �����
��(����), ��

��(��)� 

≥̇ � ×̇ ����
��(����), �

��(��)�+̇� ×̇ ����
��(����), ��

��(����)� 

+̇� ×̇ ����
��(��), ��

��(��)� 

≥̇ � ×̇ ����(����), �(��)�+̇� ×̇ ��(�(����), ����)+̇� ×̇ ��(�(��), ��) 

≥̇ � ×̇ ��(��, ����)+̇� ×̇ ��(��, ����)+̇� ×̇ ��(����, ��) 
= (�+̇�) ×̇ ��(��, ����)+̇� ×̇ ��(��, ����) 

 
which implies that  
 

�1̇−̇�� ×̇ ��(����, ��) ≥̇ (�+̇�) ×̇ ��(��, ����)                                                                           (3.14) 
 

Clearly, we have �+̇� ≠ 0̇. Hence, we obtain 
 

��(��, ����) ≤̇ �1̇−̇��/̇(�+̇�) ×̇ ��(����, ��) = � ×̇ ��(����, ��)                                              (3.15) 
 

Where � = �1̇−̇��/̇(�+̇�), then we get � <̇ 1̇, since �+̇�+̇� >̇ 1. Repeating this process in condition (3.15), 
we find 
 

��(��, ����) ≤̇ �
�� ×̇ ��(��, ��) 

 
and by Lemma 3.6, {��} is an NN-Cauchy sequence. Since (�, ��) is non-Newtonian complete, there exists 

a point � in � such that ��
						�					
�⎯⎯⎯� � and therefore 

 

                                        	��(��, �)
						�					
�⎯⎯⎯� 0̇,			��(����, ��)

						�					
�⎯⎯⎯� 0̇.  

 
Using the subjectivity of hypothesis, there exists � ∈ � such that � = �(�). From (3.7) and (3.13), we have 
 

	��(��, �) = ����(����), �(�)� 

≥̇ � ×̇ ��(����, �)+̇� ×̇ �������, �(����)�+̇� ×̇ ����, �(�)� 

= � ×̇ ��(����, �)+̇� ×̇ ��(����, ��)+̇� ×̇ ����, �(�)� 
 

If we take limit for �
						�					
�⎯⎯⎯�∞, we obtain 

 

0̇ ≥̇ (�+̇�) ×̇ ��(�, �) 
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which implies that ��(�, �) = 0̇; that is, we have � = �, since �+̇� >̇ 1̇. This shows that � is a fixed point of 
�.  
 
Now we show the uniqueness of �. Let � be another fixed point of � with � ≠ �. Using (3.7), we get 
 

��(�, �) = ����(�), �(�)� 

≥̇ � ×̇ ��(�, �)+̇� ×̇ ����, �(�)�+̇� ×̇ ����, �(�)� 

= � ×̇ ��(�, �)+̇� ×̇ ��(�, �)+̇� ×̇ ��(�, �) 
= � ×̇ ��(�, �)                                                                                                               (3.16) 

 

which implies that � = �, since � >̇ 1̇. Consequently, � has a unique fixed point �. 
 
If we take � = � in condition (��1), then we obtain the following corollary.  
 
Corollary 3.9 Let (�, ��) be a non-Newtonian complete metric space and let � be a surjective self-mapping 

of �. If there exist real numbers �, � satisfying � ≥̇ 0̇	and � >̇ 1̇ such that 
 

����(�), �(�)� ≥̇ � ×̇ ��(�, �)+̇� ×̇ ��������, �(�)�, ����, �(�)��                                           (3.17) 
 
for each �, � ∈ �,	then � has a unique fixed point in �. 
 
Now, we prove following common fixed point result. 
 
Theorem 3.10 Let �, �:� → � be two surjective mappings of a non-Newtonian complete metric space 
(�, ��). Suppose that � and � satisfying inequalities  
 

�� ����(�)�, �(�)� +̇� ×̇ ������(�)�, �� ≥̇ � ×̇ ��(�(�), �)                                                     (3.18) 

 

�� ����(�)�, �(�)� +̇� ×̇ ������(�)�, �� ≥̇ � ×̇ ��(�(�), �)	                                                     (3.19) 

 

for � ∈ � and some non-Newtonian real numbers �, � and � with �−̇� >̇ 1̇+̇� and �−̇� >̇ 1̇+̇�. If � or � is 
non-Newtonian continuous, then �	and � have a common fixed point in �. 
 
Proof Let �� be an arbitrary point in �. Since � is surjective, there exists �� ∈ � such that �� = �(��). Also, 
since �  is surjective, there exists �� ∈ �  such that 	�� = �(��) . Continuing this process, we construct a 

sequence {��} in �  such that ��� = �(�����)  and ����� = �(�����) for all � ∈ ℕ. Now for � ∈ ℕ, by 
(3.18) we have 

 

�� ����(�����)�, �(�����)� +̇	� ×̇ ������(�����)�, ������ ≥̇ � ×̇ ��(�(�����), �����) 

  
Thus 
 

��(���, �����)+̇� ×̇ ��(���, �����) ≥̇ � ×̇ ��(�����, �����) 
 
which implies that 
 

��(���, �����)+̇� ×̇ [��(���, �����)+̇��(�����, �����)] ≥̇ � ×̇ ��(�����, �����) 
 
Hence  
 

��(�����, �����) ≤̇ ��1̇+̇��/̇(�−̇�)� ×̇ ��(���, �����)                                                               (3.20) 
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On other hand, from (3.19), we have   
 

 �� ����(�����)�, �(�����)� +̇� ×̇ ������(�����)�, ������ ≥̇ � ×̇ ��(�(�����), �����) 

 
	Thus  
 

��(�����, ���)+̇� ×̇ ��(�����, �����) ≥̇ � ×̇ ��(���, �����) 
 
which implies that  
 

��(�����, ���)+̇� ×̇ [��(�����, ���)+̇��(���, �����)] ≥̇ � ×̇ ��(���, �����) 
 
Hence  
 

��(���, �����) ≤̇ ��1̇+̇��/̇(�−̇�)� ×̇ ��(�����, ���)                                                                    (3.21) 
 

Let � = ������1̇+̇��/̇(�−̇�)�, ��1̇+̇��/̇(�−̇�)�� <̇ 1̇ 
 
Then by combining (3.20) and (3.21), we have 
 

��(��, ����) ≤ � ×̇ ��(����, ��)		                                                                                                 (3.22) 
 

where � ∈ [̇0,1)̇, ∀	� ∈ ℕ . Then by Lemma 3.6, the sequence {��}  is an NN-Cauchy sequence. Since 

(�, ��) is non-Newtonian complete, there exists a point � in � such that ��
						�					
�⎯⎯⎯� �. Therefore �����

						�					
�⎯⎯⎯� � 

and �����
						�					
�⎯⎯⎯� �  as � → +∞ . Without loss of generality, we may assume that �  is continuous, 

then	�(�����)
						�					
�⎯⎯⎯��(�) as � → +∞. But �(�����) = ���

						�					
�⎯⎯⎯� �  as � → +∞. Thus, we have �(�) = �. Since 

� is surjection on �, there exists � ∈ � such that � = �(�). We now show that � is a common fixed point of 
the mapping � and �. It follows from (3.18) that  
 

�� ����(�)�, �(�)� +̇� ×̇ ������(�)�, �� ≥̇ � ×̇ ��(�(�), �) 

⟹																															 0̇+̇� ×̇ ��(�, �) ≥̇ � ×̇ ��(�, �) 

⟹																															 0̇ ≥̇ (�−̇�) ×̇ ��(�, �) 
 

Since �−̇� >̇ 1̇+̇�,  we conclude that ��(�, �) = 0̇  and consequently � = �.  Hence �(�) = �(�) = �. 
Therefore � is a common fixed point of � and �. 
 
By taking � = � in Corollary 3.9 we have the following Corollary. 
 
Corollary 3.10 Let �:� → �  be two surjective mappings of a non-Newtonian complete metric space 
(�, ��). Suppose that � satisfying inequality  
 

����
�(�), �(�)�+̇� ×̇ ��(�

�(�), �) ≥̇ � ×̇ ��(�(�), �)                                                                (3.24) 
 

for � ∈ � and some nonnegative real numbers �, � and k with �−̇� >̇ 1̇+̇�. If � is continuous, then �	has a 
fixed point in �. 
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