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1 Introduction

Our aim in this paper is to investigate the behavior of the solution of the following nonlinear
difference equation

xn+1 =
xnxn−6

xn−5 (±1− xnxn−6)
, n = 0, 1, ..., (1.1)

where the initial conditions x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary positive real numbers.

The study and solution of nonlinear rational recursive sequence of high order is quite challenging
and rewarding [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Recently, there has been a lot of interest in
studying the qualitative properties of rational recursive sequences, Furthermore diverse nonlinear
trend occurring in science and engineering can be modeled by such equations and the solution about
such equations offer prototypes towards the development of the theory [14, 15, 16, 17, 18, 19, 20,
21, 22]. However, there have not been any suitable general method to deal with the global behavior
of rational difference equations of high order so far [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Therefore, the study
of rational difference equations of order greater than one is worth further consideration.

Many researchers have investigated the behavior of the solution of difference equations, for
example,

Elsayed et al. [33] has obtained results concerning the dynamics and solution of the rational
difference equation

xn+1 =
xn−1xn−5

xn−3 (±1± xn−1xn−5)
.

Elsayed et al. [38] has obtained results concerning The dynamics and the solutions of the
rational difference equation

xn+1 =
xnxn−4

xn−3 (±1± xnxn−4)
.

Aloqeili [3] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Simsek et al. [48] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1

Çinar [7, 8, 9] got the solutions of the following difference equation

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1

−1 + axnxn−1
, xn+1 =

axn−1

1 + bxnxn−1

In [39], Ibrahim got the form of the solution of the rational difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)

Karatas et al. [41] got the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5

Here, we recall some notations and results which will be useful in our investigation. Let I be
some interval of real numbers and let

f : Ik+1 → I,
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be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, x−k+2,
..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (1.2)

has a unique solution {xn}∞n=−k.

Definition 1. (Equilibrium Point) A point x̄ ∈ I is called an equilibrium point of Eq. (1.2) if
x̄ = f(x̄, x̄, ..., x̄). That is, xn = x̄ for n ≥ 0, is a solution of Eq. (1.2), or equivalently, x̄ is a fixed
point of f .

Definition 2. (Stability)

• The equilibrium point x̄ of Eq. (1.2) is locally stable if for every ε > 0, there exists δ > 0
such that for all x−k, x−k+1, x−k+2, ..., x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ |x−k+2 − x̄|+ ...+ |x0 − x̄| < δ,

we have |xn − x̄| < ε, for all n ≥ −k.

• The equilibrium point x̄ of Eq. (1.2) is locally asymptotically stable if x̄ is locally stable
solution of Eq. (1.2) and there exists γ > 0, such that for all x−k, x−k+1, x−k+2, ..., x0 ∈ I,
with

|x−k − x̄|+ |x−k+1 − x̄|+ |x−k+2 − x̄|+ ...+ |x0 − x̄| < δ,

we have lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq. (1.2) is global attractor if for all x−k, x−k+1, ..., x0 ∈ I we
have

lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq. (1.2) is globally asymptotically stable if x̄ is locally stable,
and x̄ is also a global attractor of Eq. (1.2).

• The equilibrium point x̄ of Eq. (1.2) is unstable if x̄ is not locally stable.

The linearized equation of Eq. (1.2) about the equilibrium x̄ is the linear difference equation

yn+1 =

k∑
i=0

∂f(x̄, x̄, ..., x̄)

∂xn−i
yn−i

Theorem 1. Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then |p|+ |q| < 1 is a sufficient condition
for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ....

Remark 1. The theorem can be easily extended to a general linear equations of the form

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ..., (1.3)

where p1, p2, ..., pk ∈ R and k ∈ {0, 1, 2, ...}. Then Eq. (1.3) is asymptotically stable provided that
k∑

i=0

|pi| < 1.

Our goal in this section is to find a specific form of the solutions of some special cases of Eq.
(1.1) and give numerical examples of each case.
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2 On the Difference Equation xn+1 =
xnxn−6

xn−5 (1− xnxn−6)

In this subsection we study the following special case of Eq. (1.1):

xn+1 =
xnxn−6

xn−5 (1− xnxn−6)
, n = 0, 1, ..., (2.1)

where the initial conditions x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary nonzeros real numbers.

Theorem 2. Let {xn}∞n=−4 be a solution of Eq. (2.1). Then for n = 0, 1, ...,

x12n−6 = x−6

n−1∏
i=0

(
1 − (12i)x−6x0

1 − (12i + 6)x−6x0

), x12n−5 = x−5

n−1∏
i=0

(
1 − (12i + 1)x−6x0

1 − (12i + 7)x−6x0

),

x12n−4 = x−4

n−1∏
i=0

(
1 − (12i + 2)x−6x0

1 − (12i + 8)x−6x0

), x12n−3 = x−3

n−1∏
i=0

(
1 − (12i + 3)x−6x0

1 − (12i + 9)x−6x0

),

x12n−2 = x−2

n−1∏
i=0

(
1 − (12i + 4)x−6x0

1 − (12i + 10)x−6x0

), x12n−1 = x−1

n−1∏
i=0

(
1 − (12i + 5)x−6x0

1 − (12i + 11)x−6x0

),

x12n = x0

n−1∏
i=0

(
1 − (12i + 6)x−6x0

1 − (12i + 12)x−6x0

), x12n+1 =
x−6x0

x−5(1 − x−6x0)

n−1∏
i=0

(
1 − (12i + 7)x−6x0

1 − (12i + 13)x−6x0

),

x12n+2 =
x−6x0

x−4(1 − 2x−6x0)

n−1∏
i=0

(
1 − (12i + 8)x−6x0

1 − (12i + 14)x−6x0

), x12n+3 =
x−6x0

x−3(1 − 3x−6x0)

n−1∏
i=0

(
1 − (12i + 9)x−6x0

1 − (12i + 15)x−6x0

),

x12n+4 =
x−6x0

x−2(1 − 4x−6x0)

n−1∏
i=0

(
1 − (12i + 10)x−6x0

1 − (12i + 16)x−6x0

), x12n+5 =
x−6x0

x−1(1 − 5x−6x0)

n−1∏
i=0

(
1 − (12i + 11)x−6x0

1 − (12i + 17)x−6x0

).

Proof: We use an inductive proof for this rational recursive sequences. It is easy to see that for
n = 0, the result holds. Suppose that n > 0 and that the assumption is satisfied for n− 1. That is;

x12n−18 = x−6

n−2∏
i=0

(
1 − (12i)x−6x0

1 − (12i + 6)x−6x0

), x12n−17 = x−5

n−2∏
i=0

(
1 − (12i + 1)x−6x0

1 − (12i + 7)x−6x0

),

x12n−16 = x−4

n−2∏
i=0

(
1 − (12i + 2)x−6x0

1 − (12i + 8)x−6x0

), x12n−15 = x−3

n−2∏
i=0

(
1 − (12i + 3)x−6x0

1 − (12i + 9)x−6x0

),

x12n−14 = x−2

n−2∏
i=0

(
1 − (12i + 4)x−6x0

1 − (12i + 10)x−6x0

), x12n−13 = x−1

n−2∏
i=0

(
1 − (12i + 5)x−6x0

1 − (12i + 11)x−6x0

),

x12n−12 = x0

n−2∏
i=0

(
1 − (12i + 6)x−6x0

1 − (12i + 12)x−6x0

), x12n−11 =
x−6x0

x−5(1 − x−6x0)

n−2∏
i=0

(
1 − (12i + 7)x−6x0

1 − (12i + 13)x−6x0

),

x12−10 =
x−6x0

x−4(1 − 2x−6x0)

n−2∏
i=0

(
1 − (12i + 8)x−6x0

1 − (12i + 14)x−6x0

), x12n−9 =
x−6x0

x−3(1 − 3x−6x0)

n−2∏
i=0

(
1 − (12i + 9)x−6x0

1 − (12i + 15)x−6x0

),

x12n−8 =
x−6x0

x−2(1 − 4x−6x0)

n−2∏
i=0

(
1 − (12i + 10)x−6x0

1 − (12i + 16)x−6x0

), x12n−7 =
x−6x0

x−1(1 − 5x−6x0)

n−2∏
i=0

(
1 − (12i + 11)x−6x0

1 − (12i + 17)x−6x0

).

Now, using the main Eq. (2.1), one has
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x12n−6 =
x12n−7x12n−13

x12n−12 (1 − x12n−7x12n−13)

=

x−6x0

x−1(1 − 5x−6x0)

n−2∏
i=0

(
1 − (12i + 11)x−6x0

1 − (12i + 17)x−6x0

)x−1

n−2∏
i=0

(
1 − (12i + 5)x−6x0

1 − (12i + 11)x−6x0

)

x0

n−2∏
i=0

(
1 − (12i + 6)x−6x0

1 − (12i + 12)x−6x0

)

(
1 −

x−6x0

x−1(1 − 5x−6x0)

n−2∏
i=0

(
1 − (12i + 11)x−6x0

1 − (12i + 17)x−6x0

)x−1

n−2∏
i=0

(
1 − (12i + 5)x−6x0

1 − (12i + 11)x−6x0

)

)

=

x−6

(1 − 5x−6x0)

n−2∏
i=0

(
1 − (12i + 5)x−6x0

1 − (12i + 17)x−6x0

)

n−2∏
i=0

(
1 − (12i + 6)x−6x0

1 − (12i + 12)x−6x0

)

(
1 −

x−6x0

(1 − 5x−6x0)

n−2∏
i=0

(
1 − (12i + 5)x−6x0

1 − (12i + 17)x−6x0

)

)

=

n−2∏
i=0

(
1− (12i+ 12)x−6x0

1− (12i+ 6)x−6x0
)

x−6

(1− 5x−6x0)

n−2∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 17)x−6x0
)(

1− x−6x0

(1− 5x−6x0)

n−2∏
i=0

(
1− (12i+ 5)x−6x0

1− (12i+ 17)x−6x0
)

)

=

n−2∏
i=0

(
1− (12i+ 12)x−6x0

1− (12i+ 6)x−6x0
)

x−6
1

1− (12n− 7)x−6x0(
1− x−6x0

(1− (12n− 7)x−6x0
)

)

=

n−2∏
i=0

(
1− (12i+ 12)x−6x0

1− (12i+ 6)x−6x0
)

x−6

1− (12n− 6)x−6x0
.

Hence, we have

x12n−6 = x−6

n−1∏
i=0

(
1− (12i)x−6x0

1− (12i+ 6)x−6x0
).

Similarly, using the main Eq. (2.1), one has

x12n−5 =
x12n−6x12n−12

x12n−11 (1 − x12n−6x12n−12)

=

x−6

n−1∏
i=0

(
1 − (12i)x−6x0

1 − (12i + 6)x−6x0

)x0

n−2∏
i=0

(
1 − (12i + 6)x−6x0

1 − (12i + 12)x−6x0

)

x−6x0

x−5(1 − x−6x0)

n−2∏
i=0

(
1 − (12i + 7)x−6x0

1 − (12i + 13)x−6x0

)

(
1 − x−6

n−1∏
i=0

(
1 − (12i)x−6x0

1 − (12i + 6)x−6x0

)x0

n−2∏
i=0

(
1 − (12i + 6)x−6x0

1 − (12i + 12)x−6x0

)

)

= x−5(1 + x−6x0)

n−2∏
i=0

(
1 − (12i + 13)x−6x0

1 − (12i + 7)x−6x0

)

(
1 − (12n − 12)x−6x0

1 − (12n − 6)x−6x0

)

n−2∏
i=0

(
1 − (12i)x−6x0

1 − (12i + 12)x−6x0

)

(
1 − x−6x0(

1 − (12n − 12)x−6x0

1 − (12n − 6)x−6x0

)

n−2∏
i=0

(
1 − (12i)x−6x0

1 − (12i + 12)x−6x0

)

)

= x−5

n−2∏
i=0

(
1 − (12i + 1)x−6x0

1 − (12i + 7)x−6x0

)
1 − x−6x0

1 − (12n − 5)x−6x0

.

Hence, we have
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x12n−5 = x−5

n−1∏
i=0

(
1− (12i+ 1)x−6x0

1− (12i+ 7)x−6x0
).

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 3. Eq. (2.1) has one equilibrium point x̄ = 0 and this equilibrium point is not locally
asymptotically stable.

Proof. In this section we investigate the local stability character of the solutions of Eq. (2.1).
Equation (2.1) has a unique positive equilibrium point and is given by

x̄ =
x̄2

x̄ (1− x̄2)
=

x̄

1− x̄2
, or also 1 = 1− x̄2,

then the unique equilibrium point is given by x̄ = 0.
Define the following function

f : (0,∞)3 → (0,∞)

f(u, v, w) =
uw

v (1− uw)
.

Therefore it follows that

fu(u, v, w) =
w

v (1− uw)2
, fv(u, v, w) = − uw

v2 (1− uw)
, fw(u, v, w) =

u

v (1− uw)2
.

Then

fu(x̄, x̄, x̄) =
1

(1− x̄2)2
= 1, fv(x̄, x̄, x̄) = − 1

(1− x̄2)
= −1, fw(x̄, x̄, x̄) =

1

(1− x̄2)2
= 1.

The linearized equation of Eq. (2.1) about x̄ is

yn+1 − yn−6 + yn−5 − yn = 0. (2.2)

It follows from Theorem 1 that Eq. (2.2) is not asymptotically stable. The proof is complete.
For confirming the results of this section, we consider numerical example for ,(See Fig. 1).

3 On the Difference Equation xn+1 =
xnxn−6

xn−5 (−1− xnxn−6)

In this subsection we study the following special case of Eq. (1.1):

xn+1 =
xnxn−6

xn−5 (−1− xnxn−6)
, n = 0, 1, ..., (3.1)

where the initial conditions x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary nonzeros real numbers.

Theorem 4. Let {xn}∞n=−4 be a solution of Eq. (3.1). Then the solution of Eq. (3.1) is bounded
and periodic of period 12 given by:

x12n−6 = x−6, x12n−5 = x−5, x12n−4 = x−4, x12n−3 = x−3,

x12n−2 = x−2, x12n−1 = x−1, x12n = x0, x12n+1 =
x0x−6

x−5(−1− x0x−6)
,

x12n+2 =
x0x−6

x−4
, x12n+3 =

x0x−6

x−3(−1− x0x−6)
, x12n+4 =

x0x−6

x−2
, x12n+5 =

x0x−6

x−1(−1− x0x−6)
.
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n
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x
(n
)

-1

0

1

2

3

4

5

6

7

x(n+ 1) = x(n)x(n−6)

x(n−5)
(

1−x(n)x(n−6)
)

n

0 20 40 60 80 100 120

x
(n
)

-2

0

2

4

6

8

10

12

14

16

18

x(n+ 1) = x(n)x(n−6)

x(n−5)
(

1−x(n)x(n−6)
)

(a) x−6 = 1, x−5 = 2, x−4 = 3,
x−3 = 4, x−2 = 5, x−1 = 6, x0 = 7.

(b) x−6 = 11, x−5 = 12, x−4 =
13, x−3 = 4, x−2 = 15, x−1 =
6, x0 = 17.

Fig. 1: Behavior of the solution of system (2.1). It can be seen that the solution
does’t converge to zero wich confirm the fact that the equilibrium point 0 is not
locally asymptotically stable.

Proof. For n = 0, the result holds. Now suppose that our assumption holds for n− 1. That is;

x12n−18 = x−6, x12n−17 = x−5, x12n−16 = x−4, x12n−15 = x−3,

x12n−14 = x−2, x12n−13 = x−1, x12n−12 = x0, x12n−11 =
x0x−6

x−5(−1 − x0x−6)
,

x12n−10 =
x0x−6

x−4

, x12n−9 =
x0x−6

x−3(−1 − x0x−6)
, x12n−8 =

x0x−6

x−2

, x12n−7 =
x0x−6

x−1(−1 − x0x−6)
.

Now it follows from Eq. (3.1) that

x12n−6 =
x12n−7x12n−13

x12n−12 (−1− x12n−7x12n−13)
=

x0x−6

x−1(−1− x0x−6)
x−1

x0

(
−1− x0x−6

x−1(−1− x0x−6)
x−1

)

=

x−6

(−1− x0x−6)(
−1− x0x−6

(−1− x0x−6)

) =

x−6

(−1− x0x−6)(
1

(−1− x0x−6)

) = x−6

Similarly

x12n−5 =
x12n−6x12n−12

x12n−11 (−1− x12n−6x12n−12)
=

x−6x0

x0x−6

x−5(−1− x0x−6)
(−1− x−6x0)

= x−5

7
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x12n−4 =
x12n−5x12n−11

x12n−10 (−1− x12n−5x12n−11)
=

x−5
x0x−6

x−5(−1− x0x−6)

x0x−6

x−4

(
−1− x−5

x0x−6

x−5(−1− x0x−6)

)

=

1

(−1− x0x−6)

1

x−4

(
−1− x0x−6

(−1− x0x−6)

) =

x−4

(−1− x0x−6)(
1

(−1− x0x−6)

) = x−4

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 5. Eq. (3.1) has a unique equilibrium point which is 0 and this equilibrium point is not
locally asymptotically stable.

Proof. As the proof of Theorem 3 and will be omitted.

For confirming the results of this section, we consider the following numerical examples,(See
Figure 2).

n

0 20 40 60 80 100 120

x
(n
)

-1

0

1

2

3

4

5

6

7

x(n+ 1) = x(n)x(n−6)

x(n−5)
(

−1−x(n)x(n−6)
)

n

0 20 40 60 80 100 120

x
(n
)

-5

0

5

10

15

20

x(n+ 1) = x(n)x(n−6)

x(n−5)
(

−1−x(n)x(n−6)
)

(a) x−6 = 1, x−5 = 2, x−4 = 3,
x−3 = 4, x−2 = 5, x−1 = 6, x0 = 7.

(b) x−6 = 5, x−5 = 3, x−4 = 4,
x−3 = 1, x−2 = 1, x−1 = 3, x0 = 4.

Fig. 2: Behavior of the solution of system (3.1). It can be seen that the solution
does’t converge to zero wich confirm the fact that the equilibrium point 0 is not
locally asymptotically stable.

8



Sanbo et al.; ARJOM, 12(2): 1-12, 2019; Article no.ARJOM.47220

4 Conclusion

We investigated, in this paper, the behavior of the solution of the following nonlinear difference
equation

xn+1 =
xnxn−6

xn−5 (±1− xnxn−6)
, n = 0, 1, ...,

with arbitrary positive real initial conditions x−6, x−5, x−4, x−3, x−2, x−1, x0. Local stability is
discussed and the expressions of the solution of some special cases are given and validated by some
numerical examples.

Acknowledgements

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah. The authors, therefore, acknowledge with thanks DSR technical and financial support.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Abu Alhalawa M, Salah M. Dynamics of higher order rational difference equation. J. Nonlinear
Anal. Appl. 2017;8(2): 363-379.

[2] Ahmed AM, Youssef AM. A solution form of a class of higher-order rational difference
equations. J. Egyptian. Math. Soc. 2013;21:248-253.

[3] Aloqeili M. Dynamics of a rational difference equation. Appl. Math. Comp. 2006;176(2):768-
774.
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