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Abstract 
 

This paper discusses optimally controlled economic growth models with linear aggregate production 
function of capital and labour. It compares and contrasts real per capita income performance over time in 
situations where the labour (population) growth dynamics vary from purely exponential to strongly 
logistic. The study seeks to identify, by means of analytical and qualitative methods, as well as numerical 
simulations, the causal factors and parameters, particularly population related ones, which induce 
qualitative changes in the performance of real per capita income over time. Furthermore, the paper 
discusses the concept of maximum sustainable population growth for the models and the conditions for 
exiting the Malthusian trap. Consumption per (effective) labour is used as the control variable, and capital 
per (effective) labour, as state variable, whereas income per (effective) labour is considered the output 
variable. A time-discounted welfare functional is applied as the models’ objective functional, maximized 
subject to a differential equation in the control and state variables. Each system is found to be controllable 
and observable. The models’ simulation results are reasonably intuitive and realistic. The results also 
indicate that, consistently, real per capita income grows faster and generates greater time values, however 
marginal, as the population growth dynamics tends increasingly logistic. 
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1 Introduction 
 
Economic growth theory suggests that the aggregate production function of an economy, which generally 
determines the time-evolution of gross domestic product (GDP), and hence, real per capita income in an 
economy, is predicated on the level and quality of labour, technology, physical and human capital 
[1,2,3,4,5,6]. Recent studies [7,8,9,10] also lend credence to these assertions. Other salient factors such as 
natural resources, international trade, fiscal and monetary policy options, and even some more, may also 
count. 
 
One such factor of interest among these other factors, controversial in economics literature though, is the 
issue of population, its size and growth dynamics, in relation to real per capita income over time. [11] states, 
inter alia, that, high population growth puts a lot of strain on economic performance, the presence of 
technology notwithstanding. However, optimists such as [12] believe that through technological innovations 
and advancement, the earth’s capability of containing humans is boundless. In contrast to these extreme 
views, [13] states that population growth boosts technological growth, which in turn enhances economic 
well-being. Subsequently, as resources begin to run out, an economy is forced to invent its way out of the 
problem.  
 
In spite of the seeming flaws in Malthus’ prepositions, they sum up the economies of the mediaeval world, 
and up to his (Malthus’) days. This was a time when the industrial revolution of England, preceded by its 
agricultural revolution, over half a century earlier, was already some couple of decades old. Though it 
initially begat a rich middle class, real per capita incomes of the working class saw marginal or no 
improvement [14]. England’s second phase of industrial revolution, starting around the 1850s, resulted in a 
steady but sustained growth in its real per capita income, rising sharply before 1900. This rise in real per 
capita incomes resulted in improved healthcare, economic well-being, education and skill accumulation, 
which in turn, led to the advances in technology, as well as the capitalization of labour [14]. At the same 
time, the rates of population growth (when exponential) and capital depreciation, adversely impact on real 
per capita income over time. Equally, the population growth dynamics is an essential ingredient in the 
determination of the time-value of real per capita income.  
 
The break out from the poverty (Malthusian) trap into sustained rise in real per capita incomes of the 
Western European, North American, and most developed economies of today, have followed similar tracks 
and traits. Contemporary examples abound: the Asian tigers like South Korea, Singapore, China and 
Malaysia. Initially as real per capita income rises, population rises, due mainly to access to improved 
healthcare, and hence a reduction in mortality, and a rise in life expectancy. As these economies surge 
forward into higher real per capita incomes, with its attendant expanded access to education, improved 
economic opportunities and exposure, population growth slows down. 
 
The improved labour productivity, induced by the growing use of technology, physical and human capital, 
grows the economy, and hence, real per capita GDP. [15] cites the USA’s example, in which its 2.1 percent 
annual real growth rate in labour productivity, over a century, converted to about 2.1 percent real annual 
growth in real per capita GDP, doubling living standards every 35 years. 
 
Nonetheless, empirical contemporary economic realities of undeveloped and developing countries show the 
prevalence of high population growth rate, low levels of capital stock, technological progress and investment 
drive, as a result of low savings. Impliedly, to a large extent, these economies ostensibly wallow in a 
Malthusian trap, and find it extremely difficult to break away from this trap. Even though economic history 
of developed economies tells us that this problem is resolvable, there is hardly any workable deterministic 
models that seek to address this. Again, Malthus’ and Boserup’s positions innately suggest some element of 
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population carrying capacity. But there is scarcely any in-depth mathematical analysis on the effects of 
population growth dynamics on economic performance. 
 
Impliedly, the economic history of developed economies suggests that the problems posed by Malthus can be 
surmounted, using methods including, but not limited to: 
 

a) The population (labour) becoming more efficient through increasing deployment of technology. 
b) The population / labour partly assuming the form of capital stock (i.e., human capital) through the 

acquisition of more knowledge, training and skills.   
 
However, there is the need in this regard, to go beyond the largely empirical studies in the current literature. 
Hence, formulate rigorous mathematical model(s) to capture, explain and predict the dependence of 
economic performance on population dynamics and its relation to the other system parameters, especially 
including technology and human capital. 
 
In this paper, however, we deliberate on the impact of population dynamics in optimally controlled economic 
growth models, using a linear aggregate production function of capital and labour (and technology). Local 
system controllability and stability are discussed. The discussion also looks at the idea of maximum 
sustainable population growth, its effects on real per capita income performance. It also performs qualitative 
analyses on the models with respect to their dependence on the system parameters, particularly population 
related ones. It further implements numerical simulations on the models to confirm the suspected 
dependence or otherwise. 
 

2 Theoretical Preliminaries 
 
2.1 Linear control 
 
Let � ∈ �, � ∈ �, and � ∈ � respectively denote the control, state and output variables of a system, with 
representation {�(�), �(�), �(�), �(�)}. The control variable varies within a fixed and pre-specified control set 
[16, 17, 18, 19, 20, 21]. Then the state and output equations of the system are given by 
 

�̇(�) = �(�(�), �(�), �, �) = �(�)�(�) + �(�)�(�)                         (2.1.1) 
 

�(�) = �(�(�), �(�), �) = �(�)�(�) + �(�)�(�)                         (2.1.2) 
 

where � denotes the set of system parameters. 
 

2.2 Optimal control problem and the Hamilton-Pontryagin equations 
 
The optimal control problem primarily seeks to maximize an objective (welfare) functional,  

 

�(�, �) = ∫ �(�(�), �(�), �)��
��

��
 for �� ≥ 0                                                    (2.2.1) 

 

 subject to �̇(�) = �(�(�), �(�), �, �),  for �(��) = �� ≥ 0 and �(��) = ���
≥ 0. 

 

From the above, a Hamiltonian function, �, is constructed thus 

 

� = �(�(�), �(�), �(�), �) = �(�(�), �(�), �) + �(�)�(�(�), �(�), �, �),                                    (2.2.2) 
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� is the co-state function. The associated Hamilton-Pontryagin [22] equations are:  
 

�� = �� + ��� = −�̇                            (2.2.3) 
 

�� = � = �̇                                                                    (2.2.4) 
 

�� = �� + ��� = 0                                                                   (2.2.5) 
 
for �(��) = �� ≥ 0, �(��) = ���

≥ 0 or �(��) = ��(��), for some non-zero value �. 

 

2.3 Stability, controllability and observability criteria 
 
The scalar system provided in Equation (2.1.1) above is stable if and only if �(�) < 0, for all � within the 

interval ���, ���. For instance, [18] suggests that the system is controllable within a given time interval if for 

any �(�) there exists a control �(�).The system is also stabilizable if it is controllable, even if it is not 
completely stable. Similarly, the above system, with accompanying output equation as in Equation (2.1.2), is 

completely observable, for all � within the interval ���, ���, if for any output �(�) there exists a state �(�). 
The system is detectable if it is observable, or stable. Furthermore, there exit unique system solutions if the 
systems are both stabilizable and detectable. 
   

3 Model Development 
 
3.1 Population (Labour) growth dynamics 
 
Suppose that the population (labour), ��(�), grows at an exponential rate, n, where, 0 < � < 1, that is, in 
accordance with the Malthusian population growth. On the other hand, assume that the population, ��(�), is 

governed by a simple logistic growth model with a carrying capacity 
�

�
> 0, then  

 
�

��
��(�) = ���(�) = ��(��(�); �)                         (3.1.1) 

 
 and   
 

�

��
��(�) = ��1 − ���(�)���(�) = ��(��(�); �, �).                                                  (3.1.2) 

 

Per Equation (3.1.1), the equilibrium or critical value, ��, of �� is �� = 0. But 
�

��
��(�) > 0 for any initial 

value �� > �� = 0, implies that ��(�) → ∞ as � → ∞, for 0 < � < 1. That is, since ��(��) = 0 and ��
′(��) =

� > 0, for all 0 < � < 1, �� = 0 is an unstable equilibrium, a source.1 
 

Similarly, from Equation (3.1.2), we obtain two equilibria, ���
= 0 and ���

=
�

�
> 0. Moreover, for any 

initial population ��  such that ���
< �� < ���

, ��(�) > 0  and ��(�) → ���
 as � → ∞ , and thus we have 

0 < ��(�) <
�

�
, implying that ��(�) is bounded for all � ≥ 0 and for 0 < � < 1. Even for any �� > ���

, 

��(�) decays gradually to ���
 over time. Thus ���

= 0 is a source, whereas ���
=

�

�
 is a stable equilibrium, a 

sink. From Equation (3.1.2), ��(�)  and ��(�) are one and the same trajectory, when � = 0. Thus ��(�)  
bifurcates when � = 0. ��(�) bifurcates again when � = 1, as the trajectory tends constant over time at 
� = 1, but decays to zero over time when � > 1,  for 0 < � < 1, and for all � ≥ 0. 

                                                      
1 Additionally, ��

�(��) = � < 0, for all � < 0. Hence, � = 0 is a bifurcation value, and in contrast with the earlier discussion, 
��(�) → 0 as � → ∞ when � < 0, for �� > 0.  
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Now, solving the two equations above, assuming our starting time �� = 0, we respectively obtain 
 

��(�) = ����� = ���                                                     (3.1.3) 
 

��(�) =
�����

�����(�����)
=

���

���(�����)
                          (3.1.4) 

 
where for simplicity, and without any loss of generality, �� has been standardized to unity. However, from 
Equations (3.1.3) and (3.1.4), granted that � ≥ 0 and 0 < � < 1, then for all � ≥ 0, we obtain 
 

��
′ (�)

��(�)
= �  and 

��
′ (�)

��(�)
=

�(���)

���(�����)
                                      (3.1.5) 

 
�(���)

���(�����)
=

�

��
�

���
���

≤ �.                         (3.1.6) 

 

But 1 − � + ���� = 1 + � ��� +
����

�
+ ⋯ � ≥ 1, with equality only when � = 0. Thus  

 
���

���(�����)
=

���

(���)����� ≤ ���.                         (3.1.7) 

 
3.1.1 Sensitivity analysis on population growth dynamics 
 
Suppose ��(�) and ��(�) are put together as �(�) and defined as given in ��(�), that is 
 

�(�) =
���

���(�����)
. 

 
Then for all � > 0, we obtain the following partial derivatives  
 

��

��
= −

����������

[���(�����)]� < 0                           (3.1.8) 

 

��

��
=

(���)����

[���(�����)]�  �
> 0            for 0 ≤ � < 1
= 0                    for � = 1
< 0                    for � > 1

�                                                   (3.1.9) 

 
 and  
 

��

��
=

(���)����

[���(�����)]�  �
> 0            for 0 ≤ � < 1
= 0                    for � = 1
< 0                    for � > 1

�.                                    (3.1.10) 

 
Equation (3.1.8) shows that the population, �(�), is a decreasing function of the parameter �. Thus as the 
population growth becomes logistic, the lower the growth rate becomes, and by extension, the lower the 
population in relation to the one which grows exponentially, all things being equal. Equations (3.1.9) and 
(3.1.10) also suggest that the population, �(�), is a increasing function of the parameter �, and of time, �, 
whenever 0 ≤ � < 1. At the same time, �(�) is a decreasing function of � and � when � > 1, and it decays 
down to zero in the limit, and the higher the value � the faster this is. Thus � > 1 is a recipe for population 
extinction, and hence, undesirable. However, �(�)  becomes a constant function of �  and �  when � = 1. 
From these three equations, it is inferably clear that, for all � > 0, �(�) grows the fastest whenever � = 0, 
that is when the growth dynamics of population is exponential. These results confirm an earlier observations 
made. 
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Fig. 3.1.1. Population growth dynamics over time for varying σ values  
 

 
 

Fig. 3.1.2. Population dynamics over time for varying σ values  
 
From the above, a population that exhibits logistic growth is consistently dominated by or equal to that 
which exhibits exponential growth. Fig. 3.1.1 above demonstrates this. Moreover, the higher the value of �, 
the lower the population, and vice versa. Invariably, in computing real per capita income over time, the 
economy driven by logistic population growth would be sharing gross domestic product amongst much 
fewer people, in sharp contrast to the economy driven by exponential population growth. Hence, all things 
being equal, real per capita income in the economy driven by logistic population growth is most likely to be 
higher than in the economy driven by exponential population growth. The expositions in (3.1.6) to (3.1.10), 
together with its simulation plot in Fig. 3.1.1, and Fig. 3.1.2, collectively and individually, further confirm(s) 
this. 
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Table 3.1.1 shows the average population growth of some selected economies over a period, which tend to 
give credence to the population growth dynamics espoused above (data source: [23]). It can be inferred that 
all the lower income economies covered here experience exponential population growth. The lower middle 
income economies shown in the table also tend to indicate exponential population growth, except probably 
Indonesia whose data does not clearly show this. Gabon which is amongst the league of upper middle 
economies seems to experience exponential population growth. However, the population growth dynamics 
of higher income and higher middle income economies mostly tend to be logistic, as indicated by the data in 
the table. The plots of the actual population figures lend a lot more credence and clarity to the above. 
 

1961-1970 1971-1980 1981-1990 1991-2000 2001-2010 2011-2015 1961-2015

USA 1.106 0.904 0.846 1.098 0.824 0.586 1.019

Belgium 0.502 0.191 0.109 0.244 0.577 0.362 0.370

S. Korea 2.267 1.490 1.022 0.826 0.425 0.341 1.236

Australia 1.781 1.280 1.348 1.032 1.273 1.265 1.501

Algeria 2.465 2.560 2.653 1.620 1.325 1.557 2.292

Gabon 1.587 1.939 2.449 2.326 2.654 2.607 2.471

Brazil 2.538 2.190 1.858 1.404 1.078 0.721 1.878

China 2.168 1.553 1.338 0.932 0.506 0.400 1.337

India 1.905 2.096 2.009 1.718 1.394 1.000 1.928

Indonesia 2.451 2.263 1.855 1.371 1.235 0.994 1.932

Nigeria 1.979 2.521 2.359 2.279 2.380 2.156 2.528

Ghana 2.273 2.039 2.782 2.332 2.355 1.887 2.560

S. Leone 1.459 2.056 2.270 0.512 3.144 1.824 2.083

Gambia 1.731 2.763 3.899 2.613 2.940 2.624 3.073

Ethiopia 2.284 1.890 2.903 2.936 2.503 2.093 2.733

Benin 1.662 2.265 2.725 2.977 2.857 2.156 2.735

Source: World Bank Economic Databas e

Table 3.1.1: Population Growth Dynamics for Selected Countries Across Economics
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3.2 Optimal control of closed economic growth model  
 
Consider an economy in which income, �(�), is either expended on consumption, �(�), or put into an 
investment, �(�) [7, 8, 9, 10, 17]. That is,  
 

�(�) = �(�) + �(�).               (3.2.1) 
 

Assume the only factors of production are labour, �, and capital, �. Hence, �(�) = ���(�), �(�)�, and the 

map �: ��
� ⟼ �� displays constant returns to scale, such that 

 
�� > 0,  �� > 0 and  ��� < 0,  ��� < 0. 

 
Moreover, � satisfies the Inada conditions as in [10] thus  
lim�→� �� = ∞,  lim�→∞ �� = 0, ∀� > 0; and lim�→� �� = ∞,  lim�→∞ �� = 0, ∀� > 0. 
 
If � is the rate of depreciation in �(�), then in its simplest form, economic theory [10, 17, 24, 25, 26, 27, 28, 
29] states that  
 

�(�) = �̇(�) + ��(�).                                                     (3.2.2) 
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Let � = �/�, � = �/�, and � = �/�, and assume a production function of unit homogeneity. Then  
 

�(�) = �(�(�)) = �(�) +
�

�(�)
�

��(�)

��
+ ��(�)� = �(�) + ��(�) +

�

�(�)

��(�)

��
.                    (3.2.3) 

 
Differentiating � = �/� with respect to �, and using results in Section 3.1, then our state equation is 
 

�̇(�) = �(�(�)) − �� +
�(���)

���(�����)
� �(�) − �(�) = �(�(�), �(�), �)                                   (3.2.4) 

 
where �(�) is the state variable, �(�) is the control variable, and �, � and �, are system parameters. 
 
3.2.1 The utility and welfare functional 
 
The utility, �(�), derived from the consumption of goods and services, �(�), is given by 
 

�(�) = �(�(�)),                            (3.2.5) 
 
with the property �′(�(�)) > 0 and �′′(�(�)) < 0 [10, 27, 28]. The welfare functional, �, above becomes 
 

�(�) = ∫ ���(�)���
��

��
.                            (3.2.6) 

 
The utility function per capita is �(�(�). Let � denote the discount rate. Then for � − � > 0,  
 

�(�) = ∫
��(���)��(�(�))

���(�����)
��

��

��
,  �� ≥ ��.                        (3.2.7) 

 
3.2.2 The optimal control problem  
 
Our problem simplifies to finding the control [17, 25, 27, 28], �, which maximizes the objective functional  
 

�(�) = ∫
��(���)��(�(�))

���(����)
��

��

��
,  �� ≥ �� ≥ 0 

  

subject to  �̇(�) = �(�(�)) − �� +
�(���)

���(�����)
� �(�) − �(�) 

 

 for �(��) = �� ≥ 0,  ����� = ���
≥ 0 

 
 with output  �(�) = �(�(�)). 
 

3.3 System Equations 
 
Assume �  is linear in �  and � , that is, �  is defined by ���(�), �(�)� = ��(�) + ��(�). Then from the 
above, �(�(�)) = � + ��(�), where, 0 < � < 1, and 0 < � < 1.  
 

�̇(�) = �� − � −
�(���)

���(�����)
� �(�) − ��(�)                         (3.3.1) 

  
and �(�) = ��(�)                                         (3.3.2) 
 
where �(�) = �(�) − � and ��(�) = �(�) − �. 

 
 



 
 
 

Opuni-Basoa et al.; JAMCS, 24(3): 1-20, 2017; Article no.JAMCS.35984 
 
 
 

9 
 
 

3.4 Local stability, controllability and observability of the systems  
 
Per Equation (3.3.1) the system is locally controllable, since, clearly, given any state �(�), there exists a 
control �(�) which drives the system from one state to the other. It is asymptotically stable if and only if 

� < � +
�(���)

���(�����)
, for all � ≥ 0. However, since this is not guaranteed, the system may not generally be 

stable. However, given that it is completely controllable suggests it is stabilizable. From Equation (3.3.2), 
given that for any output �(�) there exists a state �(�), the system is observable, and thus, reconstructible, 
and subsequently, detectable [18, 21]. The systems being both stabilizable and detectable suggest that there 
exists unique control, �(�), within the admissible control set, with associated state trajectory �(�), which 
solve the problem.  
 

3.5 Sensitivity and bifurcation analyses of the systems 
 
From Equation (3.2.3), using the fact that at the equilibrium �(�) = �(�) = ��(�) , where �(�)  is the 
aggregate savings in the economy at any time �, and � is the propensity to save or the savings rate, we have 
�(�) = (1 − �)�(�) ≈ (1 − �)��(�). Thus Equation (3.2.4) becomes 
 

�̇(�) = ��� − � −
�(���)

���(�����)
� �(�) = �����(�(�), �).                                     (3.5.1) 

 

Thus the equilibrium value, �� = 0, is given by �̇ = 0. As per the argument in Section 3.1, �(�) = �� is a 
source, and for any initial value �(��) > ��, which is in the domain of interest. Thus �(�) → ∞ as � → ∞. 
But at the equilibrium, � = �, 0 < � < 1, and thus given �����(��) = 0 and  

 

�����
′ (��) = �� − � −

�(���)

���(�����)
  

⎩
⎪
⎨

⎪
⎧> 0,        for �� > � +

�(���)

���(�����)

= 0,        for �� = � +
�(���)

���(�����)

< 0,       for �� < � +
�(���)

���(�����)

�                                    (3.5.2) 

 

and thus � = �� +
�(���)

���(�����)
�

�

�
 is a bifurcation value. Similarly, �̇(�) < 0 , if � ≤ � +

�(���)

���(�����)
. But 

�̇(�)
>
<

0 whenever � > � +
�(���)

���(�����)
, with a driving force �(�) = (1 − �)��(�) < �(�). Invariably, �(�) 

bifurcates at � = � +
�(���)

���(�����)
. As � varies through � +

�(���)

���(�����)
, from below, growth in �(�) changes 

from starting a bit faster and slowing down to starting slower and picking up over time. This is reversed if 

�(���)

���(�����)
+ � < � < �

�(���)

���(�����)
+ ��

�

�
, and tends increasingly faster still whenever � > �

�(���)

���(�����)
+ ��

�

�
. 

These characteristic features translate into the corresponding trajectories of �(�).  
 
Subsequently, from �(�) = �(�(�)), we obtain 
 

�̇(�)

�(�)
=

�′(�(�))∙�(�)

�(�(�))
∙

�̇(�)

�(�)
= ��(�(�))

�̇(�)

�(�)
= �

�̇(�)

�(�)
                       (3.5.3) 

 

 ⇒ 
�̇(�)

�(�)
= � ��� − � −

�(���)

���(�����)
� = �(�; �, �, �, �, �)                                                 (3.5.4) 

 

using Equation (3.5.1), where � = ��(�(�)) =
�′��(�)��(�)

�(�(�))
∈ (0, 1) is the elasticity of the production function 

�, which also measures the share of capital in the production mix [10]. 
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To ensure a sustained rise in real per capita income, and hence, economic development, or exit from the 
poverty trap, if it exists, then in a typical economy described by our system, the policy objective should be 
having the right hand side of Equation (3.5.4) to be positive. That is, we should have 
 

�� > � +
�(���)

���(�����)
, for all � ≥ 0                                      (3.5.5) 

 

 or � > �� +
�(���)

���(�����)
�

�

�
, for all � ≥ 0                                                    (3.5.6) 

 
given that � ∈ (0, 1), and assuming � = � at the equilibrium, as used earlier. The more positively large it is, 
the faster the growth in real per capita income. Real per capita income stagnates if the said expression is zero, 
whereas there is retrogression where it is negative. Whenever � = 0, the right hand side of (3.5.4) is more 
likely be marginally greater than or equal to or less than zero, and hence, the more likely the growth in �(�) 
becomes slower, or stagnates, or slows down the more, accordingly. However, when � > 0, the right hand 
side of (3.5.4) is more likely to be far greater than or equal to marginally less than zero. Thus growth in �(�) 
is more likely to be correspondingly faster, or constant, or marginally slow down, all things being equal. The 
greater the value of �, the better. 
 
From Equation (3.5.4), and within the defined set of values for each parameter, we have 
 

��

��
=

�����

[���(�����)]� > 0                                                      (3.5.7) 

 

��

��
=

��(���)�����

[���(�����)]�  �
> 0,           for 0 < � < 1
= 0,                    for � = 0
< 0,                    for � > 1

� , 1                                      (3.5.8) 

 
for all � ≥ 0. From (3.5.7), and hence, Equation (3.5.4), that, as � increases so does the trajectory of �(�) rise 
over time, and vice versa. However, using (3.5.8) and Equation (3.5.4) suggest that the growth in �(�) rises 
when 0 < � < 1, stagnates whenever � = 0, and slows down when � > 1. Similarly,  
 

��

��
= 2�� − � −

�(���)

���(�����)
                                        (3.5.9) 

 
��

��
= −� < 0                                                     (3.5.10) 

 

��

��
= −

��(����)��������(���)�

[���(�����)]�   �
< 0         for 0 ≤ � < 1
= 0                 for � = 1
> 0                 for � > 1

�.                                                  (3.5.11) 

 
Equations (3.5.9) and (3.5.4) consequently suggest that growth in �(�) shoots up as � is increased, and more 
pronounced when � > 0. The converse is equally true. On the other hand, we can deduce from (3.5.10) and 
(3.5.4) that increases in � negatively impact on the growth prospects in �(�), and vice versa. The same 
analysis holds in respect of � whenever 0 ≤ � < 1. However, for � > 1, higher values of � generate higher 
time trajectories of �(�), except that � > 1 is inimical to the very sustenance of population. But � has no 
effect on the time performance of real per capita GDP whenever � = 1. 
 

3.6 The Maximum Sustainable Population Growth Analysis 
 
Consider a simple Malthusian economy in which the only factors of production are natural resources, �(�), 
and labour, �(�). Assume that the aggregate production function is linear in �(�) and �(�), akin  to what has 
been used above, that is, �(�) = ��(�) + (1 − �)�(�), where 0 < � < 1 is the elasticity of �(�) in respect of 
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�(�). Assume further that ��, �� and ���  are respectively the rates of depreciation in-, savings in-, and the 

marginal product �(�), �(�) =
�(�)

�(�)
, then 

 
�̇(�)

�(�)
=

��̇(�)

��(�)��
≈

�̇(�)

�(�)
= ����� − �� −

�̇(�)

�(�)
.                         (3.6.1) 

 
At the equilibrium income per head, the maximum sustainable population growth, MSPG, defining the 
fastest rate at which population can grow without impacting negatively on �(�), is given by 
 

���� = ����� − ��.                                         (3.6.2) 
 
Equation (3.6.1) suggests that when ��  and or ���  increase(s) then �(�) rises. The converse is also true. 
However, whenever �� and or population growth go(es) up, then �(�) declines, and vice versa. If ��  and 
population growth decline at the same time as ��  and ���  also rise, growth in �(�) becomes much faster. 
But ��  and ��� enhance the value of MSPG whereas �� inversely impacts on MSPG. 
 
With the presence of technology, labour augmenting technology, then Equation (3.6.1) becomes 
 

�̇(�)

�(�)
≈ (1 − �)

�̇(�)

�(�)
+ ��̂���̂ − � ���̂ +

�̇(�)

�(�)
�                         (3.6.3) 

 

 ⇒ ���� =
�

�
�(1 − �)

�̇(�)

�(�)
+ ��̂���̂ − ���̂�          (3.6.4) 

 

where �(�)  is technology and �̂(�) =
�(�)

�(�)�(�)
 and ��̂ , ��̂  and ���̂  are as similarly defined earlier. From 

Equations (3.6.3) and (3.6.4), the effects of population growth, ��̂ , ��̂ and ���̂ on the performance of �(�), 
as well as on MSPG, are same as discussed earlier. In addition, whereas technological growth impacts 
positively on the growth of �(�) and MSPG, � inversely affects the MSPG, and hence, the performance of 
�(�). Thus as economic activities become predominantly natural-resources-based, the economy’s capacity 
shrinks or �(�) retrogresses, as MSPG declines. The converse is similarly true. 
 
Fig. 3.6.1 below depicts a basic interface between income and MSPG, showing two equilibria points M and 
G, Malthusian and growth respectively. Whereas M is a sink, a stable equilibrium point, G is a source, an 
unstable equilibrium point. Consequently, whenever �(�) < �� , �(�)  grows till it reaches �� , the 
Malthusian equilibrium real income per capita. If �� < �(�) < ��, then �(�) declines till it gets back to ��. 
But when �(�) > �� , growth in �(�) persists. As the economy experiences increments in �(�) or ��̂  or ���̂  
or a combination of these over time, or a decrements in � or ��̂ or population growth or a combination of 
these, or both conditions, the MSPG shoots up, else it may fall. 
 
If the upsurge in MSPG is ample enough to cause it to move above the cap of the MSPG-income curve, that 
is, above the peak of any actual observable population growth, then capacity is created within the economy 
for economic take-off, else it ends up increasing the population growth rate concurrently. See Fig. 3.6.1 
adjacent. The coming in of additional factors of aggregate production may help in this direction, as 
exemplified in Equation (3.6.5) below.  
 
Thus if new natural resources, ��(�), capitals, ��(�), and some other variable factors (like trade and policy 

options), ��(�), are discovered and utilized, with corresponding savings rates, marginal products, such as ��̂�
, 

and ���̂�
, and so on, then a generalised form of Equation (3.6.4) becomes 

 

���� =
�

�
�(1 − �)

�̇(�)

�(�)
+ ∑ ��̂�

���̂�� + ∑ ��� �
���� �� + ∑ ����

������ − ∑ ����� �.                      (3.6.5) 
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∑ �����  takes care of all the depreciation rates multiplied by relevant factor shares, and � is the sum of all the 

factor shares. The factor shares of ��(�), ��(�) and ��(�) are respectively ��, �� and ��. The terms �̂�, ��� and 

��� are the analogies of �̂ respectively in terms of ��(�), ��(�) and ��(�). The sums of �� and �� form part of 

�, and inversely impact on MSPG, as per Equation (3.6.5). But Equations (3.3.2) and (3.5.10) suggest that �, 
of which kind are the ��, and hence, ��, positively impacts on the performance of �(�). Consequently, to exit 

the Malthusian trap is to pursue measures that enhance technological growth, savings rates and marginal 
products per (effective) labour of the various factors of production, whilst maintaining lower depreciation 
rates as well as minimal shares of natural resources in the aggregate production function. 
  

 
 

Fig. 3.6.1. MSPG-real per capita income dynamics 
 
Unlike the results here, in [30], besides technological growth, the other drivers for real per capita GPD 
growth is the sum of the products of the growths with respect to the various factors of production and related 
factor shares (besides labour), with labour (population) growth and its associated factor share being the 
drawback elements. 
 

3.7 Hamilton-Pontryagin equations for the systems 
 
The associated Hamiltonian function, �, for systems is given by 
 

�(�(�), �(�), �(�), �) =
��(���)��(�(�))

���(�����)
+ �(�) ��� − � −

�(���)

���(�����)
� �(�) − ��(�)�.               (3.7.1) 

 
Using a logarithmic utility functional, �(�(�)) = ln �(�), then Equations (2.2.3) to (2.2.5), give 
 

�(�) =
��(���)�

[���(�����)]�(�)
                                        (3.7.2) 

 

and  �̇(�) = �� +
�(���)

���(�����)
− �� �(�)            (3.7.3) 

 

�̇(�) = �� − � −
�(���)

���(�����)
� �(�) − ��(�)                         (3.7.4) 

 

for  �(0) = �� > 0,   ����� = ���
≥ 0.            (3.7.5) 
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3.8 Analytical solutions to the Hamilton-Pontryagin equations  
 
From Equation (3.7.3), we obtain 
 

�(�) =
��

���(�����)
�(�����)�,                                        (3.8.1) 

 
where �� is the required initial value of �. Hence, Equation (3.7.2) becomes 
 

�(�) =
��(���)�

��
�(�����)� =

�

��
�(�����)�.                          (3.8.2) 

 
From Equations (3.7.2) and (3.7.3), we may also obtain the equation of motion of �(�) as 
 

�̇(�) = (� − � − �)�(�).                           (3.8.3) 
 
Now, putting Equation (3.8.2) into the state equation, that is, Equation (3.7.4), and solving, we obtain 
 

�(�) = [1 + �(��� − 1)]�(�����)� ��� + �(�) −
�

��
ℎ(�)�                       (3.8.4) 

 

where ℎ(�) = ∫
��(���)�

���(�����)
��

�

�
 and �(�) = � ∫

�(�����)�

���(�����)
��

�

�
. Using the terminal condition gives, 

 

�(�) =
��(��)

��(��)
∙

����

��(�)
                                        (3.8.5) 

 

�(�) =
��(��)

������
�(�����)�                             (3.8.6) 

 
�(�) = �(�)���                            (3.8.7) 

 
and �(�) = � + ��(�)���                          (3.8.8) 

 
for � = � − � − � , ��(�) = 1 + �(��� − 1) , ��(�) = ���

���� , ��(�) = ��(�)ℎ(�) , � − � > 0 ,  � > 0 , 

�(�) = �
���������(�)����������(�)�������(�)���������������(�)

������
� ��(�) and ��(�) = (�� + �(�))��(�) − ��(�). 

 
Assuming we introduce technology into our system, such that technology grows exponentially at �, 0 < � <
1, then Equations (3.3.1), (3.5.1) and (3.5.4) respectively becomes 
 

��̇(�) = �� − � − � −
�(���)

���(�����)
� ��(�) − �̂(�)                        (3.8.9) 

��̇(�) = ��� − � − � −
�(���)

���(�����)
� ��(�)                       (3.8.10) 

�̇(�)

�(�)
= (1 − �)� + � ��� − � −

�(���)

���(�����)
� = �(�; �, �, �, �, �, �).                   (3.8.11) 

 

  ⟹ 
��

��
= 1 − � > 0                  (3.8.12) 

 
and hence, growth in �(�) steps up whenever � increases, all things being equal. The reverse is also true. 
The other results obtained in Section 3.5 remain similarly the same here. Solving gives 
 

�(�) =
��(��)

��(��)
∙

�����

��(�)
                                       (3.8.13) 
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�(�) =
����(��)

������
�(�����)�                         (3.8.14) 

 
�(�) = ����(�)���                                       (3.8.15) 

 

�(�) = ���������� + ���(�)��������                       (3.8.16) 
 

where �� = � − � , ��(�) = ����
����� , ��(�) = ���� + ��(�)���(�) − ��(�) , ��(�) = � ∫

�����

���(�����)
��

�

�
, 

��(�) = �
���������(�)�����������(�)��������(�)���������������(�)

������
� ��(�). 

 

3.9 Discussion  
 
From Section 3.1, when a population exhibits logistic growth, its growth is moderated, and hence, generates 
much less numbers, in comparison with the one that exhibits exponential growth. Figs. 3.1.1 and 3.1.2 also 
attest to this. Thus, all things being equal, the time-performance of real per capita income is much better in 
the economy in which population growth is logistic. The greater the value of �, the better, all things being 
equal. All graphs, especially Fig. 3.9.1, illustrate this. 
 

 
 

Fig. 3.9.1. Real per capita GDP trajectories for varying values of σ  
 

3.9.1 The systems without technology 
 

Equations (3.5.4) and (3.5.10), suggest that 
��

��
> 0, and together with (3.5.6) and (3.5.7), it follows that 

higher values of � ignites higher performance in �(�) over time, all things being equal. The converse is also 
true. Fig. 3.9.2 gives credence to this. When the condition in (3.5.6) or (3.5.7) is accomplished, which is 
stepped up when � is greater, then the faster �(�) grows. The reverse is similarly true. The above is also true 
in respect of ��. This is corroborated by Fig. 3.9.3 beneath. 
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Fig. 3.9.2. Real per capita GDP trajectories for varying values of σ & α  
 

 
 

Fig. 3.9.3. Real per capita GDP trajectories for varying values of σ & 
 

From (3.5.12) and (3.5.4), it is evident that 
��

��
< 0 , for all � ≥ 0 , irrespective of the system under 

consideration. Thus, all things being equal, decreasing the value of �, ignites higher time-values of real per 
capita GDP, and vice versa. This negative impact of population growth rate on real per capita GDP is 
minimized when 0 < � < 1, especially when � is closer to 1, and eliminated completely when � = 1. When 
� > 1, higher values of � tend to generate higher time-trajectories of real per capita  income, except that this 
is undesirable since � > 1 is a recipe for a population extinction. Fig. 3.9.4 goes a long way to authenticate 
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these. (Fig. 3.9.5 and Fig. 3.9.6 correspondingly seeks to illustrate the negative effect of �, and �, on the 
time-dynamics of real per capita GDP.) 
 

 
 

Fig. 3.9.4. Real per capita GDP trajectories for varying values of σ & n  
 

 
 

Fig. 3.9.5. Real per capita GDP trajectories for varying values of σ & µ  
 

Subsequently, it is instructive to note that higher values of � and � in combination with smaller values of � 
(as well as those of � and �), except when 0 ≤ � < 1, is the right stimulus for a higher sustained growth in 
real per capita income dynamics over time, when the production function is linear. 
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Fig. 3.9.6. Real per capita GDP trajectories for varying values of σ & �  
 

3.9.2 The system with technology 
 

Equation (3.8.11), and (3.8.12) above suggest that  
��

��
> 0, and hence, higher values of � generates higher 

performance in real per capita GDP over time, all things being equal. Fig. 3.9.7 amply depicts this 
phenomenon. Furthermore, comparing Equation (3.8.11) with Equation (3.5.4), it quite evident that � props 
up the growth prospects in �(�), and thus a key proponent in helping escape the poverty or Malthusian trap, 
if it exists. The higher the values of �, � �, the greater the growth rate is and the faster this is achieved. Fig. 
3.9.7 re-affirms this. The impact of the other parameters on the time evolution of real per capita GDP is 
similar to the discussions in Section 3.9.1 above.  
 

 
 

Fig. 3.9.7. Real per capita GDP trajectories for varying values of σ (Tech)  
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4 Conclusion 
 
Generally, both models created above are not stable, not even at the equilibrium point. But they are each 
controllable, and thus, stabilizable, implying solutions are reachable. The systems are also observable, and 
thus detectable. Hence, there exist unique solutions to the economic growth problem in general. In spite of 
the fact that the models are overly simplified, their forecasts, in control, state and outputs, are reasonably 
good. The analyses suggest that the systems are sensitive to changes in the system parameters, of which 
includes the population dynamics parameter, �,2 plays a fundamental role. 
 
The parameter �  largely determines the extent to which some system parameters impact on the time 
performance of real per capita income, �(�). The models indicate that, to ensure faster growth in real per 
capita income, the population growth dynamics should be increasingly logistic, the share of capital in the 
aggregate production mix should be gradually higher, as well as the technological growth rate. Concurrently, 
the natural growth rate of population (discount and capital depreciation rates, as well) should be 
progressively lower, except when � > 1, safe the stated caveat on it.  
 
Additionally, higher technological growth, savings and marginal products per (effective) labour of the 
various factors of production, with lower depreciation rates and minimal shares of natural resource-based 
factors in the aggregate production mix help exit the Malthusian trap, if it exists. 
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