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Abstract 
 

In this paper, we consider the van der Pol oscillator with small fractional damping. To construct the 
approximate and numerical solutions of the equation, the method of multiple time scales and finite 
differences method are used, respectively. It is shown that the approximate solution is in good agreement 
with the numerical solution for weakly nonlinear case and the fractional derivative order has meaningful 
effects on natural frequencies of the oscillator. 
 

 

Keywords: Fractional differential equation; Caputo fractional derivative; vibration; van der Pol equation; 
multiple time scale; finite difference. 

 

NOMENCLATURES 
 
x :  The dynamical variable 
t :  Independent variable denotes time 
ε :  Positive small parameter 

D :  Fractional-order differential operator in Caputo sense 
Γ(·) :  The gamma function 
α :  Order of fractional derivative 
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1 Introduction 
 
Fractional calculus has been an important mathematical topic since 17th century. Although it has a long 
history, applications of the study have started in recent years. The researchers have been focused on 
applications of the topic only the area of physics and engineering. More recently, a new trend has been to 
investigate the control and dynamics of the fractional order dynamical systems [1-4]. In spite of the fact that 
traditional dynamic models are based on integer order differentiation and integration. Many real dynamic 
systems such as viscoelastic systems, dielectric polarization, electrode–electrolyte polarization, and 
electromagnetic waves [1-3] are better characterized using a non-integer order dynamic model based on 
fractional calculus or, differentiation or integration of non-integer order.  
 
In this respect, the study of nonlinear oscillators is important in the development of the theory of dynamical 
systems. For example, a van der Pol system, which is a typical nonlinear chaotic system, has many 
interesting features and numerous applications. The Van der Pol oscillator (VPO) can be regarded as 
describing a mass–spring–damper system with a nonlinear position. This system depends on damping 
coefficient or, equivalently, an RLC electrical circuit with a negative-nonlinear resistor, and it is used for the 
design of various systems including biological ones, such as the heartbeats or the generation of action 
potentials by neurons, acoustic models, the radiation of mobile phones, and as a model of electrical systems 
[2-4].  
 
Fractional calculus is a very important branch of mathematical analysis. There are extensive studies 
concerning fractional calculus from both theoretical and practical points of view. 
 
It is well-known that the fractional calculus deals with derivatives and integrals to an arbitrary order (real or 
complex). The applications of fractional calculus are numerous in many fields. For example, several 
problems in mechanics (theory of viscoelasticity and viscoplasticity), (bio-)chemistry (modeling of polymers 
and proteins), medicine (modeling of human tissue under mechanical loads) electrical engineering 
(transmission of ultrasound waves), and other problems can be modeled by fractional differential equations. 
Analytical solutions of fractional-differential equations are not always available, and therefore, it is an 
important matter to obtain numerical solutions for such equations via several techniques. In this respect, a 
great number of researchers have considerable interests in investigating numerically various types of 
fractional differential equations (FDEs). For example [A,B,C,D,E] 
 

[A] A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral 
Solutions of Fractional Differential Equations. Entropy 18 (10), 345. 
 
[B] Spectral Solutions for Fractional Differential Equations via a Novel Lucas Operational Matrix of 
Fractional Derivatives. Romanian Journal of Physics 61 (5-6), 795-813. 
 
[C] Spectral Solutions for Multi-Term Fractional Initial Value Problems Using a New Fibonacci 
Operational Matrix of Fractional Integration. Progress in Fractional Differentiation and Applications 2 
(2), 141-151. 
 
[D] New Spectral Solutions of Multi-Term Fractional-Order Initial Value Problems With Error 
Analysis. CMES: Computer Modeling in Engineering & Sciences 105 (5), 375-398. 
 
[E] New ultraspherical wavelets spectral solutions for fractional Riccati differential equations Abstract 
and Applied Analysis 2014. 

 
There are same papers related to VPO systems in fractional order form.For example, Ge and Hsu 
numerically simulate various nonautonomous and autonomous fractional order generalized VPO systems 
[2]. They show that chaotic motions exist in the nonautonomous generalized VPO system excited by a 
sinusoidal time function. Ge and Zhang study anticontrol of chaos of modified VPO systems in fractional 
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order form [4]. They found that chaos existed in the fractional order systems with order from 1.8 down to 0.6 
for the addition of constant term, an efficient way to transform a non-chaotic dynamical system into a 
chaotic one. In the paper [5], chaotic behaviors of a fractional order modified van der Pol system are studied 
by phase portraits, Poincare´ maps and bifurcation diagrams. It is found that chaos exists in this system with 
order from 1.8 down to 0.8 much less than the number of states of the system. 
 
In the paper [6], the influence of a fractional-order time derivative introduced in the Van der Pol equation 
dynamics and also forced version are investigated. The results show that fractional-order systems can exhibit 
different behaviour from those obtained with the standard VPO, depending on the order’s derivative (or the 
system order). 
 
In the article [7], a fractional order Bonhoeffer–van der Pol oscillator is used and its solutions of special type 
are analyzed. In particular, the results show that at different orders of fractional derivative indices the system 
under consideration can be more unstable than the regular one. The article [8] represents some familiar 
dynamic equations in fractal form including two different forms of fractional van der Pol equations and uses 
the method of harmonic balance to obtain approximate expressions for the transition curves in the fractional 
Mathieu equation: 
 
In the paper [9], the effect of the fractional order of damping on the dynamic behaviors of the van der Pol 
equation is studied numerically. The forced, fractionally damped van der Pol equation was transformed into 
a set of fractional integral equations. An Adams–Bashforth–Moulton predictor–corrector method was used to 
solve the fractional integral equations. 
 
In the study [10], the fractional van der Pol equation is solved by means of the variational iteration method. 
In the work presented in 2003 [11], it is calculated analytical approximations to periodic solutions of 
fractional van der Pol equations. 
 
In this study, we use multiple time scale method and numerically by finite difference method to find 
solutions of VPO. There are some approximate solutions of the traditional van der Pol equation using 
multiple time scale method in the literature. One of these solutions is given in the textbook [12]. In the 
textbook, techniques of determining approximate solutions with some perturbation technique are described 
for nonlinear van der Pol equation. These analyses are limited to weakly nonlinear systems. In the paper 
[13], the MLP method, which is enable a strongly nonlinear system to be transformed into a small parameter 
system is presented to extend the range of application to strongly nonlinear systems. It is considered the 
bifurcations of a strongly nonlinear oscillator which is a more general Mathieu–van der Pol system. The 
asymptotic solution of fractional van der Pol oscillators is obtained by the two-scale method and verified the 
validity of the asymptotic solution using a numerical method [14].  
 
In the paper [15], we present an alternative representation of the diffusion equation and the diffusion–
advection equation using the fractional calculus approach, the spatial-time derivatives are approximated 
using the fractional definition recently introduced by Caputo and Fabrizio in the range β,γ∈(0;2] for the 
space and time domain respectively. 
 
We present an analysis based on a combination of the Laplace transform and homotopy methods in order to 
provide a new analytical approximated solutions of the fractional partial differential equations (FPDE) in the 
Liouville-Caputo and Caputo-Fabrizio sense [16]. 
 
The discrete fractional model is a fractionization of the classical difference equation and can be more 
suitable to depict the random or discrete phenomena compared with fractional partial differential equations 
[17]. 
 
In this paper [18]; we present the procedure to obtain analytical solutions of Liénard type model of a fluid 
transmission line represented by the Caputo-Fabrizio fractional operator. For such a model, we derive a new 
approximated analytical solution by using the Laplace homotopy analysis method. 
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An implicit scheme for the numerical approximation of the distributed order time-fractional reaction–
diffusion equation with a nonlinear source term is presented [19]. 
 
It is difficult to find out the analytical solution of nonlinear fractional-order system. Therefore, in most of the 
literature in the area of fractional calculus, approximate and numerical solutions are important to analyze the 
nonlinear fractional-order equations.Hence, the multiple time scale method, approximate solution technique, 
and finite difference method, time-domain numerical method are used in this paper. The transient responses 
of fractional van der Pol equation are obtained by using the mentioned methods. The effects of fractional 
order on transient response are represented. The numerical finite difference method is used to verify the 
validity of the approximate solution.  
 

2 The Approximate Solution by Multiple Time Scales (MTS) Method 
 
In this study, the fractional van der Pol equation with a small fractional damping term is considered 
[8,11,14] 
 

0)()())(1()( 2  txtxDtxtx       1      (1) 

 
where x is the dynamical variable, t is independent variable, which denotes time in dynamical problems and 

ε is a positive small parameter. 
D  is the fractional differential operator that denotes the αth derivative of 

the related function with respect to t and it is defined in the Caputo sense as [1,3,14] 
 

 




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t
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txD
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Γ(·) is the gamma function. Initial conditions are 
 

0)0( ax  , 1)0( ax               (3. a, b) 

 
To determine approximate solution of Eq. (1) by using the method of multiple time scale, the desired 
function x(t) is represented in terms of series [12] 
 

      ...,, 10110  TTxTTxtx o                    (4) 

 
where Tn represent different time scales. The fast and slow time scales are 
 

tT 0 , tT 1                      (5) 

 
Then, the derivatives with respect t for first, second and fractional derivatives transform into [1 and 12] 
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where 
n

n
T

D



 . Substituting Eqs. (4)-(6) into the differential equation (1) and boundary conditions (3), 

separating terms at each order of ε, the equations and boundary conditions at each order are obtained 
 

O(1)    000
2
0  xxD              (7. a, b) 

                           00 0 ax  ,   100 0 axD   
 

O(ε)    00

2

00001011
2
0 2 xDxxDxDDxxD


           (8.a, b) 

                           001 x ,   0010 xD  

 

The solution at the first order is 
 

    00

110
iTTi

eTAeTAx                      (9) 

 

where A  and A  are complex amplitudes and their conjugates,  respectively. To determine structure of A 

and its complex conjugate, the relation (8) and solvability conditions are used. )( 1TA  is represented the 

complex amplitudes in polar form 
 

)(
1

1)(
2

1 TieTaA   

 
Eq. (9) is substituted into (8) and below relation can be obtained to eliminate secular terms 
 

 iAAiAAAiAiD 22
1 2)(2  =0                (10) 

 
where  
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                  (11) 

 

Substituting relationship (11) in Eq. (10) and separating the real and the imaginary part of the equation, 
below relations are obtained 
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The solutions of Eq. (12) and Eq. (13) are, respectively 
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Applying initial conditions yields 
 

42
1

2
1

0



a

a
c     










2
cot1ln

2

3
01


cc                 (16 a and b) 

 
Therefore A(T1) is defined as follows 
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The solution at the first order can be assumed to be approximate solution of the van der Pol equation. So, the 
approximate solution is 
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3 The Numerical Solution by Finite Difference Method (FDM) Method 
 
Here a finite difference method is applied directly to the fractal van der Pol equation. Terms in Eq.(1) 
involving fractal derivatives are approximated with central difference: 
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In these discretized forms, a superscript indicates time step. Substituting these finite difference 
approximations into fractional van der Pol equation yields the discretized equation at the nth time step  
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where n=1, 2, 3,… 
 

For simplicity, backward difference with respect to time is used at the boundary condition: 
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And then, from initial conditions given relations (3 a and b): 
 

00 ax  , 101 taax                        (23) 

 

4 Numerical Results 
 
For simplicity, it is used that a0=1.0 and a1=0.0 in numerical results. The numerical solutions are compared 
with the analytical solution in Fig. 1. For small ε values, the analytical and numerical results are same. 
However, the analytical solution is inaccurate for great ε values, for example ε≥1.0. It means that the 
approximate solution is valid only for weakly nonlinear van der Pol equation. It is expected conclusion, 
because the multiple time scale method is developed to solve weakly nonlinear dynamic problems. 
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Fig. 1. When α=0.5, comparisons of multiple time scale (MTS) and finite difference method (FDM) 

In Fig. 2, the effect of fractal derivatives are represented. Initially, as t increases, the amplitude of vibration 
increases. Then, there is no variation on the amplitude after it has a certain value. The classical damping 
term which has integer derivatives has 
derivative term has ability to change meaningfully the natural frequencies. The fractal derivative approach 
would be to combine the effects of stiffness and damping in a single term. The fractal
variation of the time, the amplitudes of vibrations reach the certain value. When α increase, the damping 
effect is increased and then the amplitude reaches constant values in a shorter term. However, the certain 
amplitude value does not change with α.
 

Dal; ARJOM, 2(2): 1-11, 2017; Article no.

 
(b) 

Fig. 1. When α=0.5, comparisons of multiple time scale (MTS) and finite difference method (FDM) 
(a) for ε=0.1, (b) for ε=1.0 

 
2, the effect of fractal derivatives are represented. Initially, as t increases, the amplitude of vibration 

increases. Then, there is no variation on the amplitude after it has a certain value. The classical damping 
term which has integer derivatives has almost no effect of natural frequencies. However, the fractal 
derivative term has ability to change meaningfully the natural frequencies. The fractal derivative approach 
would be to combine the effects of stiffness and damping in a single term. The fractal coefficient, α, act on 
variation of the time, the amplitudes of vibrations reach the certain value. When α increase, the damping 
effect is increased and then the amplitude reaches constant values in a shorter term. However, the certain 

s not change with α. 
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Fig. 1. When α=0.5, comparisons of multiple time scale (MTS) and finite difference method (FDM)  

2, the effect of fractal derivatives are represented. Initially, as t increases, the amplitude of vibration 
increases. Then, there is no variation on the amplitude after it has a certain value. The classical damping 

almost no effect of natural frequencies. However, the fractal 
derivative term has ability to change meaningfully the natural frequencies. The fractal derivative approach 

coefficient, α, act on 
variation of the time, the amplitudes of vibrations reach the certain value. When α increase, the damping 
effect is increased and then the amplitude reaches constant values in a shorter term. However, the certain 
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Fig. 2. Effect of fractal derivatives order α for ε=0.1 

 

5 Conclusion 
 
In this study, to show effect of fractal derivative on van der Pol oscillator, the approximate and numerical 
solutions are obtained. The approximate solution is compared with numerical solution. Then, the validity of 
the approximate solution is proved by numerical methods.  
 
The weakly nonlinear van der Pol equation is considered and its solutions are determined by using the 
multiple scale method and finite difference method. The possible solutions of this oscillator are discussed for 
different values α and ε. The solution obtained by using multiple time scale method is accurate only for 
small parameter ε.  
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The fractional derivative order α has meaningful effect on natural frequencies of the oscillator. It is expected 
consequences because the fractal derivatives can be used instead of both spring and damping terms. 
However, in the real life, the model including fractional damping term can provide better results than 
including conventional damping term.  
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