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Abstract 

 
The dynamics response of Beam on elastic foundation with axial force to partially distributed moving 

loads was examined. The fourth order  partial differential equation which is the governing equation  was 

first reduced to second order differential equation by assume a solution in form of series solution and 

maple software was finally employed to obtain numerical solution in order to determine the behaviour of 

the system of discussion. The effect of mass of the beam on both the moving force and the moving mass 

were examined. It was noted that increase in mass of the beam is an increase in the transverse 

displacement for both the moving force and the moving mass with respect to both the tensile and the 

compressive forces. Again, it was observed that as the axial force increases, the displacement decreases 

under the action of the moving force but reverse is the case for the moving mass in that, as the axial force 

increases the displacement is equally increases for the tensile force but for compressive force, the 

displacement increases as the axial force increases. More so, it was discovered that deflection due to 

compressive force is greater than that due to tensile force. Furthermore, it was discovered that the 

displacement decreases as the elastic foundation (k) increases for both the moving force and the moving 
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mass for fixed value of M and S with respect to tensile force and compressive force. Finally, the 

deflection due to compressive force is greater than that due to tensile force while the deflection due to 

moving mass is greater than that due to moving force. 

 

 

Keywords: Force; axial force; partially distributed; elastic foundation and moving loads. 

 

1 Introduction 

 
The Dee bridge disaster which was a rail accident caused tremendous human loss in England on 24th May, 

1847 in Chester. Then after, there was such occurrence tagged “Collapse of Tay Bridge “on 28
th

 December, 

1879 in Britain. This was reported to be the worst structural failure to have occurred in terms of both lives 

lost and the size of the failed structure. Several books have been written on the said disaster by [1,2,3] and 

this is in no doubt attracted the attention of many researchers in the field of civil engineering, physics and 

applied mathematics to have interest in doing findings on the dynamic beam structures carrying moving 

loads on them. 

 

Akinpelu [4] examined the response of viscously damped Euler-Bernoulli beam to uniform partially 

distributed moving loads. Here, it was observed that the beam has more than one mode of vibration with 

each mode having a different natural frequency. Concerning the result, it was discovered that as the mass of 

the load increases the amplitude is also increases and the value of the magnification factor occurs for a value 

ω less than one as ε = 0.1. 

 

Akinpelu and Sangoniyi [5] studied dynamics response of simply supported axial force Euler-Bernoulli 

beam subjected to partially distributed moving load. In this study, the effect of axial force and mass of the 

beam on the moving force were examined with respect to both the tensile and the compressive forces. It was 

observed that as the mass of the beam increases, the transverse displacement is also increases for both the 

tensile and the compressive forces under the actions of the moving force and that of the moving mass. It was 

equally observed that as the axial force is increasing, the displacement is decreasing for the tensile force for 

the moving force while in the case of compressive force, as the axial force increases, the displacement is also 

increases for both the moving force and the moving mass. 

 

Dobromir dinev [6] considered the analytical solution of beam on elastic foundation by singularity functions. 

The basic methods for solving the governing equations ware considered and their advantages and 

disadvantages were analyzed.  

 

Michaltsos [7] examined the parameters affecting the dynamic response of light (steel) bridges. The author 

was able to bring together and examined a lot of parameters that are usually not taken into account either 

during the design of a bridge or because some assumptions were supposed by the designer to hold true for 

the design and the calculations of a bridge. 

 

Dynamic Behaviour of a double Rayleigh Beam-System due to uniform partially distributed Moving Load 

was examined by Gbadeyan and Agboola [8]. The solutions of the problem formulated for the beams 

subjected to a uniform partially distributed moving load were found by applying the Fourier and Laplace 

integral transform techniques. It was found that the maximum amplitudes of deflection of the beams 

increases as the speed of the moving load increases. It was also discovered that the maximum amplitude of 

deflections of the upper beam increases while that of the lower beam decreases due to the increase of the 

rotary inertia. Finally, it was also found that the amplitudes of deflection of both beams increase with 

increase in the fixed length of the load. 

 

The Effects of linearly varying distributed moving loads on beams was considered by Gbadeyan and Dada 

[9]. The study examined the problem of assessing the dynamic behaviour of simply supported undamped 

Bernoulli-Euler beams under a linearly varying distributed moving load. The governing equation for the 
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mathematical model was analytically simplified into a set of ordinary differential equations that are solved 

by using Duhamel integral. 

 

Adetunde et al. [10] investigated the dynamic analysis of non pre-stressed Rayleigh beam carrying an added 

mass and traversed by uniform partially distributed moving load. The authors’ modeled the problem 

mathematically in such a way that the moving load is small compared with mass of the beam. It was 

observed from the result that; the amplitude deflection decreases as the length of the load (ε) increases for a 

fixed value of the moving load (ML)  

  

Chopade and Barjibhe [11] considered free vibration analysis of fixed free beam with theoretical and 

numerical approach. The authors placed their focus on the analysis of transverse vibration of fixed free beam 

and also investigated the mode shape frequency. It was concluded that theoretical data is in good agreement 

with numerical results with negligible error. 

 

Gbadeyan et al. [12] investigated Dynamic Response of Two Viscoelastically Connected Rayleigh Beams 

Subjected to Concentrated Moving Load. The governing differential equations of the problem were solved 

by using the finite Fourier Integral and Laplace transformation techniques with respect to the prescribed 

initial and boundary conditions. The effects of the velocity of the moving load, rotary inertia of the beam, 

stiffness coefficient and damping coefficient of the joining layer on the deflections of the beams were also 

highlighted. It was found that the amplitude of the deflection of both the upper and lower beams increases 

with increasing values of velocity of the moving load. 

 

Nawal [13] considered free vibration of simply supported beam subjected to axial force. The author 

examined the free transverse vibrations of a uniform beam that is simply supported at both ends subjected to 

a static axial force. The beam considered for this study are of different shapes of cross section, that is, 

Rectangle section, Box section, I - section and T – section with the same value of area for all but different 

values of second moment of area. The effects of static axial force (tension and compression) on the 

characteristics of vibration were considered. It was shown that the beam of rectangular cross section and that 

of T – section have the least and the highest natural frequency respectively when compared with other types 

for the same applied force. José [14] examined the dynamic loads in new engineering codes for railway 

bridges in Europe and Spain. 

 

Ogunyebi and Sunday [15] worked on the response of a non -uniform beam transverse by mobile distributed 

loads. The author investigated the response of non-uniform beam under tensile stress and resting on an 

elastic foundation. The fourth order partial differential equation governing the problem was solved when the 

beam is transverse by mobile distributed loads. The elastic properties of the beam, the flexible rigidity, and 

the mass per unit length were expressed as functions of the spatial variable using Struble’s method. It was 

observed that the deflection of non-uniform beam under the action of moving masses is higher than the 

deflection of moving force when only the force effects of the moving load was considered. 

 

Omolofe and Ogunyebi [16] considered the transverse vibrations of elastic thin beam resting on variable 

elastic foundations subjected to traveling distributed forces. The robust techniques called Galerkin’s method 

in conjuction with integral transform method were used to treat the fourth order partial differential equations 

describing the motion of the beam load system. It was equally found that the incorporating axial force N, 

foundation modulus K and a damping term in the governing equation of motion increase the critical velocity 

of dynamical system, thereby reducing the risk of resonance. 

 

You-Qi Tang et al. [17] studied parametric resonance of axially moving Timoshenko beams with time-

dependent speed. The Hamilton principle was employed to obtain the governing equation which is a 

nonlinear partial-differential equation due to the geometric nonlinearity caused by the finite stretch of the 

beam. The method of multiple scales was applied to predict the steady-state response. The stability of 

straight equilibrium and nontrivial steady-state response were analyzed by using the Lyapunov linearized 

stability theory. Some numerical examples were presented to demonstrate the effects of speed pulsation and 

the nonlinearity in the first two principal parametric resonances. 
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Obviously, when the distributed loads are moving on a structure, they produce greater deflection and stresses 

than when such loads are static, thus, the analysis of the behaviour of beam under moving loads are of great 

importance to those in the field of structural engineering, physics and applied mathematics, hence, there is 

need for the study of moving load on elastic foundation which is of great importance in the field of 

transportation. 

 

This paper examined the simply supported dynamics response on elastic foundation axial force Euler-

Bernoulli beam subjected to partially distributed moving load and the main objectives of the study are stated 

thus: 

 

i. To reduce the fourth order partial differential equation to second order differential equation.  

ii. To solve the second order differential equation analytically using maple software. 

iii. To examine the effects of mass of the load on the displacement response of simply supported beam 

under the action of moving force and moving mass. 

iv. To determine the effects of axial force on the moving force and the moving mass. 

v. To compare the displacement response of simply supported beam due to moving force and moving 

mass. 

vi. To make comparison between the displacement response of simply supported beam with tensile and 

compressive forces. 

 

2 The Governing Equation 

 
Dynamics response of Beam on elastic foundation with axial force to partially distributed moving loads was 

considered and the governing equation is given as equation (1) which is:  

 
2 2 2

2 2 2
( ) ( ) ( , )...(1)

y y
EI x Sy m x ky F x t

x x t
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− + + = 
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The boundary and initial conditions are:  
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Where; V is the constant velocity of the load, Ԑ is the length of the beam, E is the young modulus, I is the 

moment of inertial, EI is the flexural rigidity, y is the deflection/transverse displacement, x is the Coordinate, 

t  is the time, M is the mass of the load or beam, m is the mass per unit length, g is the acceleration due to 

gravity, H is the Heaviside unit function, 
ξ

 = v t + 
Ԑ

�
  is the fixed length of the load, S is the axial force, k is 

the elastic foundation and F(x, t) is the applied force. This applied force per unit length 
),( txF

 is the 

uniform partially distributed moving load which is given as  

 

  

4 2 2

4 2 2
m ( , )

x

y y y
EI sy ky F x t

t x

 ∂ ∂ ∂
+ − + = 

∂ ∂ ∂                                                                                     (4) 

 

3 Method of Solution 

 
Substitute for the applied force F (x, t) into equation (1) to have equation (5) as: 

 (1) 

(2) 

(3) 
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2 2 2 2 2 2
2

2 2 2 2 2
( ) ( )   2

2 2

y y y y y
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x x t t x t x

ε ε
ξ ξ
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This fourth order partial differential equation in (5) has to be reduced to second order ordinary differential 

equation and the assumed solution is as follows: 
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When eq. (6) is used on eq. (5) then;  
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Multiply equation (7) by 
jy
(x) and integrate along the length of the beam and applying the orthogonality 

condition gives   
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As per the free vibration, 
ymEIyiv 2ω=

 then equation (8) becomes 
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But yi(x) with respect to elastic foundation gives; 
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Determine the derivative of eq. (10) and substitute in (9) to have 
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 Further simplification and substitution of P and Q in eq. (12) gives 
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4 Numerical Analysis and Discussion of Results 

 
Two cases were considered as far as this paper is concerned which are a case of moving force and a case of 

moving mass. 
 

4.1 The moving force 
 
In this case, only the first term on the right hand side of the equation (13) is retained as the inertia  effect of 

the moving load is neglected, hence equation (14) is obtained 
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4.2 The moving mass  
 

Here, both the inertia effect of the moving load and the force effect were considered in (13) resulted into 

equation (15) as follows; 
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 (15) 

 

Eq. (14) and (15) were solved numerically by the help of maple software using the following numerical 

values:   

ε = 0.1, m = 70, V=3.3, g = 9.8, π =3.142, ,
2

π
λ

n
= ε = 0.1, E = 2.07x10

11
, I = 12.27x10

-6
, m = 70,            

k = 50000, 150000 and 450000. ,
4

m

EIλ
ω = L=10, α = 10, θ = 0.1, 

2

ε
ξ += vt  

 

Figs. 4.1 to 4.4 are the graphs of displacement against time for moving force and moving mass for the tensile 

and the compressive forces with various values of mass M. It was observed that the displacement increases 

as M increases for both the tensile and the compressive forces for the moving force and the moving mass. 

 

Figs. 4.5 to 4.8 are the graphs of displacement against time for moving force and moving mass for both the 

tensile and the compressive forces with various values of axial force, S. Figs. 4.5 and 4.6 shown that 

displacement decreases as S increases for both the tensile and the compressive forces but for the case of the 

moving mass, it was revealed that as S increases, the displacement decreases for the tensile force as reflected 

in Fig. 4.7 while for the compressive force, the displacement increases as S increases in Fig. 4.8.  
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Figs. 4.9 to 4.12 are graphs of displacement against time for moving force and moving mass for fixed values 

of M and S with tensile force and compressive force for various values of elastic foundation (K). It was 

discovered that the displacement decreases as the elastic foundation (k) increases for both the moving force 

and the moving mass with respect to tensile force and compressive force. 
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Fig. 4.13 is displacement against time for both tensile and compressive forces with respect to mass. Here, it 

was shown that the deflection due to compressive force is greater than that due to tensile force. Fig. 4.14 is 

displacement against time for moving force and moving mass with respect to mass. This figure shown that 

the deflection due to moving mass is greater than that due to moving force. 

 

 
 

Fig. 4.13. Displacement against time for both tensile and compressive forces with respect to mass  
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Fig. 4.14. Displacement against time for moving force and moving mass with respect to mass  
 

5 Conclusion 
 

Dynamics response of Beam on elastic foundation with axial force to partially distributed moving loads was 

investigated. The governing equation which was a fourth order  partial differential equation was first reduced 

to second order differential equation by assume a solution in form of series solution and numerical method 

using maple software to examine the behaviour of the system of discussion. Mass of the beam on the moving 

force and the effect of axial force were examined with respect to the force (both tensile and compressive 

forces). It was noted that  increase in mass of the beam resulted to increase in transverse displacement called 

deflection for both the moving force and the moving mass with respect to the tensile and the compressive 

forces. It was also observed that as the axial force increases, the displacement decreases under the action of 

the moving force while in the case of moving mass, as the axial force increases the displacement decreases 

for the tensile force but for compressive force, the displacement increases as the axial force increases. Again, 

for the case of displacement against time for moving force and moving mass for constant values of M and S 

with tensile force and compressive force for various values of K, it was discovered that the displacement 

decreases as the elastic foundation (k) increases for both the moving force and the moving mass. Finally, it 

was shown that the deflection due to compressive force is greater than that due to tensile force and in making 

comparison between the displacement response of simply supported beam due to moving force and moving 

mass, the deflection due to moving mass is greater than that due to moving force.  
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