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In many research works Bouaouid et al. have proved the existence of mild solutions of an abstract class of nonlocal conformable
fractional Cauchy problem of the form: dαxðtÞ/dtα = AxðtÞ + f ðt, xðtÞÞ, xð0Þ = x0 + gðxÞ, t ∈ ½0, τ�: The present paper is a
continuation of these works in order to study the controllability of mild solution of the above Cauchy problem. Precisely, we
shall be concerned with the controllability of mild solution of the following Cauchy problem dαxðtÞ/dtα = AxðtÞ + f ðt, xðtÞÞ +
BuðtÞ, xð0Þ = x0 + gðxÞ, t ∈ ½0, τ�, where dαð:Þ/dtα is the vectorial conformable fractional derivative of order α ∈ �0, 1� in a
Banach space X and A is the infinitesimal generator of a semigroup ðTðtÞÞt≥0 on X. The element x0 is a fixed vector in X
and f , g are given functions. The control function u is an element of L2ð½0, τ�,UÞ with U is a Banach space and B is a
bounded linear operator from U into X.

1. Introduction

Mathematical models based on factional derivatives with
respect to time have been the focus of many studies due to
their recent applications in various areas of science [1–5].
Many concrete applications prove that the fractional deriva-
tive is a very good approaches to deal better with modeling
of dynamical systems with memories [6–17]. Regarding to
the literature of fractional calculus, it is well known that
there are many approaches to define fractional derivatives
including the Riemann-Liouville and Caputo definitions.
Unfortunately, these definitions have some shortcomings.
For example, they do not satisfy derivative formulas for the
product and quotient of two functions. In consequence,
many researchers have paid attention to propose a best
and simple definition of fractional derivative [18, 19]. For
example in the work [18], the authors have proposed a
new definition of fractional derivative named conformable
fractional derivative. This novel fractional derivative is very
simple and verifies all the properties of the classical deriva-

tive. Actually, the conformable fractional derivative becomes
the subject of many research contributions [20–39].

For example in [20–22], the authors have proved the
existence of mild solution for the following nonlocal con-
formable fractional Cauchy problem:

dαx tð Þ
dtα

= Ax tð Þ + f t, x tð Þð Þ, x 0ð Þ = x0 + g xð Þ, t ∈ 0, τ½ �, ð1Þ

where dαð:Þ/dtα represents the conformable fractional deriv-
ative of order α ∈ �0, 1�, and A is the infinitesimal generator
of a semigroup ðTðtÞÞt≥0 on a Banach space ðX, k:kÞ ([40]).
The element x0 is a fixed vector in X and f : ½0, τ� × X⟶
X, g : C ⟶ X are given functions, with C is the Banach
space of continuous functions xð:Þ defined from ½0, τ� into
X equipped with the norm jxjc = supt∈½0,τ�kxðtÞk. The expres-
sion xð0Þ = x0 + gðxÞ means the so-called nonlocal condi-
tion, which can be applied in physics with better effects
than the classical initial condition [41–43].
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Recently, the study of control problems has attracted the
attention of many mathematicians and physicists in various
fields of science [44–50]. For example, in theory of differ-
ential equations, the controllability consists to control evo-
lution systems from the initial position to the desired
position. Motivated by the fact that the controllability is
a most important qualitative behavior of a dynamical system,
we will be concerned with the controllability of the Cauchy
problem (1). Precisely, we will prove a controllability result
for the following Cauchy problem

dαx tð Þ
dtα

= Ax tð Þ + f t, x tð Þð Þ + Bu tð Þ, x 0ð Þ = x0 + g xð Þ, t ∈ 0, τ½ �,
ð2Þ

where the control function uð:Þ is an element of L2ð½0, τ�,UÞ
with U is a Banach space and B is a bounded linear operator
from U into X.

The rest of this paper is organized as follows. In Section
2, we briefly recall some tools related to the conformable
fractional calculus. In Section 3, we present the main result.
Section 4 is devoted to a concert application.

2. Preliminaries

Recalling some preliminary facts on the conformable frac-
tional calculus.

Definition 1 (see [18]). For α ∈ �0, 1�, the conformable frac-
tional derivative of order α of a function xð:Þ: ½0,+∞½⟶ℝ
is defined as

dαx tð Þ
dtα

= lim
ε⟶0

x t + εt1−α
� �

− x tð Þ
ε

for t > 0 and dαx 0ð Þ
dtα

= lim
t⟶0+

dαx tð Þ
dtα

,
ð3Þ

provided that the limits exist.
The conformable fractional integral Iαð:Þ of a function

xð:Þ is defined by

Iα xð Þ tð Þ =
ðt
0
sα−1x sð Þds, for t > 0: ð4Þ

Theorem 2 (see [21]). If xð:Þ is a continuous function in the
domain of Iαð:Þ, then, we have

dα Iα xð Þ tð Þð Þ
dtα

= x tð Þ: ð5Þ

Theorem 3 (see [23]). If xð:Þ is a differentiable function,
then, we have

Iα
dαx :ð Þ
dtα

� �
tð Þ = x tð Þ − x 0ð Þ: ð6Þ

Definition 4 (see [23]). The conformable fractional Laplace
transform of order α ∈ �0, 1� of a function xð:Þ is defined as
follows

Lα x tð Þð Þ λð Þ≔
ð+∞
0

tα−1e−λt
α/αx tð Þdt, λ > 0: ð7Þ

The following proposition gives us the actions of the
conformable fractional integral and the conformable frac-
tional Laplace transform on the conformable fractional
derivative, respectively.

Proposition 5 (see [23]). If xð:Þ is a differentiable function,
then, we have the following results

Iα
dαx :ð Þ
dtα

� �
tð Þ = x tð Þ − x 0ð Þ, ð8Þ

Lα

dαx tð Þ
dtα

� �
λð Þ = λLα x tð Þð Þ λð Þ − x 0ð Þ: ð9Þ

According to [28], we have the following remark.

Remark 6. For two functions xð:Þ and yð:Þ, we have

Lα x
tα

α

� �� �
λð Þ =L1 x tð Þð Þ λð Þ, ð10Þ

Lα

ðt
0
sα−1x

tα − sα

α

� �
y sð Þds

� �
λð Þ =L1 x tð Þð Þ λð ÞLα y tð Þð Þ λð Þ,

ð11Þ
provided that the both terms of each equality exist.

3. Main Result

Lemma 7. If x ∈C is a solution of Cauchy problem (2), then,
the function xð:Þ satisfies the following integral equation

x tð Þ = T
tα

α

� �
x0 + g xð Þ½ �

+
ðt
0
sα−1T

tα − sα

α

� �
f s, x sð Þð Þ + Bu sð Þð Þds:

ð12Þ

The proof of this result is essentially based on the conform-
able fractional Laplace transform. For the complete proof,
one can see the works [20–22].

Definition 8 (see [20–22]). A function x ∈C is called a mild
solution of Cauchy problem (2) if

x tð Þ = T
tα

α

� �
x0 + g xð Þ½ �

+
ðt
0
sα−1T

tα − sα

α

� �
f s, x sð Þð Þ + Bu sð Þð Þds:

ð13Þ
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Now, we deal with the controllability of Cauchy
problem (2).

Definition 9. The Cauchy problem (2) is said to be controlla-
ble on ½0, τ�, if for every x1 ∈ X, there exists a control
u ∈ L2ð½0, τ�,UÞ such that the mild solution xð:Þ of (2)
satisfies xðτÞ = x1.

In the sequel of this paper, we will need the following
assumptions:

(H1) The function f ðt,:Þ: X⟶ X is continuous and
there exist positive constants L, K such that k f ðt, xÞk ≤ Lkxk
and k f ðt, yÞ − f ðt, xÞk ≤ Kky − xk for all x, y ∈ X.

(H2) The function f ð:,xÞ: ½0, τ�⟶ X is continuous for
all x ∈ X.

(H3) The function g : C ⟶ X is continuous.
(H4) There exist positive constants M and N such that

g xð Þk k ≤M xj jc and g yð Þ − g xð Þk k ≤N y − xj jcfor all x, y ∈C :

ð14Þ

(H5) The bounded linear operator W : L2ð½0, τ�,UÞ⟶
X defined by

W uð Þ =
ðτ
0
sα−1T

τα − sα

α

� �
Bu sð Þds, ð15Þ

has an induced inverse operator ~W
−1
, which takes values in

L2ð½0, τ�,UÞ/Ker ðWÞ, and there exist positive constants R1,

R2 such that kBk ≤ R1 and k ~W
−1k ≤ R2.

Theorem 10. Assume that ðH1Þ − ðH5Þ hold, then Cauchy
problem (2) is controllable on ½0, τ�, provided that

sup
t∈ 0,τ½ �

T
tα

α

� �����
���� 1 + R1R2

τα

α
sup
t∈ 0,τ½ �

T
τα

α

� �����
����

 !

� max M + τα

α
L,N + τα

α
K

� �
< 1:

ð16Þ

Proof. By using hypothesis ðH5Þ for an arbitrary function
xð:Þ, we can define a control uxð:Þ as follows

ux :ð Þ = ~W
−1

x1 − T
τα

α

� �
x0 + g xð Þ½ �

�

−
ðτ
0
sα−1T

τα − sα

α

� �
f s, x sð Þð Þds

�
:ð Þ:

ð17Þ

For this control, we define the operator Ψ : C ⟶C by

Ψ xð Þ tð Þ = T
tα

α

� �
x0 + g xð Þ½ �

+
ðt
0
sα−1T

tα − sα

α

� �
f s, x sð Þð Þ + Bux sð Þð Þds:

ð18Þ

We also introduce for a radius r > 0 the ball Br ≔ fx ∈
C , jxjc ≤ rg, and we denote by j:j the norm in the space
LðXÞ of bounded operators defined from X into itself.

We will show that the operator Ψ has a fixed point,
which is a mild solution of the control problem (2). To do
so, we will give the proof in two steps.

Step 1. Prove that there exists a radius δ > 0 such that
Γ : Bδ ⟶ Bδ.

For x ∈C and t ∈ ½0, τ�, we have

Ψ xð Þ tð Þ = T
tα

α

� �
x0 + g xð Þ½ �

+
ðt
0
sα−1T

tα − sα

α

� �
f s, x sð Þð Þ + Bux sð Þð Þds:

ð19Þ

Then, one has

Ψ xð Þ tð Þk k ≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0 + g xð Þk k
�

+
ðt
0
sα−1 f s, x sð Þð Þ + Bux sð Þk kds

�
:

ð20Þ

By using hypothesis ðH1Þ, ðH4Þ, and ðH5Þ, we obtain

Ψ xð Þ tð Þk k ≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0k k +M xj jc
�

+ L xj jc + R1 uxk k2
� �ðτ

0
sα−1ds

�

≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0k k +M xj jc
�

+ L xj jc + R1 uxk k2
� � τα

α

�
: ∗ð Þ:

ð21Þ

On the other hand, we have known that

ux = ~W
−1

x1 − T
τα

α

� �
x0 + g xð Þ½ �

�

−
ðτ
0
sα−1T

τα − sα

α

� �
f s, x sð Þð Þds

�
:

ð22Þ

In view of assumptions ðH1Þ, ðH4Þ, and ðH5Þ, we obtain

uxk k2 ≤ R2 x1 − T
τα

α

� �
x0 + g xð Þ½ �

				
−
ðτ
0
sα−1T

τα − sα

α

� �
f s, x sð Þð Þds

				
≤ R2 x1k k + sup

t∈ 0,τ½ �
T

tα

α

� �����
����

"

� x0 + g xð Þk k +
ðτ
0
sα−1 f s, x sð Þð Þk kds

� ��
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≤ R2 x1k k + sup
t∈ 0,τ½ �

T
tα

α

� �����
����

"

� x0k k +M xj jc + L xj jc
ðτ
0
sα−1ds

� #

≤ R2 x1k k + sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0k k +M xj jc + L xj jc

τα

α

�" #

≤ R2 x1k k + sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0k k + M + L

τα

α

� �
xj jc

�" #
:

ð23Þ

By replacing this estimate in ð∗Þ, we get

Ψ xð Þ tð Þk k ≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0k k +M xj jc
"

+ L xj jc + R1R2 x1k k + sup
t∈ 0,τ½ �

T
tα

α

� �����
����

" 

� x0k k + M + L
τα

α

� �
xj jc

� �!
τα

α

#
:

ð24Þ

Separating the terms containing the expression jxjc,
one has

Ψ xð Þ tð Þk k ≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� M + L

τα

α

"

+ R1R2
τα

α
sup
t∈ 0,τ½ �

T
tα

α

� �����
���� M + L

τα

α

� �#
xj jc

+ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� x0k k + τα

α
R1R2 x1k k

"

+ τα

α
R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
���� x0k k

#
:

ð25Þ

By using a simple factorization, we obtain

Ψ xð Þ tð Þk k ≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� M + L

τα

α

� �

� 1 + R1R2
τα

α
sup
t∈ 0,τ½ �

T
tα

α

� �����
����

" #
xj jc

+ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� 1 + τα

α
R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
����

 !"

� x0k k + τα

α
R1R2 x1k k

#
:

ð26Þ

Hence, it suffices to consider δ as a solution in r of the
following inequality

sup
t∈ 0,τ½ �

T
tα

α

� �����
���� M + L

τα

α

� �
1 + R1R2

τα

α
sup
t∈ 0,τ½ �

T
tα

α

� �����
����

" #
r

+ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� 1 + τα

α
R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
����

 !
x0k k

"

+ τα

α
R1R2 x1k k

#
≤ r:

ð27Þ

Precisely, we can choose δ such that

δ ≥

sup
t∈ 0,τ½ �

T tα/αð Þj j 1 + τα/αð ÞR1R2 sup
t∈ 0,τ½ �

T tα/αð Þj j
 !

x0k k + τα/αð ÞR1R2 x1k k
" #

1 − sup
t∈ 0,τ½ �

T tα/αð Þj j M + L τα/αð Þð Þ 1 + R1R2 τα/αð Þ sup
t∈ 0,τ½ �

T tα/αð Þj j
" # :

ð28Þ

Step 2. We show that Ψ is a contraction operator on Bδ.
For y, x∈C , we have

Ψ yð Þ tð Þ −Ψ xð Þ tð Þ
= T

tα

α

� �
g yð Þ − g xð Þ½ � +

ðt
0
sα−1T

tα − sα

α

� �
f s, y sð Þð Þð

− f s, x sð Þð Þ + B uy − ux
� �

sð Þ�ds:
ð29Þ

According to ðH1Þ, ðH4Þ, and ðH5Þ, we obtain

Ψ yð Þ tð Þ −Ψ xð Þ tð Þk k
≤ sup

t∈ 0,τ½ �
T

tα

α

� �����
���� g yð Þ − g xð Þk k
�

+
ðt
0
sα−1 f s, y sð Þð Þ − f s, x sð Þð Þ + B uy − ux

� �
sð Þ		 		ds�

≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N y − xj jc
�

+ K y − xj jc + R1 uy − ux
		 		

2


 �ðt
0
sα−1ds

�

≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N y − xj jc
�

+ τα

α
K y − xj jc + R1 uy − ux

		 		
2


 ��
: ∗∗ð Þ:

ð30Þ

4 Advances in Mathematical Physics



In the other hand, we know that

uy − ux = ~W
−1 −T

τα

α

� �
g yð Þ − g xð Þ½ � −

ðτ
0
sα−1T

τα − sα

α

� ��

� f s, y sð Þð Þ − f s, x sð Þð Þð Þds
�
:

ð31Þ

Then, one has

uy − ux
		 		

2 ≤ R2 sup
t∈ 0,τ½ �

T
tα

α

� �����
���� g yð Þ − g xð Þk k
"

+
ðτ
0
sα−1 f s, y sð Þð Þ − f s, x sð Þð ÞÞk kds

≤ R2 sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N + K

τα

α

� �
y − xj jc:

ð32Þ

By replacing this estimate in ð∗∗Þ, we obtain

Ψ yð Þ tð Þ −Ψ xð Þ tð Þk k

≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N y − xj jc
"

+ τα

α
K y − xj jc + R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
���� N + K

τα

α

� �
y − xj jc

 !#

≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N + τα

α
K

"

+ τα

α
R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
���� N + K

τα

α

� �#
y − xj jc

≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N + τα

α
K

� �

� 1 + τα

α
R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
����

" #
y − xj jc:

ð33Þ

Taking the supremum, we get

Ψ yð Þ tð Þ −Ψ xð Þj jc ≤ sup
t∈ 0,τ½ �

T
tα

α

� �����
���� N + τα

α
K

� �

� 1 + τα

α
R1R2 sup

t∈ 0,τ½ �
T

tα

α

� �����
����

" #
y − xj jc:

ð34Þ

Since supt∈½0,τ�jTðtα/αÞjðN + tα/αKÞ½1 + tα/αR1R2 supt∈½0,τ�
jTðtα/αÞj� < 1, then, Ψ is a contraction operator on Bδ.
Hence, there exists a unique element xδð:Þ ∈ Bδ such that
ΨðxδÞðtÞ = xδðtÞ for all t ∈ ½0, τ�.

It remains to show that the mild solution xδ is controlla-
ble. To this end, we have

xδ τð Þ =Ψ xδð Þ τð Þ≔ T
τα

α

� �
x0 + g xδð Þ½ �

+
ðτ
0
sα−1T

τα − sα

α

� �
f s, xδ sð Þð Þ + Buxδ sð Þ� �

ds

= T
τα

α

� �
x0 + g xδð Þ½ � +

ðτ
0
sα−1T

τα − sα

α

� �
f s, xδ sð Þð Þds

+
ðτ
0
sα−1T

τα − sα

α

� �
Buxδ sð Þds

= −W xδð Þ + x1 +
ðτ
0
sα−1T

τα − sα

α

� �
Buxδ sð Þds

= −W xδð Þ + x1 +W xδð Þ
= x1:

ð35Þ

Thus, Cauchy problem (2) is controllable on ½0, τ�.

4. Application

Let X =U = L2ð½0, 1�Þ be equipped with the inner product

and norm defined by <u, v > =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ 1
0uðsÞ �vðsÞds

q
and kuk =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ 1

0juðsÞj2ds
q

. Define the operator A by

Aφ = €φ, ð36Þ

D Að Þ = φ ∈ X, φ, _φ are absolutely continous and €φ ∈ X, φ 0ð Þf
= φ 1ð Þ = 0g:

ð37Þ

As well known, the operator A has a discrete spectrum,
and the eigenvalues are f−n2, n ∈ℕg with the corresponding
normalized eigenvectors xnðyÞ =

ffiffiffi
2

p
sin ðnyÞ, n = 1, 2,⋯:

The operator A generates a contraction semigroup
ðTðtÞÞt≥0 given explicitly by

T tð Þx = 〠
+∞

n=1
e−n

2t < x, xn > xn, x ∈ X: ð38Þ

Then, we have

Ax = −〠
+∞

n=1
n2 < x, xn > xn, x ∈D Að Þ: ð39Þ

Next, define the control operator B as follows

B uð Þ = 〠
+∞

n=1
e−1/n

2+1 < u, xn > xn, u ∈U: ð40Þ
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We have

B uð Þk k = 〠
+∞

n=1
e−2/n

2+1 < u, xn>2 ≤ 〠
+∞

n=1
< u, xn>2 ≤ uk k: ð41Þ

Then, kBk ≤ 1 and thus the operator B is bounded. Now
return back to the operator W, we obtain

W uð Þ =
ð1
0
sα−1T

τα − sα

α

� �
Bu sð Þds

= 〠
+∞

n=1

1 − e−n
2/α


 �
e−1/n

2+1

n2
< u, xn > xn:

ð42Þ

Hence, the right inverse of the operator W may defined
as follows

W−1 : D Að Þ⟶ L2 0, 1½ �, L2 0, 1½ �ð Þ� �
, ð43Þ

u↦W−1 uð Þ = 〠
+∞

n=1

n2e1/n
2+1

1 − e−n2/α
< u, xn > xn: ð44Þ

For the operator W−1, we get

W−1 uð Þ		 		 ≤ e1/2

1 − e−1/α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
+∞

n=1
n4 < u, xn > xn

s
= e1/2

1 − e−1/α
Auk k

= e1/2

1 − e−1/α
uk kD Að Þ:

ð45Þ

Define the functions f : ½0, 1� × X ⟶ X and g : X ⟶ X
by

f t, x tð Þð Þ = e−t x tð Þj j
20 + etð Þ 1 + x tð Þj jð Þ , ð46Þ

g xð Þ = 〠
n

i=1
aix tið Þwhere 〠

n

i=1
aij j ≤ 1

20 and 0 < t1 < t2 <⋯ < tn < 1:

ð47Þ
For the function f , we have

f t, xð Þ − f t, yð Þk k = e−t

20 + et
x

1 + x
−

y
1 + y

				
				

≤
e−t

20 + et
x − yk k

≤
1
20 x − yk k:

ð48Þ

Here in this application example, we have τ = 1, L = 1/20,
K = 1/20, M = 1/20, N = 1/20, R1 = 1, R2 = e1/2/1 − e−1/α and

supt∈½0,1�jTðtα/αÞj ≤ 1. Then, the contraction condition
assumed in Theorem 10 becomes

sup
t∈ 0,τ½ �

T
tα

α

� �����
���� 1 + R1R2

τα

α
sup
t∈ 0,τ½ �

T
τα

α

� �����
����

 !

� max M + τα

α
L,N + τα

α
K

� �
≤
1 + α

20α2 α + e1/2

1 − e−1/α

� �
:

ð49Þ

For α = 1/2 in the last contraction condition, we get 1 +
α/20α2ðα + e1/2/1 − e−1/αÞ ≃ 0:72 < 1. Thus, by using Theorem
10, we conclude that the following Cauchy problem

∂1/2x tð Þ
∂t1/2

= Ax tð Þ + e−t x tð Þj j
20 + etð Þ 1 + x tð Þj jð Þ + Bu, t ∈ 0, 1½ �,

x 0ð Þ = 〠
n

i=1
aix tið Þ:

8>>>>><
>>>>>:

ð50Þ

Has a unique controllable mild solution.

5. Conclusion and Comments

The existence of mild solutions of a Cauchy problem of non-
local differential equations with conformable fractional
derivative is largely studied in several works [20–22]. Our
contribution in this present work is the study of the control-
lability of mild solutions for such Cauchy problems by
means of the Banach fixed point theorem combined with
theory of semigroups of linear operators. We notice that
the constants of increases of the norms of the bounded oper-
ators W and W−1 in the previous application are given
directly in a simple way in terms of the exponential function,
however, for the Caputo fractional derivative in the applica-
tion of the nice work [51] are given in terms of the so-called
Mittag-Leffler function.
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