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Abstract

In this Letter, we present the application of a couple of novel deep learning models to the forecast of major solar
X-ray flare flux profiles. These models are based on a sequence-to-sequence framework using long short-term
memory cell and an attention mechanism. For this, we use Geostationary Operational Environmental Satellite 10
X-ray flux data from 1998 August to 2006 April. Seven hundred sixty events are used for training and 85 for
testing. The models forecast 30 minutes of X-ray flux profiles during the rise phase of the solar flare with a minute
time cadence. We evaluate the models using the 10-fold cross-validation and rms error (RMSE) based on flux
profiles and RMSE based on its peak flux. For comparison we consider two simple deep learning models and four
conventional regression models. Major results of this study are as follows. First, we successfully apply our deep
learning models to the forecast of solar flare X-ray flux profiles, without any preprocessing to extract features from
data. Second, our proposed models outperform the other models. Third, our models achieve better performance for
forecasting X-ray flux profiles with low-peak fluxes than those with high-peak fluxes. Fourth, our models
successfully predict flare duration with high correlations for both all cases and cases at peak times. Our study
indicates that our deep learning models can be useful for forecasting time-series data in astronomy and space
weather, even for impulsive events such as major flares.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar x-ray flares (1816); Time series analysis (1916)

1. Introduction

Solar flare is one of the most energetic activities of the Sun,
releasing a huge amount of energy in a broad spectrum of
emission and accelerating particles from the Sun to the
interplanetary space. An intense X-ray flux from large flare
events affects spacecraft anomalies, the safety of astronauts,
and radio fade-outs (Huang et al. 2018). These hazards can
result in enormous economic losses (Siscoe 2000) but it is very
difficult to pre-estimate the characteristics of solar flares such
as peak flux or duration because solar radiation travels at the
speed of light. National Oceanic and Atmospheric Adminis-
tration (NOAA) classifies solar flares into five classes (A, B, C,
M, and X) according to its peak soft X-ray flux (0.1–0.8 nm),
and alerts radiation hazards when a major class flare (M and X)
occurs.

There are several different types of flare forecasts. There
have been many studies to predict solar flare occurrence
probability within 24 hr: by statistical method (McIntosh 1990;
Gallagher et al. 2002; Lee et al. 2012; Lim et al. 2019) and by
machine learning methods (Colak & Qahwaji 2009; Song et al.
2009). Many other studies forecast solar flare occurrence within
24 hr with “Yes” or “No”: by statistical methods (Bloomfield
et al. 2012), by machine learning methods (Al-Ghraibah et al.
2015; Bobra & Couvidat 2015; Nishizuka et al. 2017; Park
et al. 2017), and by deep learning (Huang et al. 2018;
Nishizuka et al. 2018; Park et al. 2018; Liu et al. 2019). Several
studies predict a maximum class of flare within 24 hr: by
machine learning methods (Lee et al. 2007; Liu et al. 2017),
and by deep learning (Hada-Muranushi et al. 2016). These
studies are based on either McIntosh class or extracted
magnetic properties of active regions. To the best of our
knowledge, there is no study that forecasts the X-ray flux
profiles of solar flares. Forecasting flare flux profiles, including
the information of flare peak flux and duration, could help
various space missions. For example, it would be helpful to

assume the duration of ionospheric electron enhancement
which could affect spacecraft operations and HF
communication.
In this Letter, for the first time we present a couple of solar

flare forecast models that predict the X-ray flux profiles of
major solar flares in real-time with one minute cadence. These
models are based on novel deep learning methods such as the
sequence-to-sequence (seq2seq; Sutskever et al. 2014) frame-
work using the Long Short-Term Memory (LSTM; Hochreiter
& Schmidhuber 1997) and attention mechanism (Bahdanau
et al. 2014), which is similar to Google Neural Machine
Translation Network (Wu et al. 2016). We apply our models to
the Geostationary Operational Environmental Satellite
(GOES) X-ray flux profiles of 845 major flares. We compare
our results with conventional regression models and different
deep learning models. In contrast to the previous research
based on active region analysis, we use historical solar flare
soft X-ray flux data without any extracting features from data.
This paper is organized as follows. The data are described in

Section 2. Our models are explained in Section 3.1. Results and
analysis are given in Section 4. A brief conclusion and
discussion are presented in Section 5.

2. Data

GOES observes solar X-ray fluxes in the two broadband
channels of 1–8Å and 0.5–4Å. NOAA identifies solar flares
automatically using one-minute-averaged GOES 1–8Å X-ray
fluxes. A flare is defined using the following algorithm (Ryan
et al. 2016; NOAA GOES X-ray flux1): (1) the begin time of an
X-ray event is defined as the first minute, in a sequence of
4 minutes, of steep monotonic increase in 0.1–0.8 nm flux, (2)
the flux at the end of the fourth minute is at least 40% greater
than the flux in the first minute, (3) the X-ray event peak time is
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taken as the minute of the peak X-ray flux, and (4) the end time
is the time when the flux level decays to a point halfway
between the maximum flux and the background level. We
apply the algorithm to GOES 10 one-minute X-ray flux data,
from 1998 August to 2006 May, to recognize major solar flares.
In order to select reliable solar flare events, we remove
multiple-peak events and pre-flare phase events by simple
automatic process and visual inspection. As a result, we select
845 major solar flare events.

Soft X-ray fluxes from 26 minutes before flare start time to
3 minutes after it are used for input and those of following
30 minutes are used for target. Our data set is constructed using
the sliding window method. The window slides from 3 minutes
after flare start time to its peak time. We randomly split the data
set into training and test sets since flare X-ray profiles can be
assumed to be mostly independent one another in that flares
have a Poisson distribution in time (Rosner & Vaiana 1978; Moon
et al. 2001; Wheatland 2000; Wheatland & Litvinenko 2002).

The data set is separated by each flare event to avoid that the
data from the same flare event are used for training and test
both. It is noted that when we divide the data set
chronologically, the number of major flares in the test data
set is too small. In order to reduce the effect of test data
selection and random initial weights, we consider 10-fold
cross-validation. As a result, 6227–6381 data (90% of events;
69 X-class and 691 M-class) are used for training and 654–808
data (10% of events; 8 X-class and 77 M-class) for test. The
difference in data number is due to different lengths of flare
events in each cross-validation set.

3. Model

3.1. Methods

LSTM is one of the advanced recurrent neural networks
(Hopfield 1982) that is good to learn time dependence in
sequence. LSTM have been widely employed in various fields
such as machine translation (Sutskever et al. 2014; Wu et al.
2016), speech recognition (Graves & Schmidhuber 2005), and
time-series prediction (Duan et al. 2018; Tan et al. 2018).
LSTM layer has a cell state candidate and three gates, to
transfer hidden state from prior time step to next time step. The
time step means a sequential order of elements in time-series
data. Details of the LSTM calculation are described below.

s= +-f W h x B, , 1t f t t f1( · [ ] ) ( )

s= +-i W h x B, , 2t i t t i1( · [ ] ) ( )
= +-c W h x Btanh , , 3t c t t c1( · [ ] ) ( )

= +-c f C i c , 4t t t t t1 ( )  

s= +-o W h x B, , 5t o t t o1( · [ ] ) ( )
=h o ctanh , 6t t t( ) ( )

where ft represents the forget gate, it represents the input gate,
ct represents the cell state candidate, ct represents the cell state,
ot represents the output gate, and ht represents the hidden state
at time step t; X is input data; W terms represent weight metrics
and B terms are bias, which are trainable; σ is a logistic sigmoid
function and tanh is a hyperbolic tangent function. Here ·
denotes dot product and e denotes element-wise multiplica-
tion. The forget gate, input gate, and output gate calculate
weights that are applied to past information, new information,
and output corresponding to forecasting result, respectively.

The cell state candidate is modified information considering
how much input information should be reflected to the cell
state. The hidden state is a result of the LSTM layer.
Seq2seq framework relies two LSTM models: one is an

encoder for extracting information from input data and the
other is a decoder for making a forecast using the information
from the encoder. The decoder repeats a process to generate a
prediction and then to use the predicted result for the next
prediction. This mechanism has been used for generating time-
series data (Wu et al. 2016; Naul et al. 2018).
In addition, we employ an attention mechanism that allows

the model to learn and focus on important time steps of input
data. The attention computes a context vector ci corresponding
to the weighted sum of source state h,

å=
=

c W h , 7i
j

T

ij j
1

x

( )

where Tx represents length of input and W represents weight.
Here i denotes time step of output and j denotes time step of
input. The weight W is computed by

=
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where s is a hidden state. Here a denotes an alignment model
that calculates a score reflecting how well output at the position
i and input at the position j match each other. We adopt the
additive attention model (Bahdanau et al. 2014)

= +- -a s h v W s W h, tanh , 10i j
T

s i h j1 1( ) ( ) ( )

where v and W are learnable parameters.

3.2. Architecture

Figure 1 shows an overall architecture of our first proposed
model. This model takes two LSTM layers and one fully
connected layer for the encoder and decoder. We adopt a fully
connected layer with the ReLU (Nair & Hinton 2010)
activation function for the encoder and a fully connected layer
without an activation function for the decoder. The second
model is obtained by removing the attention layer from
Figure 1. The mean-squared loss function and Adam optimizer
(Kingma & Ba 2014) with learning rate 0.001 are used for our
models.

4. Results

To evaluate models, we consider three types of rms errors
(RMSEs), one for all forecasting results, another for peak flux,
and the other for different forecast start time:
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where y represents an observed flux and f represents a
forecasted flux. Nall, Npeakflux, and Nt are the numbers of all
cases, at peak times and at times t after flare start, respectively.
Here E, i, j, and p are the number of flares, forecast start time,
each forecasting time, and peak time, respectively. This process
was executed 10 times for each cross-validation test data set
and the average of the results are shown.

For comparison with our models, we make two simple deep
learning models and four conventional regression models. The

first deep learning model is based on Multi-Layer-Perceptron
(MLP), constructed of several fully connected layers. This
model analyzes data as independent features, not time-series
features. The second deep learning model is based on LSTM,
constructed of two LSTM layers and two fully connected layer.
This model can analyze data as time-series features. These
models are trained using the same loss function and optimizer
with our models. Four conventional models are based on the
Auto-Regressive Integrated Moving Average (ARIMA;
Luceño & Peña 2008), the K-Nearest Neighbor Regression
(KNNR; Altman 1992), the Support Vector Machine Regres-
sion (SVMR; Cortes & Vapnik 1995), and the Random Forest
Regression (RFR; Breiman 2001). For the ARIMA model, we

Figure 1. Architecture of our first proposed model. Two LSTM layers and one fully connected layer for the encoder and decoder. The encoder takes 30 minutes of
X-ray flux (y) and produces the embedded information constructed by passing the output of LSTM layers into a fully connected layer. The decoder repeats a similar
process with the encoder 30 times. In every step, the decoder takes a result of the attention layer and new information to predict X-ray flux (p) of the next 1 minute
which is used for next step prediction corresponding to new information. Results of LSTM layer in decoder are sent to a fully connected layer without an activation
function. The second proposed model has the same structure without attention.

Table 1
Results of the Models

Model RMSEall RMSEpeakflux
RMSEt Hyperparameters

t=3 t=4 t=5 t=6

ARIMA 0.72 ± 0.11 0.63 ± 0.19 0.74 ± 0.09 1.20 ± 0.35 0.86 ± 0.14 0.74 ± 0.14 p: 1–5, d: 1, q: 1–5,
Input data length: 1800

KNNR 0.39 ± 0.02 0.31 ± 0.03 0.45 ± 0.02 0.44 ± 0.02 0.44 ± 0.02 0.43 ± 0.02 K: 58, Metric: Euclidean
RFR 0.38 ± 0.02 0.30 ± 0.03 0.45 ± 0.02 0.44 ± 0.02 0.43 ± 0.02 0.42 ± 0.02 Trees: 100, M:1.0 ,

Min sample split: 0.025
SVMR 0.37 ± 0.02 0.29 ± 0.03 0.46 ± 0.03 0.45 ± 0.03 0.42 ± 0.02 0.39 ± 0.03 Kernel: RBF, C: 1, epsilon: 0.005

MLP 0.45 ± 0.02 0.45 ± 0.05 0.52 ± 0.04 0.50 ± 0.04 0.48 ± 0.03 0.46 ± 0.02 Fully connected layers: 18
(30–280, 280–280, L, 280–30)

Simple-LSTM 0.50 ± 0.05 0.40 ± 0.05 0.53 ± 0.02 0.54 ± 0.02 0.53 ± 0.02 0.52 ± 0.03 Hidden units: 48,
Fully connected layers: 2
(96–96, 96–1)

Seq2seq 0.33 ± 0.02 0.26 ± 0.03 0.42 ± 0.02 0.41 ± 0.02 0.38 ± 0.02 0.36 ± 0.02 Hidden units: 192,
Embedding size: 8,
Fully connected layers: 1(192–1)

Seq2seq+attention 0.32 ± 0.02 0.26 ± 0.02 0.41 ± 0.02 0.40 ± 0.02 0.37 ± 0.02 0.35 ± 0.02 Hidden units: 256,
Embedding size: 1,
Fully connected layers: 1(256–1)

Note. RMSEs are expressed with standard deviations of 10-fold cross-validation trials. Fully connected layer is described as input size–output size.
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use the AUTO-ARIMA process (Hyndman & Khandakar 2008)
for all input data to find the best results of the ARIMA model.

For comparing the models fairly, we test many hyperpara-
meters for conventional regression models and deep learning
models (48, 96, 128, 256, and 512 hidden units and nodes; 1, 8,
16 embedding and no embedding; and 2–18 fully connected
layers with a residual connection; He et al. 2015), and carry out
the early stopping (Morgan & Bourlard 1990) process during
the deep learning model training to evade the overfitting
problem and find the best result of each deep learning model.

Table 1 shows the result of the models. Considering the
standard deviation of 10-fold cross-validation, our proposed
models (seq2seq, seq2seq+attention) outperform the others in
all metrics. The differences between our proposed models are
not significant. The seq2seq model could be better than the
seq2seq+attention model depending on the data set. For more
discussion, we select the seq2seq+attention model for forecast
analysis because it produces the best results.

For the seq2seq+attention model, RMSEall and
RMSEpeakflux are 0.32 and 0.26, which are much better than
those from the four regression models and two simple deep
learning models. The RMSEt, which depends on forecast start

time (3–6 minutes), is also better for proposed models than
those for other models. Our results demonstrate that adopting
both seq2seq and attention are effective for forecasting the
solar X-ray profiles. In all eight models, the results of the later
forecasts (RMSEt with higher t) are better than the ones of the
earlier forecasts (RMSEt with lower t) because of rapid change
of the X-ray flux profiles.
In addition, we divide forecasts of the seq2seq+attention

model into three groups according to flare class (M1–M4.9,
M5–M9.9, and X1-). As a result, RMSEall and RMSEpeakflux

are 0.27 and 0.15 for the M1–M4.9 flare, 0.36 and 0.31 for the
M5–M9.9 flare, and 0.51 and 0.53 for the X1- flare. This
analysis indicates that strong solar flares are harder to predict
than weak solar flares.
Figure 2 is the forecast results of the seq2seq+attention

model. The model well forecasts flare peak flux, peak time, and
overall profiles.
Figure 3 is the forecasts of the seq2seq+attention model

from 5 minutes after flare start to peak time for the X5-class
flare shown in Figure 2(a). As shown in Figure 3(a), its peak
flux is noticeably underestimated. However, when the GOES
observation is at the M class, our model forecasts that the flare

Figure 2. Results of the seq2seq+attention model. Panels (a), (b), (c), (d), (e), and (f) are the X5, X4, X1, M4, M2, and M1 flare forecasts at 7, 7, 7, 6, 3, and
3 minutes after flare start time, respectively. 0–29 minutes are input data and 30–59 minutes are output data together with observations. The black vertical dashed lines
denote forecast start times.
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will reach an X class. In Figure 3(b), our model predicts a peak
flux similar to observation. In subsequent forecasts
(Figures 3(c)–(h)), the model well predicts its peak flux and
X-ray flux profiles in the decay phase.

Figure 4 shows a relationship between predictions and
observations of flare duration. To evaluate the flare duration
prediction of the seq2seq+attention model, we calculate the
correlation coefficient and RMSE in the case that both flare end
times for observation and prediction are within 30 minutes.

Because of the forecasting period, the data points that have no
observed and/or no predicted flare end time within 30 minutes
cannot be displayed on the scatter plot. The correlation
coefficient and RMSE are 0.78 and 6.5 minutes for all
forecasts, while they are 0.9 and 4.8 minutes for the peak time
forecast. These results show that our model well forecasts flare
duration for both cases. It is also noted that the prediction of
flare duration at the peak time is very excellent in view of
correlation and RMSE.

Figure 3. Prediction of the seq2seq+attention model for an X5-class flare on 2003 November 3. Panels (a)–(h) show the forecasts at 5–12 minutes after the flare start
time, in chronological order. 0–29 minutes are the input and 30–59 minutes are the output together with observations. The black vertical dashed lines denote forecast
start times.
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5. Conclusion and Discussion

In this Letter, we have presented new forecast models to
predict X-ray flux profiles of solar major flares. These novel
deep learning models are based on seq2seq with/without
attention. We take GOES 10 X-ray fluxes of 845 major flare
events from 1998 August to 2006 May. We randomly separate
our data sets into 90% for training and 10% for test. We train
and evaluate our models using 10-fold cross-validation, and
compare our results with other deep learning models and
conventional regression models. The main results from this
study are summarized as follows. First, we successfully apply
our models to the forecast of solar flare X-ray flux profiles,
without any preprocessing to extract features from the data.
Second, in view of RMSE, our models outperform other deep
learning models and conventional regression models with 0.32
and 0.33 for RMSEall and 0.26 for RMSEpeakflux. Third,
RMSEall and RMSEpeakflux of the seq2seq+attention model are
0.27 and 0.15 for the M1–M4.9 flare, 0.36 and 0.31 for the
M5–M9.9 flare, and 0.51 and 0.53 for the X1- flare,
respectively. Fourth, in flare duration prediction, the correlation
coefficient and RMSE values from the seq2seq+attention
model are 0.78 and 6.5 minutes for all forecasts, while they are
0.9 and 4.8 minutes for the peak time forecast.

We build the data set based on the assumption that the flares
have a Poisson distribution in time (Rosner & Vaiana 1978;
Moon et al. 2001; Wheatland 2000; Wheatland & Litvi-
nenko 2002). On the other hand, there are different opinions
such as a power-law distribution (Boffetta et al. 1999) and a
Lévy distribution (Lepret et al. 2001). Data set construction
could be affected by flare distribution in time.

Our model produces better predictions for weaker flares than
stronger flares. This may be mainly caused by two reasons. The
first reason is the class imbalance problem: the number of
stronger flares is much less than that of weaker flares. In this
case, the models are trained to focus on better predicting

weaker flares than stronger flares. The second reason is that
stronger flares have more dynamic X-ray profiles than weaker
flares. This is already noted in Section 4 that RMSEpeakflux

rapidly increases for stronger flares.
Recently, several deep learning methods have been applied

to time-series data in astronomy and space weather. Muthuk-
rishna et al. (2019) classified the transient class using a gated
recurrent unit (Chung et al. 2014). By using the seq2seq model,
Naul et al. (2018) reconstructed the light curve of variable stars
and classified the class of variable stars better than a
conventional algorithm, and Shen et al. (2017) generated
denoised gravitational-wave signals.
In this work, we have demonstrated that solar X-ray profiles

are well predicted by novel deep learning models that are based
on seq2seq with LSTM. It is impressive that our models can
well predict rapidly increasing and then decreasing patterns
such as solar flares. We expect that our method can be applied
to many time-series data in astronomy and space weather, even
in other scientific fields. There seems to be several candidates
for application of time-series data: variable stars (Chung et al.
2014; Naul et al. 2018), gravitational waves (Shen et al. 2017),
and supernova evolution (Suwa 2017). On the other hand, our
models can be useful for ionosphere behavior prediction such
as D-region enhancement (McRae & Thomson 2004) or an
increase in total electron content (Liu et al. 2004) since it can
predict X-ray flux profiles in advance.
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Figure 4. Predicted flare duration vs. observed flare duration for (a) all forecasts and (b) forecasts at peak times by the seq2seq+attention model. Size of the circles
denotes the number of predictions.
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