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Abstract

In this article, the local fractional decomposition methbBOM) is applied to obtain approximate the
analytical solution of nonlinear fractional convectionfiion. Numerical solutions obtained by logal
fractional decomposition method are compared with the es@lctions, revealing that the obtained
solutions are of high accuracy. A new application of lléeectional decomposition method (LFDM) was
extended to reproduce the analytical solutions to this eguatithe form of a series. It is shown that the
solutions obtained by the LFDM are reliable, simple d&a&l LFDM is an effective method for strongly
nonlinear partial equations.

Keywords: Local fractional decomposition method; fractional cotiga-diffusion equation; Riemann-
Liouville derivative.

1 Introduction

Local fractional calculus (LFC) was used in the modelind processing of non-differentiable phenomena
in various physical phenomena [1-15]. Some of these localdnattmodels can be listed as the local
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fractional Fokker- Planck equation (LFFPE) [1], thealbfractional stress strain relations (LFSSR) {@g
local fractional heat conduction equation (LFHCE) [12], sv@&quations on the Cantor sets (WECSs)[14],
local fractional Laplace equation (LFLE) [15] and News&onimechanics (NM) on fractals subset of real-line
[16]. An approximate solution of the fractional diffusion etipra which includes an absorbent term and
external force was given by Das et al. [17]. Similardees were made by the following: Momani and
Yildirim [18] examined Fractional convection-diffusion eqoatiwith nonlinear source term, Yildirim and
Kocak [19] studied space-time fractional advection-disparsiguation, Yildirim and Gulkanat [20] worked
on fractional Zakharov-Kuznetsov equations, El-Shahed [21]iestudn integro-differential equation,
Siddiqui et al. [22] studied non-Newtonian flow, Yildirim3Rstudied fractional PDEs in fluid mechanics
and Kumar et al. [24] studied reaction-diffusion Brusselatstesn with fractional time derivative.

Successful applications of the homotopy perturbation meth&®WMjH25-26], the Adomian decomposition
method [27-29], the homotopy analysis method (HAM) [30] drel variational iteration method [31-33],
which was given by Ji-Huan He, have been given on autonomous grdimpartial differential equations
and various other fields. The first application of vaoiaal iteration method on fractional differential
equations was made by Ji-Huan He [34]. Jumarie [5] receaiommended a new modified Riemann-
Liouville left derivative. Also, Adomian decomposition method,MiBnd FVIM were used also by Momani
[35] to solve nonlinear fractional convection-diffusion equatiFinally, a recent effective method called the
Residual power series is used to solve important models,asuttie time fractional Fisher [36] and other
nonlinear fractional models arise in biology and phyg@s40].

In this study, the use of LFDM is extended to find analytajgbroximate solutions for the nonlinear
fractional convection-diffusion problem

a%u(xt) _ 8%u(x,t) Cau(x,t)
ate T ax? ax

+ o(ulx,t) + f(x,0), 1)

0<x<1,0<a<1t>0,
u(x,0) =h(x),0<x <1, (2)

hereq)(u) is an appropriate nonlinear function wkelected as potential enerdgy,is the parameter that

describes time-fractional derivative order an@d a constant. We consider the fractional derivativéhe
modified Riemann-Liouville derivativa.l(x, t) is a causal function of time which means it vanishes for

t < 0. The fields of science and engineering have wide usageeafonvection-diffusion equations for the
mathematical modeling of computational simulations in ogmesir simulations, mass and energy transport
and global weather productions, where diffusion and convectionagatgs the initially discontinuous
profile, the latter with a speed af.

This study aims to extend the use of LFDM in solving fomal nonlinear convection-diffusion equations
with modified Riemann-Liouville derivative.

The paper organization is as follows:

Definitions related to local fractional calculus thearg given in Section 2. Solution procedure of local
fractional decomposition method is defined to emphasizentiféidiency of this method in Section 3.
The method is used on the problem (19)-(30) and graphs iee& @or numerical simulations,
respectively in Section 4. Section 5 includes the conclusions.

2 Basic Definitions

Let us recall some definitions and properties of locadtfonal continuity (LFC), local fractional derivative
(LFD) and local fractional integral (LFI) of non-diffamtial functions [1-10, 41-44].
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Definition 1 Assume the relation below exists [9,41-44]

If ) = fluo)l < e* ®3)

with |[u —uy| < 8, fore,§ > 0 ande,§ € R. Thenf (u) is local fractional continuous at= u, which is
denoted bylim,,_,,,, f(w) = f(uo). If f(u) is local fractional continuous on the inter¢a) b), it is denoted

by
f) € Cula,b). (4)

Definition 2 f(x) is a non-differentiable function of expondhk a <1 if it is a Holder function of
exponent, i.e.

If () = fW)| < Clu—v|* ®)
foru,v e X [9, 41-44].

Definition 3 f(x) is said to be continuous of ordei(or a continuous) witlD < a <1 if the following
relation is satisfied [9,41-44]f (u) — f (uy)| < €%,

f@) = fug) = o((u —uw)%). (6)

(3) is the standard definition for local fractional continuity-C) when compared with (6) and (5) is the
unified local fractional continuity (ULFC).

Definition 4. For f (u) € C,(a,b), LFD of f(x) of ordera atu = u,, is given by [9,41-44]:

a a -
f(a)(uo) = %(“) = limy .y, M,O <a<i, 7)

u® ly=y, (u—up)®
whereA®(f(w) — f(ug)) = T'(1 + a)A(f(w) — f(up)). For anyu € (a, b), there
@) = D¢f(u) exists, denoted bfi(u) € DZ(a, b). LFD of higher order can be expressed as follows:

PO = D DES (),

k times
and the higher ordered local fractional partial derivative (UABBhown as:

0¥ fw) 9%  8”

ouka ou® " du”
k times

Q.

Definition 5. For f(u) € C,(a, b), local fractional integral (LFI) of (u) of ordera within interval[a, b] is
given by [41-44]:

dEF@) = —— [ f()(d)" ®)

I'(1+a)

N-1
1 ] 3
B mgiino;f(tj)(mj) , 0<a<1,
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whereAt; =ty — t;, At = max{Aty, Aty, Ats, ...} and [At;, Aty ], j=01,..,N—1,t,=a,ty=b, is a
partition of the intervala, b]. For anyu € (a, b), there exists I f(u), denoted byf(u) € Iﬁ“)(a, b). If
f(u) = D&f(a,b), or I”(a, b), we havef (w) € C,(a, b).

For anyf(u) € C,(a,b), 0 < a < 1, local fractional multiple integrals (LFMIs) have therfo

k times

k
wl D W) = ISP IS0 F (w),

for0 < a <1, f*D ) € C¥(a, b), then we have

(ol * 0 F @)™ = Fw,

where, [ f () = oIt ...y s £ () andf *® (u) = D .. DEf (u).

k times k times
Definition 6. In the fractional space, the Mittag-Leffler functionl(W) is given by (see [9,41-44])

uma

Ea(u®) = Yot 0 <@ s L. ©)

Some useful formulas of LFD were summarized [9,44bHsws:

= (10)
o = B (u), (11)
T = nEq (nu®), (12)
i i B (@) = B (b%) = Eg(a®), (13)
r<11+a) f: u(du)® = r(1+nar)<(fr:+):)_a‘;(m)a) (14)

3 Local Fractional Decomposition Method

We demonstrate the local fractional decomposition methhdi@o procedure by examining the following
fractional differential equation [18,43-44]:

% u(x,t)  92u(x,t) ou(x,t)
D T B +®(ulx, ) + f(x, t), (15)

0<x<1,0<a<1t>0,

A local fractional differential operator form for Eq.(1&gn be built by the LFDM as follows

LPu(x, t) = ug (x, £) — u (x,£) + ©(u(x, 1)) + £ (x, 1), (16)
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where0 < a < 1, u(x,t) is a local fractional continuous function. An applicationtled inverse operator
LS on both sides of (16) gives

Uy (x, 1) = L(t_“) [:—;un(x, t) — ;—xun(x, t) + O(u, (x, 1) + f(x, t)] ,n=0
uy(x, t) = u(x, 0).

17

We can obtain successive approximatidl;,gl()gt), n= 0 of the solutionu(X, t) by the use of a

selective functiorl,. Generally, the initial values are considered forz#wth approximatiol,. Thus, the
exact solution can be obtained from

u(x, t) = Xr=o un(x, ). (18)
Hence, the condition

If () — fxo)l <&,
can be found, where the fractional dimensiorf ©f) is « for anyx € (a, b).

4 Applications

This section presents the solutions of nonlinear fractioerdiftial equations by an application of the local
fractional decomposition method (LFDM).

Examples 4.1. Let's examine the following nonlinear fractional convectidgifitdion equation where
0<a<1lc=10<x<1,t>0,

2
and®(u) = ungz] —u? + u. We get

a%u(xt) _ 9%u(xt) _du(xt) 92u(x,t) _ 2
o = o ot u(x, t) Sxot ulx, t)* +u(x, t) (29)
with the initial condition
u(x, 0) = e*, [18,35,45]. (20)

Using Eq. (20), the recurrence relation is found as:
uy(x, t) = u(x,0) and

iu (x t)—iu (x,t)
ox2 TV ax T

Upyq (x,8) = LT n=0. (21)

2
+u, (x,t) ;711” (x, ) — up(x, £)% + uy (x, £)
With the recursive relation (21) and the condition in (20), tHeving results are obtained:

ug(x, t) = e”, (22)
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—uy(x,t) — u (x,t)
ul(x’ t) — Lg—a) axz 0 0 (23)
[+ (x,t) muo (x,t) —uq (x, )% + ugy(x, t)_
e*t%

T I'+a)

(-a) o zul(x t)——ul(x t)
u,(x,t) = L; -
-y G621, ) = 0,6, 02 o 1, ()

ethtZ
T r+2a)’
—u,(x, t)——u (x,t)
u3(x, t) — L(t_a) a 2“2 2 (25)
+u,(x, t) uz(x £) —uy(x, £)% + u,(x,t)
extsa
T Ir(1+3a)’
2t (3, ) (1)
—Uu X, - —u X, xna
0, 06,0) = LT o " = (26)
iy (x, t) un 100, 8) = up_ (6, )% + up_4 (x, 1)
Hence, the approximate solution can be given in a seriesaform
o _ r2a 3 _ x t(na) 2
ulnt) =Xaopun(x,t) = e (1 + r(1+a) + r(1+2a) + r(1+3a) + ) Xo- 0r(1+na) (27)
And the corresponding exact solution would be
u(x, t) = e*E,(t%). (28)
For @ =1 we would have
e ()
ux =gy L _=g" (29)
; r(k+1)

as the exact solution to the nonlinear convection-diffusiontemuarig. 1 shows the approximate solutions
for the nonlinear convection-diffusion equation (19) obtainedubing local fractional decomposition
method (LFDM).

The approximate solution of Eq. (19) is plotted in Fig. 2dfe= 0.9,0.8,0.7,0.6. The effect of a om(x, t)
is demonstrated in the Figs. 3 and 4.

By consideringX = 0.5 in the numerical results of Figs. 3 and 4, it can be St a decrease in the
fractional orderd results in an increase in the function. Five sequentiliesar =1,0.9,0.8,0.7,0. are
demonstrated in Figs. 3 and 4.



Merdan; BJMCS, 16(4): 1-15, 2016; Article no.BIMEZEB27

ulxl)

ufx.n)

o N WA S~

@

)

ufx.h)

= NWanod~

Fig. 1. The surfaceindicatesthe solution U ( X t) of (19) for @ =1. (a) Exact solution (b) 2-iterate
L FD approximate solution, (c) 3-iterate L FD appr oximate solution and (d) 4-iterate L FD approximate

solution

Table 1. Numerical valueswhen a« = 0.5, 0.75,1 for U(X, '[) obtained using the LFDM

t X u4LFDM uExact uError
a a a a

0.2 0 1.79191003 1.40451737 1.22140000 1.22140275 0.2758-5
0.25 2.300858034 1.803436013 1.568308644 1.568312185 0.3541 e-5
0.50 2.954360195 2.315657678 2.013748160 2.013752707 0.4547e-5
0.7¢ 3.79347358 2.97336331 2.58570382 2.58570965 0.5838e-5
1 4.870916494 3.817874068 3.320109425 3.320116923 0.7498 e-5

0.4 0 2.383956218 1.798154972 1.491733334 1.491824698 0.000091364
0.25 3.061060377 2.308876688 1.915423516 1.915540829 0.000117313
0.5C 3.93047932  2.96465635 2.45945247 2.45960311 0.00015063
0.75 5.046835354 3.806694106 3.157999493 3.158192910 0.000193417
1 6.48026486  4.88789198 4.05495161 4.05519996 0.00024835

0.6 0 3.003654242 2.251671269 1.821400000 1.822118800 0.000718800
0.25 3.856768391 2.891203140 2.338723895 2.339646852 0.000922957
0.5C 4.95218864  3.71237831 3.00298092 3.00416602 0.00118510
0.75 6.358736081 4.766788115 3.855903831 3.857425531 0.001521700

8.164778744

6.120677093

4.951078522

4.953032424

0.001953902
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Fig. 2. The surfaceindicates the solution U ( X t) of (19) (a) 4-iterate L FD approximate solution for

a =0.9 (b) 4-iterate L FD approximate solution for @ = 0.8 (c) 4-iterate L FD approximate solution
for @ =0.7 and (d) 4-iterate L FD approximate solution for @ = 0.6
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Fig. 3. 5-iterate L FD approximate solution for x = 0.6
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Fig. 4. 5-iterate L FD approximate solution for x = 0.9

Solution of (19) is found by using Adomian decomposition methdad5], FVIM in [45] and HPM in [18].

It is seen that the present algorithm for Local fractio@composition method (LFDM) works with
considerable efficiency, simplicity and reliabilityhd@ results obtained from LFDM are in full accordance
with modified variational iteration method(FVIM), ADM and¥.

Examples 4.2. Consider the non-homogenous nonlinear fractional convedtfeusion equation for
0<a<lc=10<x<1t>0,

9%u(x,t) _ d%u(xt) _du(xt) | dulxt) 6u(x t) 2u(x,t)

e~ ax? ax at +ulx, )= axat —2x (30)

with the initial condition [18,35,45]

u(x,0) = x2. (31)
By LFAMD, the recurrence relation reads as follows:

ugy(x,t) = u(x,0) and
02
o |322 u, (x, t) — —un(x t) +o un(x t) un(x t)
Uppr(x, t) = Ly n=0. (32)
+u, (x, t) un(x t) —

Using (32) and the condition (31), the followings resultsodtained:

uo(x, t) = x2, (33)

) ax2 up(x,t) — —uo(x t) +o uo(x t) uo(x t)
u(x,t) = L; , (34)
+u,y(x, t) uo(x t) —

_ (2-40t”
T ra+a) ’

(-a) |ox2 U (x, 1) __ul(x t) + u1(x t) ul(x t)
u,(x,t) = L, )
+u1(x t) ul(x t)
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I (32x-16)al 2a)t3%~1  2xt®
T r(1+2q) r(1+a)2I'(3a) r(1+a)’

a2 a a a
L wuz(x, t) — e (x,t) + auz(x, t) auz(x, t)
t 92
+u,(x, t) L (x,t) — 2x

uz(x, t) = (36)

32ar (2a)t4*1 256a?T(2a)l (5a—1)t0%=2 16al (3a)t**~1

I'a+1)I'(4a) Ia+1)?2r@Ga)r(1+2a)r(6a-1) TI'(1+2a)I(1+a)(4a)
32(32x-16)a?(Ba—1)I'(2a)?T(6a—2)t7%~3 _ 2(32x-16)a(3a-1)T(2a)T (4a—1)t5%~2 _ 64xa’T(2a) (4a—1)t5%2

Ta+1)*T(Ba)?r(7a-2) T(a+1)3TBa)Ir(5a-1) T(a+1)3rBa)r(5a-1)
4xal 2a)t3%-1 2xt®

Ma+Dr(3a)  T(a+1)’

Hence, the approximate solution can be given in a seriesaf®rm

o _ 2, (2-8x0)t” 4t%% (32x-16)al2a)t3*~"  _ 32ar(2a)t***

uxt) = Lazotn(x,t) = x* + F(1+a) = T(1+2a) I(1+a)2C(3a) - M(a+1)T(4q)
256a2T(2a)T(5a—1)t6%~2 _ 16al(3a)t*a—1 32(32x-16)a?(3a—1)I'(2a)2T (6a—2)t7%~3 _

Ta+1)2rGBa)r(1+2a)f(6a-1) T(1+2a)I(1+a)T(4a) Ta+1)*TBa)?T(7a-2)

2(32x-16)a(3a-1)T(2a) (4a—1)t5%~2 _ 64xa’T(2a)T(4a—-1)t5%2  axal (2a)t3%~1 37)

I'(a+1)3rBa)(5a-1) I'(a+1)3r@a)r(sa-1) M(a+DrGa)

For @ =1 we would have [44]

u(x,t)=Limu,(x, )= X +2t- 4t (39)

+ 2%+ & — 1%+ 16t°— &+---

The exact solution of (38) can be found by omitting the noisestand keeping the non-noise terms as

u(x t)= X + 2t (39)

and this can be easily confirmed. Formal proof can be fourtbin [

Table 2. Approximate solution of (30) at t=1 for various values of theorder &

[35] L'IBLFDM
X a=0.5 a=075 a=09 qg=1 a=05 a=075 a=0.9 a=1
0.0 5.00328 3.48585 2.97494 2.71828 -5.23681 -5.92718 -4.92124 -4
0.1 5.52948 3.85246 3.28782 3.00417 -3.60512 -4.34755 -3.65775 -2.99000
0.2 6.1110: 4.2576: 3.6336( 3.3201: -1.9534: -2.7479. -2.3742°  -1.9600(
0.3 6.75372 4.70540 4.01575 3.66930 -0.28175 -1.12830 -1.07078 -0.91000
04 7.4640: 5.2002° 4.4380¢ 4.0552( 1.4099¢ 0.51131' 0.2526¢ 0.16000!
0.5 8.24901 5.74710 4.49048 4.48169 3.12162 2.17094 1.59618 1.25000
0.6 9.11656 6.35163 5.42069 4.95303 4.85330 3.85057 2.95966 2.36000
0.7 10.0754(  7.0196¢ 5.9907¢ 5.4739¢ 6.6049¢ 5.5501¢ 4.3431! 3.4900(
0.8 11.13500 7.75790 6.62085 6.04965 8.37668  7.26982 5.74663  4.64000
0.¢ 12.3081: 8.5738( 7.3171° 6.6850¢ 10.168: 9.0094! 7.1701: 5.8100(

10
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Fig. 5. The surface shows the solution U ( X t) of (30) (a) 3-iterate LFD approximate solution for

uixl)

u{xl)

a = 0.9 (b) 3-iterate LFD approximate solution for & = 0.8 (c) 3-iterate LFD approximate solution

for @ =0.7 and (d) 3-iterate L FD approximate solution for @ = 0.6
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Fig. 6. 3-iterate LFD approximatefor X =0.5
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Lastly, Fig. 5 shows the solution surfaces of the non-hemags nonlinear fractional convection-diffusion
equation for various values. From the graphical results in Figs. 5 and &ritbe seen the effect 6f on
the functionu(x, t). Certainly,u(x, t) increases with an increase in t foe 1,0.9,0.8,0.7,0.6 ..

Solution of 30 is found by using Adomian decomposition methd®%], FVIM in [45] and HPM in [18].
The results in Fig. 5 are in accordance with the resiilise Adomian decomposition method and HPM.

5 Conclusions

Local fractional decomposition method (LFDM) has begstessfully employed for finding the solutions of
nonlinear problems, ordinary, partial, fractional and irdegquations. This study used the Local fractional

decomposition method having integral with respec(d(r)awhich had been used by Jumarie for the first

time. Results show that the method is a powerful todl i@nmeaningful for the solutions of nonlinear
fractional differential equations. The results of the tfferent examples obtained by local fractional

decomposition method having integral with respec(tdqr)” are in perfect accordance with the results from

classical VIM, MVIM, GDTM, HPM and Adomian decompositianethod which can be found in the
referred studies.
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