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Abstract 
 

In this article, the local fractional decomposition method (LFDM) is applied to obtain approximate the 
analytical solution of nonlinear fractional convection-diffusion. Numerical solutions obtained by local 
fractional decomposition method are compared with the exact solutions, revealing that the obtained 
solutions are of high accuracy. A new application of local fractional decomposition method (LFDM) was 
extended to reproduce the analytical solutions to this equation in the form of a series. It is shown that the 
solutions obtained by the LFDM are reliable, simple and that LFDM is an effective method for strongly 
nonlinear partial equations. 
 

 
Keywords: Local fractional decomposition method; fractional convection-diffusion equation; Riemann-

Liouville derivative. 
 

1 Introduction 
 
Local fractional calculus (LFC) was used in the modeling and processing of non-differentiable phenomena 
in various physical phenomena [1–15]. Some of these local fractional models can be listed as the local 
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fractional Fokker- Planck equation (LFFPE) [1], the local fractional stress strain relations (LFSSR) [2], the 
local fractional heat conduction equation (LFHCE) [12], wave equations on the Cantor sets (WECSs)[14], 
local fractional Laplace equation (LFLE) [15] and Newtonian mechanics (NM) on fractals subset of real-line 
[16]. An approximate solution of the fractional diffusion equation which includes an absorbent term and 
external force was given by Das et al. [17]. Similar studies were made by the following: Momani and 
Yildirim [18] examined Fractional convection-diffusion equation with nonlinear source term, Yildirim and 
Kocak [19] studied space-time fractional advection-dispersion equation, Yildirim and Gulkanat [20] worked 
on fractional Zakharov-Kuznetsov equations, El-Shahed [21] studied an integro-differential equation, 
Siddiqui et al. [22] studied non-Newtonian flow, Yildirim [23] studied fractional PDEs in fluid mechanics 
and Kumar et al. [24] studied reaction-diffusion Brusselator system with fractional time derivative.  
 
Successful applications of the homotopy perturbation method (HPM) [25-26], the Adomian decomposition 
method [27-29], the homotopy analysis method (HAM) [30] and the variational iteration method [31-33], 
which was given by Ji-Huan He, have been given on autonomous ordinary and partial differential equations 
and various other fields. The first application of variational iteration method on fractional differential 
equations was made by Ji-Huan He [34]. Jumarie [5] recently recommended a new modified Riemann-
Liouville left derivative. Also, Adomian decomposition method, HPM and FVIM were used also by Momani 
[35] to solve nonlinear fractional convection-diffusion equation. Finally, a recent effective method called the 
Residual power series is used to solve important models, such as the time fractional Fisher [36] and other 
nonlinear fractional models arise in biology and physics [37-40]. 
 
In this study, the use of LFDM is extended to find analytical approximate solutions for the nonlinear 
fractional convection-diffusion problem 
 �����,����� = �
���,����
 − � ����,���� + Φ����, ��� + ���, ��,                 (1) 

 0 < � ≤ 1, 0 < � ≤ 1, � > 0, 
 ���, 0� = ℎ���, 0 < � ≤ 1,                                             (2) 
 
here ( )uΦ  is an appropriate nonlinear function of u selected as potential energy, α is the parameter that 

describes time-fractional derivative order and c is a constant. We consider the fractional derivative in the 
modified Riemann-Liouville derivative. ( ),u x t is a causal function of time which means it vanishes for 

0t < . The fields of science and engineering have wide usage of the convection-diffusion equations for the 
mathematical modeling of computational simulations in oil reservoir simulations, mass and energy transport 
and global weather productions, where diffusion and convection propagates the initially discontinuous 
profile, the latter with a speed of c .  
 
This study aims to extend the use of LFDM in solving fractional nonlinear convection-diffusion equations 
with modified Riemann-Liouville derivative. 
 
The paper organization is as follows: 
 

Definitions related to local fractional calculus theory are given in Section 2. Solution procedure of local 
fractional decomposition method is defined to emphasize the inefficiency of this method in Section 3. 
The method is used on the problem (19)-(30) and graphs are given for numerical simulations, 
respectively in Section 4. Section 5 includes the conclusions. 

 

2 Basic Definitions 
 
Let us recall some definitions and properties of local fractional continuity (LFC), local fractional derivative 
(LFD) and local fractional integral (LFI) of non-differential functions [1-10, 41-44]. 
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Definition 1 Assume the relation below exists [9,41-44] 
 |���� − �����| < ��                                 (3) 
 
with |� − ��| <  , for �,  > 0 and �,  ∈ ℝ . Then ���� is local fractional continuous at � = �� which is 
denoted by  lim�→�' ���� = �����. If ���� is local fractional continuous on the interval �), *�, it is denoted 
by 
 ���� ∈ +��), *�.                   (4) 
 
Definition 2 ���� is a non-differentiable function of exponent 0 < � ≤ 1  if it is a Hölder function of 
exponent �, i.e.  
 |���� − ��,�| < +|� − ,|�                 (5) 

 
for �, , ∈  - [9, 41-44]. 
 
Definition 3 ���� is said to be continuous of order � (or � continuous) with 0 < � ≤ 1  if the following 
relation is satisfied [9,41-44], |���� − �����| < ��,  
 ���� − ����� = .��� − ����.                 (6) 
 
(3) is the standard definition for local fractional continuity (LFC) when compared with (6) and (5) is the 
unified local fractional continuity (ULFC). 
 
Definition 4. For ���� ∈ +��), *�, LFD of ���� of order � at � = ��, is given by [9,41-44]: 
 �������� = /0�1���0�� 2�3�' = lim�→�' ∆��1���51��'����5�'�� , 0 < � ≤ 1,                            (7) 

 
where ∆������ − ������ ≅ Γ�1 + ��∆����� − ������. For any � ∈ �), *�, there  
 ������� = 7������ exists, denoted by ���� ∈ 7���), *�. LFD of higher order can be expressed as follows: 
 ��8����� = 7�� … 7������:;;;<;;;=8 �>?@A , 

 
and the higher ordered local fractional partial derivative (LFPD) is shown as: 
 B�8������B�8� = B�B�� … B�B�� ����.:;;;;<;;;;=8 �>?@A

 

 
Definition 5. For ���� ∈ +��), *�, local fractional integral (LFI) of ���� of order � within interval [), *] is 
given by [41-44]: 
 EF����� = G

Γ�GH��I J �����K���FI                  (8) 

 

= 1
Γ�1 + �� lim∆�→� L ���M��∆�M��,   0 < � ≤ 1,N5G

M3�  



 
 
 

Merdan; BJMCS, 16(4): 1-15, 2016; Article no.BJMCS.25827 
 
 
 

4 
 

where ∆�M = �MHG − �M , ∆� = O)�P∆�G, ∆�Q, ∆�R, … S  and T∆�M , ∆�MHGU,  V = 0,1, … , W − 1, �� = ), �N = *,  is a 

partition of the interval [), *]. For any � ∈ �), *�, there exists EF�����I , denoted by ���� ∈ E�����), *�. If ���� = 7����), *�, or E�����), *�, we have ���� ∈ +��), *�. 
 
For any ���� ∈ +��), *�, 0 < � ≤ 1, local fractional multiple integrals (LFMIs) have the form: 
 

E��8������ = E���� … E��������,�'�'XYYYYYZYYYYY[8 �>?@A
�'  

 
for 0 < � ≤ 1, ��8����� ∈ +�8�), *�, then we have 

 � E��8�������' ��8�� = ����, 
 

where E��8�������' = E���� … E���������'�':;;;;;<;;;;;=8 �>?@A
 and ��8����� = 7�� … 7������:;;;<;;;= .8 �>?@A  

 
Definition 6. In the fractional space, the Mittag-Leffler function (MLF) is given by (see [9,41-44]) 
 \����� = ∑ ��^��

Γ�GH_�� , 0 < � ≤ 1.∞_3�                  (9) 

 
Some useful formulas of LFD were summarized [9,44] as follows: 
 0��^�

0�� = Γ�GH_����^`a��
Γ�GH�_5G��� ,                  (10) 

 0�b�����0�� = \�����,                (11) 

 0�b��_���0�� = c\��c���,                (12) 

 G
Γ�GH�� J \������K��� = \��*�� − \��)��FI ,              (13) 

 de�dHf� J ghf�ig�f = e�dHhf��j�hkd�f5l�hkd�f�e�dH�hHd�f� .jl                             (14) 

 

3 Local Fractional Decomposition Method 
 
We demonstrate the local fractional decomposition method solution procedure by examining the following 
fractional differential equation [18,43-44]: 
 �����,����� = �
���,����
 − � ����,���� + Φ����, ��� + ���, ��,                (15) 

 0 < � ≤ 1, 0 < � ≤ 1, � > 0, 
 
A local fractional differential operator form for Eq.(15) can be built by the LFDM as follows 
 m�������, �� = �����, �� − ����, �� + Φ����, ��� + ���, ��,                (16) 
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where 0 < � ≤ 1, ���, �� is a local fractional continuous function. An application of the inverse operator m��5�� on both sides of (16) gives 
 

n�_HG��, �� = m��5�� o �

��
 �_��, �� − ��� �_��, �� + Φ��_��, ��� + ���, ��p , c ≥ 0����, �� = ���, 0�. /           (17) 

 

We can obtain successive approximations ( )1 , , 0nu x t n+ ≥  of the solution ( ),u x t  by the use of a 

selective function 0u . Generally, the initial values are considered for the zeroth approximation0u . Thus, the 

exact solution can be obtained from 
 ���, �� = ∑ �_��, ��.∞_3�                                            (18) 

 
Hence, the condition 
  |���� − �����| < �� , 
 
can be found, where the fractional dimension of ���� is � for any � ∈ �), *�. 
 

4 Applications 
 
This section presents the solutions of nonlinear fraction differential equations by an application of the local 
fractional decomposition method (LFDM). 
 
Examples 4.1. Let’s examine the following nonlinear fractional convection-diffusion equation where 0 < � ≤ 1, � = 1, 0 < � ≤ 1, � > 0, 
 

and Φ��� = � �
r��
 − �Q + �. We get 

 �����,����� = �
���,����
 − ����,���� + ���, �� �
���,������ − ���, ��Q + ���, ��            (19) 

 
 
with the initial condition 
 ���, 0� = s �, [18,35,45].                                                                                                                 (20) 
 
Using Eq. (20), the recurrence relation is found as: 
 ����, �� = ���, 0� and

  

�_HG��, �� = m��5�� t �

��
 �_��, �� − ��� �_��, ��

+�_��, �� �

��
 �_��, �� − �_��, ��Q + �_��, ��u c ≥ 0.

                            

(21) 

 
With the recursive relation (21) and the condition in (20), the following results are obtained: 
 ����, �� = s�,                                                                                                                                  (22) 
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�G��, �� = m��5�� t �

��
 ����, �� − ��� ����, ��

+����, �� �

��
 ����, �� − ����, ��Q + ����, ��u                   (23) 

= @v��
Γ�GH��, 

 

�Q��, �� = m��5�� t �

��
 �G��, �� − ��� �G��, ��

+�G��, �� �

��
 �G��, �� − �G��, ��Q + �G��, ��u                (24) 

 = @v�
�
Γ�GHQ��, 

 

�R��, �� = m��5�� t �

��
 �Q��, �� − ��� �Q��, ��

+�Q��, �� �

��
 �Q��, �� − �Q��, ��Q + �Q��, ��u                  (25) 

= @v�w�
Γ�GHR��, 

 ⋮, 
 

�_��, �� = m��5�� t �

��
 �_5G��, �� − ��� �_5G��, ��

+�_5G��, �� �

��
 �_5G��, �� − �_5G��, ��Q + �_5G��, ��u = @v�^�

Γ�GH_��                   (26) 

 
Hence, the approximate solution can be given in a series form as 

 ���, �� = ∑ �_��, ��∞_3� = s� y1 + ��
Γ�GH�� + �
�

Γ�GHQ�� + �w�
Γ�GHR�� + ⋯ { = s� ∑ ��^��

Γ�GH_��∞_3�                (27) 

 
And the corresponding exact solution would be 
 ���, �� = s�\�����.                     (28) 
 
For 1α =  we would have 

( )
( )0

( , )
1

k

x x t

k

t
u x t e e

k

∞
+

=

= =
Γ +∑                                                                                                   (29) 

 
as the exact solution to the nonlinear convection-diffusion equation. Fig. 1 shows the approximate solutions 
for the nonlinear convection-diffusion equation (19) obtained by using local fractional decomposition 
method (LFDM)..  
 
The approximate solution of Eq. (19) is plotted in Fig. 2 for � = 0.9, 0.8, 0.7, 0.6.  The effect of a on ���, �� 
is demonstrated in the Figs. 3 and 4. 
 
By considering 0.5x =  in the numerical results of Figs. 3 and 4, it can be said that a decrease in the 
fractional order α  results in an increase in the function. Five sequential values 1,0.9,0.8,0.7,0.6α =  are 
demonstrated in Figs. 3 and 4. 
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Fig. 1. The surface indicates the solution ( ),u x t  of (19) for 1α = . (a) Exact solution (b) 2-iterate 

LFD approximate solution, (c) 3-iterate LFD approximate solution and (d) 4-iterate LFD approximate 
solution 

 

Table 1. Numerical values when f = �. �, �. ��, d for ( ),u x t obtained using the LFDM 
 

t x 
4LFDMu   

Exactu Erroru f f f f
0.2 0 1.791910038 1.404517379 1.221400000 1.221402758 0.2758e-5 

 0.25 2.300858034 1.803436013 1.568308644 1.568312185 0.3541 e-5 
 0.50 2.954360195 2.315657678 2.013748160 2.013752707 0.4547e-5 
 0.75 3.793473581 2.973363315 2.585703821 2.585709659 0.5838 e-5 
 1 4.870916494 3.817874068 3.320109425 3.320116923 0.7498 e-5 
0.4 0 2.383956218 1.798154972 1.491733334 1.491824698 0.000091364 

 0.25 3.061060377 2.308876688 1.915423516 1.915540829 0.000117313 
 0.50 3.930479326 2.964656351 2.459452478 2.459603111 0.000150633 
 0.75 5.046835354 3.806694106 3.157999493 3.158192910 0.000193417 
 1 6.480264866 4.887891984 4.054951614 4.055199967 0.000248353 
0.6 0 3.003654242 2.251671269 1.821400000 1.822118800 0.000718800 

 0.25 3.856768391 2.891203140 2.338723895 2.339646852 0.000922957 
 0.50 4.952188640 3.712378316 3.002980923 3.004166024 0.001185101 
 0.75 6.358736081 4.766788115 3.855903831 3.857425531 0.001521700 
 1 8.164778744 6.120677093 4.951078522 4.953032424 0.001953902 
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Fig. 2. The surface indicates the solution ( ),u x t  of (19) (a) 4-iterate LFD approximate solution for 

0.9α =  (b) 4-iterate LFD approximate solution for 0.8α =  (c) 4-iterate LFD approximate solution 

for 0.7α =  and (d) 4-iterate LFD approximate solution for 0.6α =  
 

 
 

Fig. 3. 5-iterate LFD approximate solution for � = �. � 
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Fig. 4. 5-iterate LFD approximate solution for � = �. � 
 
Solution of (19) is found by using Adomian decomposition method in [35], FVIM in [45] and HPM in [18]. 
It is seen that the present algorithm for Local fractional decomposition method (LFDM) works with 
considerable efficiency, simplicity and reliability. The results obtained from LFDM are in full accordance 
with modified variational iteration method(FVIM), ADM and HPM.  
 

Examples 4.2. Consider the non-homogenous nonlinear fractional convection-diffusion equation for 0 < � ≤ 1, � = 1, 0 < � ≤ 1, � > 0, 
  �����,����� = �
���,����
 − ����,���� + ����,���� ����,���� + ���, �� �
���,������ − 2�                   (30) 

 
with the initial condition [18,35,45]     
                          ���, 0� = �Q.                                             (31) 
 
By LFAMD, the recurrence relation reads as follows: 
 ����, �� = ���, 0� and

 �_HG��, �� = m��5�� t �

��
 �_��, �� − ��� �_��, �� + ��� �_��, �� ��� �_��, ��

+�_��, �� �

��
 �_��, �� − 2� u c ≥ 0.

                            

(32) 

 
Using (32) and the condition (31), the followings results are obtained: 

         

 ����, �� = �Q,                                 (33) 
 

�G��, �� = m��5�� t �

��
 ����, �� − ��� ����, �� + ��� ����, �� ��� ����, ��

+����, �� �

��
 ����, �� − 2� u,             (34) 

 = �Q5�����
Γ�GH�� , 

 

�Q��, �� = m��5�� t �

��
 �G��, �� − ��� �G��, �� + ��� �G��, �� ��� �G��, ��

+�G��, �� �

��
 �G��, �� − 2� u           (35) 
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= ��
�
Γ�GHQ�� + �RQ�5G���Γ�Q���w�`a

Γ�GH��
Γ�R�� − Q���
Γ�GH��, 

 

�R��, �� = m��5�� t �

��
 �Q��, �� − ��� �Q��, �� + ��� �Q��, �� ��� �Q��, ��

+�Q��, �� �

��
 �Q��, �� − 2� u        (36) 

 =− RQ�Γ�Q�����`a
Γ��HG�Γ���� + Q���
Γ�Q��Γ���5G����`


Γ��HG�
Γ�R��Γ�GHQ��Γ���5G� − G��Γ�R�����`a
Γ�GHQ��Γ�GH��Γ���� +

RQ�RQ�5G���
�Rα5G�Γ�Q��
Γ���5Q����`w
Γ��HG��Γ�R��
Γ���5Q� − Q�RQ�5G����R�5G�Γ�Q��Γ���5G����`


Γ��HG�wΓ�R��Γ���5G� − ����
Γ�Q��Γ���5G����`

Γ��HG�wΓ�R��Γ���5G� +

���Γ�Q���w�`a
Γ��HG�Γ�R�� − Q���

Γ��HG�, 
 ⋮, 

 
Hence, the approximate solution can be given in a series form as 
 ���, �� = ∑ �_��, ��∞_3� = �Q + �Q5�����

Γ�GH�� + ��
�
Γ�GHQ�� + �RQ�5G���Γ�Q���w�`a

Γ�GH��
Γ�R�� −= − RQ�Γ�Q�����`a
Γ��HG�Γ���� +

Q���
Γ�Q��Γ���5G����`

Γ��HG�
Γ�R��Γ�GHQ��Γ���5G� − G��Γ�R�����`a

Γ�GHQ��Γ�GH��Γ���� + RQ�RQ�5G���
�Rα5G�Γ�Q��
Γ���5Q����`w
Γ��HG��Γ�R��
Γ���5Q� −

Q�RQ�5G����R�5G�Γ�Q��Γ���5G����`

Γ��HG�wΓ�R��Γ���5G� − ����
Γ�Q��Γ���5G����`


Γ��HG�wΓ�R��Γ���5G� + ���Γ�Q���w�`a
Γ��HG�Γ�R�� … =           (37) 

 
For 1α =  we would have [44] 
 

( ) 2

2 2 2 2

( , ) , 2 4

          2 4 12 16 8 ,

n
n

u x t Lim u x t x t tx

t tx x t xt t

→∞
= = + −

+ + − + − +L
                                                                                (38) 

 
The exact solution of (38) can be found by omitting the noise terms and keeping the non-noise terms as 
 

2( , ) 2u x t x t= +                                                                                                              (39) 
 
and this can be easily confirmed. Formal proof can be found in [46]. 
 

Table 2. Approximate solution of (30) at t=1 for various values of the order α  
 

[35] 
3LFDMu 

x 0.5α = 0.75α = 0.9α = 1α = 0.5α = 0.75α = 0.9α = 1α = 
0.0 5.00328 3.48585 2.97494 2.71828 -5.23681 -5.92718 -4.92124 -4 
0.1 5.52948 3.85246 3.28782 3.00417 -3.60512 -4.34755 -3.65775 -2.99000 
0.2 6.11102 4.25762 3.63360 3.32012 -1.95344 -2.74793 -2.37427 -1.96000 
0.3 6.75372 4.70540 4.01575 3.66930 -0.28175 -1.12830 -1.07078 -0.91000 
0.4 7.46401 5.20027 4.43809 4.05520 1.40993 0.511319 0.25269 0.160000 
0.5 8.24901 5.74710 4.49048 4.48169 3.12162 2.17094 1.59618 1.25000 
0.6 9.11656 6.35163 5.42069 4.95303 4.85330 3.85057 2.95966 2.36000 
0.7 10.07540 7.01964 5.99079 5.47395 6.60499 5.55019 4.34315 3.49000 
0.8 11.13500 7.75790 6.62085 6.04965 8.37668 7.26982 5.74663 4.64000 
0.9 12.30812 8.57380 7.31717 6.68509 10.1683 9.00945 7.17012 5.81000 
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Fig. 5. The surface shows the solution ( ),u x t  of (30) (a) 3-iterate LFD approximate solution for 

0.9α =  (b) 3-iterate LFD approximate solution for 0.8α =  (c) 3-iterate LFD approximate solution 

for 0.7α =  and (d) 3-iterate LFD approximate solution for 0.6α =  
 

 
 

Fig. 6. 3-iterate LFD approximate for 0.5x =  
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Lastly, Fig. 5 shows the solution surfaces of the non-homogenous nonlinear fractional convection-diffusion 
equation for various � values. From the graphical results in Figs. 5 and 6, it can be seen the effect of α  on 
the function ���, ��. Certainly, ���, �� increases with an increase in t for � = 1,0.9,0.8,0.7,0.6 .. 
 
Solution of 30 is found by using Adomian decomposition method in [35], FVIM in [45] and HPM in [18]. 
The results in Fig. 5 are in accordance with the results of the Adomian decomposition method and HPM. 

 

5 Conclusions 
 
Local fractional decomposition method (LFDM) has been successfully employed for finding the solutions of 
nonlinear problems, ordinary, partial, fractional and integral equations. This study used the Local fractional 

decomposition method having integral with respect to ( )d
ατ which had been used by Jumarie for the first 

time. Results show that the method is a powerful tool and is meaningful for the solutions of nonlinear 
fractional differential equations. The results of the two different examples obtained by local fractional 

decomposition method having integral with respect to ( )d
ατ are in perfect accordance with the results from 

classical VIM, MVIM, GDTM, HPM and Adomian decomposition method which can be found in the 
referred studies. 
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