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Abstract
The adjoint of the right multiplication of a row vector by a fixed polynomial matrix gives a
left operation of the polynomial matrix on column vectors of power series. This explain the
polynomial matrix and vector of powers series “multiplication”, used to define discrete linear
dynamical systems, according to Willems and Oberst theory.
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1 Introduction
In [1], we have explained the polynomial operator in the shifts as the adjoint of the linear mapping
defined on the vector space of polynomials, which is the multiplication by a fixed polynomial. In
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this article, we are going to generalize this result by showing that the adjoint of the linear mapping
defined on rows vectors of polynomials, defined by the right multiplication by a fixed polynomial
matrix, defines an operation on column vectors of powers series. This gives deeper explanation and
interpretation of this matrix operation than we gave in [1]. Recall that this matrix operation, though
fundamental in defining discrete linear dynamical systems, remains mathematically unexplained or
uninterpreted by the other authors, see [2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 14].

2 Basic Data

2.1 Notations
We recall the notations we used in [1] . For a commutative field F and an integer r > 1, let FNr

be
the vector space of the sequences of elements of F indexed by Nr :

FNr

= {W : Nr −→ F, W 7−→W (α) = Wα}

and F(Nr) the F-subspace of FNr

consisting of those of finite support :

FNr

= {W ∈ FNr

| Supp(W ) is finite},

where Supp(W ) = {α ∈ Nr | Wα ̸= 0}. Let be X1, . . . , Xr (resp. Y1, . . . , Yr) be variables. The
letter X (resp. Y ) will denote X1, . . . , Xr (resp Y1, . . . , Yr) and for α ∈ Nr we define Xα (resp. Y α)
by

Xα = Xα1
1 · · ·X

αr
r (resp. Y α = Y α1

1 · · ·Y αr
r ).

For α ∈ Nr, let δα be the mapping

δα : Nr −→ F

β 7−→ δα(β) =

{
0, if α ̸= β,
1, if α = β.

(2.1)

Then δα ∈ F(Nr) with Supp(δα) = {α}.

Let D = F[X1, . . . , Xr] = F[X] be the F-vector space of the polynomials with the r variables
X1, . . . , Xr and A = F[[Y1, . . . , Yr]] = F[[Y ]] that of the formal power series with the r variables
Y1, . . . , Yr. The family (Xα)α∈Nr is an F-base of D, thus an element of D can be written uniquely
as

d(X) =
∑
α∈Nr

dαX
α with dα ∈ F for all α ∈ Nr,

where dα = 0 except for a finite number of α’s. An element W (Y ) of A can be uniquely expressed
as

W (Y ) =
∑
α∈Nr

WαY
α with Wα ∈ F for all α ∈ Nr .

Therefore, we get the F-vector spaces isomorphisms

D = F[X1, . . . , Xr] ∼= F(Nr)

Xα ←→ δα (and then extending this by linearity)

and

A = F[[Y1, . . . , Yr]] ∼= FNr

W (Y ) =
∑
α∈Nr

WαY
α ←→W = (Wα)α∈Nr .
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By these isomorphisms, we may identify Xα (resp. Y α) with the element δα of F(Nr) (resp. of FNr

).
If W ∈ FNr

, we may write W = (Wα)α∈Nr , where Wα = W (α) for all α ∈ Nr. Finally, we may
write the following identifications

W = (Wα)α∈Nr =
∑
α∈Nr

WαY
α = W (Y ). (2.2)

The set FNr

(resp. F(Nr)) is also denoted by A (resp. D). Let h > 1 be an integer. The cartesian
product A× · · · ×A (resp. D× . . . ×D) (h times) is denoted by Ah (resp. Dh). We see Ah as a
set of column vectors and Dh as a set of rows vectors. The set

Bh = {Xρe
(h)
j = Xρ1

1 · · ·X
ρr
r e

(h)
j | ρ = (ρ1, . . . , ρr) ∈ Nr and

e
(h)
j = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸

1 at the j-th position

∈ Dh for j = 1, . . . , h} (2.3)

is an F-basis of Dh. Indeed, an element of Dh is of the form

d(X) = (d1(X), . . . , dj(X), . . . , dh(X)) (2.4)

where
dj(X) =

∑
ρ∈Nr

djρX
ρ ∈ D for j = 1, . . . , h, the sum being finite. (2.5)

Writing d(X) in the following form,

d(X) = (d1(X), 0, . . . , 0) + · · ·+ (0, . . . , dj(X), . . . , 0)︸ ︷︷ ︸
dj(X) at the j-th position

+ · · ·+ (0, . . . , dh(X))

=

h∑
j=1

dj(X)e
(h)
j

and using the expression of dj(X) in (2.5), we have

d(X) =

h∑
j=1

(
∑
ρ∈Nr

djρX
ρ)e

(h)
j

=
∑

16j6h,ρ∈Nr

djρX
ρe

(h)
j ,

(2.6)

so that Bh generates Dl as an F-vector space. Now, suppose that we have∑
16j6h,ρ∈Nr

djρX
ρe

(h)
j = 0, (2.7)

where djρ ∈ F for j = 1, . . . , h and ρ ∈ Nr, with djρ = 0 except for a finite number of ρ′s. This
assures that the sum (2.7) is finite. We then construct the polynomials

dj(X) =
∑
ρ∈Nr

djρX
ρ ∈ D,

and the polynomial vector

d(X) = (d1(X), . . . , dj(X), . . . , dh(X)) ∈ Dl .

We are in the situation of the equation (2.4). Using (2.6) and (2.7), we get

d(X) = (d1(X), . . . , dj(X), . . . , dh(X)) = 0,
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hence dj(X) = 0 for j = 1, . . . , h.This ensures that djρ = 0 for j = 1, . . . , h and ρ ∈ Nr. Coming
back to (2.7), we conclude that the elements Xρe

(h)
j of Bh are linearly independent. We have then

proven that Bh is an F-basis of Dh.

For integers k, l > 1, the set of matrices with k rows and l columns with coefficients in A (resp. in
D) is denoted Ak,l (resp. Dk,l). According to our previous notation, Ak (resp. Dl) denotes Ak,1

(resp. D1,l). An element R(X) ∈ Dk,l is of the form

R(X) = (Rij(X))16i6k,16j6 l

where Rij(X) ∈ D for i = 1, . . . , k and j = 1, . . . , l.

Let Vect(F) be the category of the vector spaces over F. For E,F ∈ Vect(F), the set of morphisms
from E into F is HomF(E,F ), the set of linear mappings from E to F . We will use the functor

HomF(−,F) : Vect(F) −→ Vect(F)
E 7−→ HomF(E,F)

(f : E −→ F ) 7−→
{

HomF(f,F) : HomF(F, F) −→ HomF(E,F)
u 7−→ u ◦ f.

(2.8)

Definition 2.1. Let E,F ∈ Vect(F). The (functorial) adjoint or transpose of f if is the linear
mapping

HomF(f,F) : HomF(F,F) −→ HomF(E,F)
u 7−→ u ◦ f.

(2.9)

In [1], theorem 3.3, we proved that given a polynomial d(X) =
∑

β∈Nr dβX
β ∈ D, the functorial

adjoint of the polynomial multiplication

d(X) : D −→ D

c(X) 7−→ c(X)d(X),

is the polynomial operation in the shifts

d(X) : A −→ A

W (Y ) 7−→ dX) ◦W (Y ) =
∑
α∈Nr

(
∑
β∈Nr

dβWα+β)Y
α. (2.10)

We have called the symbol “◦” the “multiplication” of a vector of power series by a polynomial
matrix. Using this notation, given a polynomial matrix R(X) = (Rij(X))16i6k,16j6 l of Dk,l, the
action of R(X) on a column vector of power series W (Y ) = (W1(Y ), . . . ,Wl(Y ))T ∈ Al (where T
is the transposition) is usually defined as

R(X) ◦W (Y ) =

 R1(X) ◦W (Y )
...

Rk(X) ◦W (Y )

 =


∑l

j=1 R1j(X) ◦Wj(Y )
...∑l

j Rkj(X) ◦Wj(Y )

 ∈ Ak . (2.11)

2.2 The problem and the method
According to our notations, we will prove that, once R(X) ∈ Dk,l is fixed, the adjoint of the linear
mapping

R(X)T : Dk −→ Dl

c(X) 7−→ c(X) ·R(X)
(2.12)
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is the linear mapping defined by

R(X) : Al −→ Ak

W (Y ) 7−→ R(X) ◦W (Y ).
(2.13)

This will explains the operation “ ◦ ”. Moreover it is a linear mapping of D-modules. In other
terms, HomF(R(X)T ,F) = R(X) (here R(X)T and R(X) are view as the mappings in (2.12) and
(2.13)). We therefore have resolved one of the problems we stated in the conclusion of [1]. It is very
interesting that simply taking the adjoint of (2.12) leads to an action of the polynomial R(X) on
the elements of Al, which are vectors of powers series.

For this purpose, we use lemma 3.1 in order to consider an element W ∈ Al as a linear mapping
from Dl to F. Then, starting from the definition of the adjoint of R(X)T , which is the linear
mapping HomF(R(X)T ,F) = W ◦R(X)T , we directly calculate the images under W ◦R(X)T of the
elements of the F-basis {Xρe

(l)
j | ρ ∈ Nr, j = 1, . . . , h} of Dl. Finally, we simply identify W ◦R(X)T

by these images arranged in a specific matrix form.

3 Solution of the Problem

3.1 Preliminary results
We need the following lemma ([4], p.60) for our main theorem. Our proof is simpler and more
direct.

Lemma 3.1. Let h > 1 be an integer. Then the linear mapping

HomF(D
h,F) −→ Ah

f −→



(f(Xρe
(h)
1 ))ρ∈Nr

...
f(Xρe

(h)
j ))ρ∈Nr

...
f(Xρe

(h)
h ))ρ∈Nr


=



∑
ρ∈Nr f(X

ρe
(h)
1 )Y ρ

...∑
ρ∈Nr f(X

ρe
(h)
j )Y ρ

...∑
ρ∈Nr f(X

ρe
(h)
h )Y ρ


(3.1)

is an isomorphism of vector spaces. Therefore, we may write

HomF(D
h,F) = Ah . (3.2)

Proof. An element f ∈ HomF(D
h,F) is uniquely defined by the images (f(Xρe

(h)
j ))ρ∈Nr,j=1,...,h of

the F-basis Bh = {Xρe
(h)
j | ρ ∈ Nr, j = 1, . . . , h} of Dh, which may be arbitrary elements of F. We

may arrange these images into the form of the first matrix in (3.1). By (2.2), we may write

(f(Xρe
(h)
j ))ρ∈Nr =

∑
ρ∈Nr

f(Xρe
(h)
j )Y ρ ∈ Ah for j = 1, . . . , h.

Thus the two matrices in (3.1) are equal.

3.2 Polynomial matrix and vector of power series multiplication
Here is the main result :

Theorem 3.2. Let R(X) ∈ Dk,l. The adjoint of the F-linear mapping

R(X)T : Dk −→ Dl

c(X) 7−→ c(X) ·R(X)
(3.3)
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is the D-linear mapping
R(X) : Al −→ Ak

W (Y ) 7−→ R(X) ◦W (Y )
(3.4)

where R(X) ◦W (Y ) is defined by (2.11).

Proof. Applying the functor HomF(−,F) to (3.3), we get

HomF(R(X)T ,F) : HomF(D
l,F) −→ HomF(D

k,F)

f 7−→ HomF(R(X)T ,F)(f) = f ◦R(X)T .

By (3.2), and considering f ∈ HomF(D
l,F) = Al as an element W ∈ Al, we have

HomF(R(X)T ,F) : Al −→ Ak

W 7−→ HomF(R(X)T ,F)(W ) = W ◦R(X)T .
(3.5)

In the expression W ◦R(X)T of (3.5), it is useful to consider W again as a linear form from Dl to
F (accoding to (3.2)) . The symbol ◦ is the composition of mappings. Now, we are going to find
the image under W of a polynomial vector d(X) ∈ Dl. Set d(X) = (d1(X), . . . , dj(X), . . . , dl(X)).
Each dj(X) is of the form

dj(X) =
∑
ρ∈Nr

djρX
ρ,

where the sequence (djρ)ρ∈Nr of elements of F is with finite support for j = 1, . . . , , l. Using the
F-basis Bl = {Xρe

(l)
j | ρ ∈ Nr, j = 1 . . . l} of Dl, we obtain, by (2.6)

d(X) =

l∑
j=1

∑
ρ∈Nr

djρX
ρe

(l)
j .

Taking the image of d(X) by W , we get

W (d(X)) = W (

l∑
j=1

∑
ρ∈Nr

djρX
ρe

(l)
j ) =

l∑
j=1

∑
ρ∈Nr

djρW (Xρe
(l)
j ).

Now, write W (Xρe
(l)
j ) = Wjρ ∈ F; we then have

W (d(X)) =

l∑
j=1

∑
ρ∈Nr

djρWjρ. (3.6)

Now, we are ready to calculate (W ◦R(X)T )(Xρe
(k)
i ), the images of the polynomial vectors Xρe

(k)
i

of the elements of the F-basis {Xρe
(h)
j | ρ ∈ Nr, j = 1, . . . , h} of Dk by the linear form W ◦R(X)T .

Let R(X) = (Rij(X))i=1,...,k,j=1,...l and Rij(X) =
∑

α∈Nr RijαX
α, where the sequence (Rijα)α∈Nr

is with finite support for i = 1, . . . , k and j = 1, . . . , l. For simplicity, we will write RT for the linear
mapping R(X)T , therefore W ◦RT instead of W ◦R(X)T . We have

RT (Xρe
(k)
i ) = Xρe

(k)
i ·R(X) = (0, . . . , Xρ, . . . , 0)︸ ︷︷ ︸

Xρ at the i-th position

·



R11 . . . R1j . . . R1l

...
...

...
...

...
Ri1 . . . Rij . . . Ril

...
...

...
...

...
Rk1 . . . Rkj . . . Rkl


= (XρRi1, . . . , X

ρRij , . . . , X
ρRil)

= (
∑
α∈Nr

Ri1αX
α+ρ, . . . ,

∑
α∈Nr

RijαX
α+ρ, . . . ,

∑
α∈Nr

RilαX
α+ρ)

(3.7)
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Taking the image of RT (Xρe
(k)
i ) by W , we have, by (3.6), where d(X) is replaced by the expression

of RT (Xρe
(k)
i ) in the last equation of (3.7) ,

(W ◦RT )(Xρe
(k)
i ) = W (RT (Xρe

(k)
i )) =

l∑
j=1

∑
α∈Nr

RijαWj(α+ρ). (3.8)

Thus, the images of the elements of the base B under W ◦RT are given by the following vector of
power series 

∑
ρ∈Nr (

∑l
j=1

∑
α∈Nr R1jαWj(α+ρ))Y

ρ

...∑
ρ∈Nr (

∑l
j=1

∑
α∈Nr RijαWj(α+ρ))Y

ρ

...∑
ρ∈Nr (

∑l
j=1

∑
α∈Nr RkjαWj(α+ρ))Y

ρ


, (3.9)

where the coefficients of the power series in the i-th row represent the image of Xρe
(k)
i for ρ ∈ Nr

(see lemma 3.1). We can rearrange the i-th row of (3.9) into the following form,

∑
ρ∈Nr

(

l∑
j=1

∑
α∈Nr

RijαWj(α+ρ))Y
ρ =

l∑
j=1

(
∑
ρ∈Nr

(
∑
α∈Nr

RijαWj(α+ρ))Y
ρ),

and comparing with (2.10), we have

l∑
j=1

(
∑
ρ∈Nr

(
∑
α∈Nr

RijαWj(α+ρ))Y
ρ) =

l∑
j=1

Rij(X) ◦Wj(Y ). (3.10)

Using this, the matrix (3.9) finally equals to the following matrix
∑l

j=1 R1j(X) ◦Wj(Y )
...∑l

j Rkj(X) ◦Wj(Y )

 ,

which is the same as (2.11) and W ◦ R(X)T may be identified with these matrices. For the proof
of the D-linearity, see [4]. This completes the proof of the theorem.

The matrix W ◦ R(X)T being an element of Ak, constructed from the matrix R(X) ∈ Dk,l and
the vector W (Y ) ∈ Al, it can be considerated a result of an operation of R(X) on W (Y ), which is
explains the notation “R(X) ◦W (Y )”.

4 Conclusions
As we have seen, taking the adjoint of a simple polynomial vector and polynomial matrix multiplication
leads to an amazing and unexpected result. It possible to multiply a vector of power series by a
polynomial matrix. Apparently, these two objets have nothing in common. This illustrate the
utility of the correspondence between set of polynomials and power series.
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