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Abstract 
 
An algorithm is provided for the fast and accurate computation of the solution of the Bitsadze equation in the 
complex plane in the interior of the unit disk. The algorithm is based on the representation of the solution in 
terms of a double integral as it shown by Begehr [1,2], some recursive relations in Fourier space, and Fast 
Fourier Transforms. The numerical evaluation of integrals at 2N  points on a polar coordinate grid by 
straightforward summation for the double integral would require  2O N  floating point operation per point. 
Evaluation of such integrals has been optimized in this paper giving an asymptotic operation count of 
 In O N  per point on the average. In actual implementation, the algorithm has even better computational 

complexity, approximately of the order of  1O  per point. The algorithm has the added advantage of 
working in place, meaning that no additional memory storage is required beyond that of the initial data. This 
paper is a result of application of many of the original ideas described in Daripa [3]. 
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1. Introduction 
 
The solutions of many elliptic partial differential equa-
tions represent in terms of singular integrals in the com-
plex plane in the interior of the unit disk, as the nonho-
mogeneous Cauchy-Riemann equations, the Beltrami eq- 
uation, the Poisson equation, etc. Then solving these eq-
uations requires computing the values of the singular 
integrals. There are two main difficulties in the straight- 
forward computation of these integrals using quadrature 
rules. Firstly, straightforward computation of each of these 
integrals requires an operation count of the order  2O N  

per point. This gives a net operation count of  4O N  
for 2N  grid points which is computationally very in-
tensive for large N. Secondly, this method also gives 
poor accuracy due to the presence of the singularities in 
the integrand. Daripa and Co-workers ([3-9]) presented 
fast algorithms to solve the singular integrals that arise in 
such solutions. By these algorithms evaluation of singu-
lar integrals has been optimized, giving an asymptotic 
operation count of  2 ln lnO N N  for 2N  points. More- 
over, these algorithms have the added advantages of 
working in place, meaning that no additional memory 
storage is required beyond that of the initial data. 

In this paper we follow his method to present an algo-
rithm to solve an elliptic partial differential equation 
called the Bitsadze equation which define in the unit disk 
   0;1 : 1B z z   in complex plane   for any com-

plex valued function w of complex variables ,z z B  by 
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Where f is a complex valued function on B. [10] 
The Bitsadze equation arises in many areas including 

structural mechanics, electrostatics, magneto statics, po- 
wer electromagnetic, conductive media, heat transfer and 
diffusion ([11-13]). In [1,2], Begehr introduced some 
boundary value problems for Bitsadze equation under 
some solvability conditions and presented their solutions 
as results for applying the Dirichlet and Neumann boun-
dary value problems all those solutions have singular in- 
tegrals in their context. For that, we will consider one of 
these problems to apply our numerical method for eva-
luating the singular integrals. 

Problem (1.1): 

zzw f in B, 0 ,w  1 z zz w  on B ,  0zw c , 

Where    1 0 1; ,  , ;  and f L B C B c       .  
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Its unique solution is given by Equation (1.2) (Below) 
Let us rewrite it in the form  

        ,w z cz u z v z Gf z         (1.3) 
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Our method is basically a recursive routine in Fourier 
space that divides the interior of the unit disk into a col-
lection of annular regions and expands the integral in 
Fourier series in angular direction with radius dependent 
Fourier coefficients. A set of exact recursive relations are 
derived which are used to produce the Fourier coeffi-
cients of singular. These recursive relations involve ap-
propriate scaling of one-dimensional integrals in annular 
regions. The integrals in (1.4) at all grid points are then 
easily obtained from the Fourier coefficients by the FFT. 

The rest of the paper is structured as follows. Section 2 
presents the solution of the linear integrals u and v. Sec-
tion 3 develops the mathematical foundation of the effi-
cient algorithm to evaluate (1.4) within the unit disk. The 
fast algorithms for solving problem (1.1) is discussed in 
Section 4. We carry out numerical results with this me-
thod in section 5. Finally, we summarize and conclude in 
Section 6. 
 
2. Evaluating the Integrals u  and v  
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Since the integral is on the unit disk then 1  ,  
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Then we can write 
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Where  
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put n = m+1 
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3. Mathematical Foundation of the  

Algorithms 
 
In this section, we develop the theory needed to construct 
an efficient algorithm for evaluation the singular inte-
grals (1.4). The following theorem is crucial for later 
development of the algorithm. 

Theorem 3.1. The value of the integral (1.4) with 
iz re  , 0r   can be written as 
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(3.2) 

Proof. If we denote  
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Then it follows from (1.4) and (3.1) that 
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The integral in (3.3) can be evaluated by first expand- 

ing 
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By comparing this result with the Fourier series coef- 

ficients of 
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   (3.5) 

Substitution of (3.5) into (3.4) yields the desired result. 
Corollary 3.1. Suppose that ie    and  f   has 

Fourier coefficient  nf  ; then the coefficients  ng r  
in Equation (3.2) can be written as: 

 
 

 

1 2 2

21

2 2

21
0

–
;     0,

=2

;     1.

n n

nn
r

n r n n

nn

r r
f d n

g r
r r

f d n

  


  
















  




  (3.6) 

Corollary 3.2. It follows directly from Equation (3.6) 
that  

 1 0ng   for 0n  ,  0 0ng   for 1n   . 
Corollary 3.3. Let i jr r . Define 
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and 

 

 

2

1

,

2

1

;    0,

 

;    1.

j

i

j

i

r
n

n
rn

i j r
n

n
r

f
d n

B
f

d n





















 



  







       (3.8) 

After some algebraic manipulation it follows from 
Equations (3.7) and (3.8) that 

     .n i n i n ig r C r B r         (3.9) 
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Corollary 3.4. Let 0 1 20 1Mr r r r      . It 
follows from recursive applications of (3.10)-(3.13) and 
from using Corollary 3.2 that 
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for 1, 2,3, , 1l M  . 
Corollary 3.5. It follows directly from Equations (3.6) 

and (3.9) that 

   1 1 0;  0,n nC B n             (3.15) 

   0 0 0;  1.n nC B n             (3.16) 

 
4. The Fast Algorithm 
 
We construct the fast algorithm based on the theory of 
section 3. The unit disk is discredited using M N  lat- 
tice points with M equidistant points in the radial direc-
tion and N equidistant points in the circular direction. 
The following is a formal description of the fast algo-
rithm useful for programming purposes. 

Algorithm 4.1. (The fast algorithm for evaluating the 
singular integral (1.4)) 

Input: M, N and      2 , 1, 1 , 1,ik N
lf r e l M k N     

Output:      2 , 1, 1 , 1,  ik N
lGf r e l M k N    . 

Step 1. Set 8K N , 0 0r   and 1Mr  . 
Step 2. Compute the Fourier coefficients  n lf r , 

 0, 1l M    and  ,n K K   from known values of  

 2 , 1, 2, ,ik N
lf r e k N    using the FFT. 

Step 3. Compute  , 1 1, 1n
i iC i M     and  

 2, 1 [0, 2] n K K       using Equation (3.7). 
Step 4. Compute  , 1 1, 1n

i iB i M     and  
 2, 1 [0, 2]n K K       using Equation (3.8). 

Step 5. Compute  n lg r ,  2, 2n K K    ,  
 1, 1l M   using relations (3.14). 

set      0, 0, 0, 2n M n MC r B r n K      

do 0,1, , 2n K   

do 1, ,1l M    
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enddo 
set      0 00, 0, 2, 1n nC r B r n K        
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enddo 
enddo 

Step 6. Finally, compute  
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Algorithm 4.2 (The fast algorithm for solving the 
problem (1.1)): 

Input: M, N ,  2
0

ik Ne  ,  2
1

ik Ne   and  

 2 ik N
lf r e  ,    1, 1 , 1,l M k N   . 

Output:      2

, 1, 1 , 1, .
ik N

lw r e l M k N


    

Step 1. Set 8K N , 0 0r   and 1Mr  . 
Step 2. Compute  2 ik N

lGf z r e  ,  1, 1l M  , 
 1,k N  using algorithm 4.1. 

Step 3. Compute the Fourier coefficients  
 ,na n K K    from known values of  2

0
ik Ne  , 

1, 2, ,k N   using the FFT. 
Step 4. Compute the Fourier coefficients  

 1, 1nb n K K      from known values of  2
1

ik Ne  , 
1, 2, ,k N   using the FFT. 

Step 5. Compute    2( ), 1, 1 , 1,ik N
lu r e l M k N     

using the relation (2.1). 
Step 6. Compute    2( ), 1, 1 , 1,ik N

lv r e l M k N     
using the relation (2.3). 

Step 7. Compute    2( ), 1, 1 , 1,ik N
lw r e l M k N    . 
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5. Numerical Results 
 
In this section we solve a boundary value problem for the 
inhomogeneous Bitsadze equation in the unit disk by 
using the algorithms that presented in section 4. 

Example  
Consider the problem  

2zzw z in B, ,w z 2,zzz w  ,z B    0 0zw  , 

The exact solution for this problem is given by 

  2 ,w z z z z B    

By using algorithm 4.2 we have the max error as illu-
strate in the following Table 1.  
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Table 1. Maximum relative error. 

MAX ERROR 

 M = 10 M = 50 M = 100 M = 200 

N=64 3.371768E-07 2.980596E-07 2.588641E-07 2.245232E-07 

N=128 3.371753E-07 2.980553E-07 2.588640E-07 2.245231E-07 

N= 256 3.371734E-07 2.980548E-07 2.588639E-07 2.245196E-07 

N= 512 3.371718E-07 2.980526E-07 2.588628E-07 2.245153E-07 

N= 1024 3.371717E-07 2.980501E-07 2.588627E-07 2.245142E-07 

 
6. Conclusions 
 
We presented a fast algorithm to solve the Bitsadze equ-
ation in the unit disk under special boundary conditions 
in the complex plane, by constructed the fast algorithm 
to evaluate the singular integral transform (1.4). The 
method divides the interior of the unit disk B   
 : 1z z   into a collection of annular regions. The in- 
tegrals and the function f (z) are expanded in terms of 
Fourier series with radius dependent Fourier coefficients. 
The good performance of the algorithm is due to the use 
of scaling one-dimensional integral in the radial direction 
to produce the value of the singular integral over the en-
tire domain. Specifically, scaling factors are used to de-
fine exact recursive relations which evaluate the radius 
dependent Fourier coefficients of the singular integral 
(1.4). The inverse Fourier transform are applied on each 
circle to obtain the value of the singular integrals on all 
circles. 
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