First [N ii]122 μ m Line Detection in a QSO-SMG Pair BRI 1202−0725 at z = 4.69

Lee, Minju M. and Nagao, Tohru and De Breuck, Carlos and Carniani, Stefano and Cresci, Giovanni and Hatsukade, Bunyo and Kawabe, Ryohei and Kohno, Kotaro and Maiolino, Roberto and Mannucci, Filippo and Marconi, Alessandro and Nakanishi, Kouichiro and Saito, Toshiki and Tamura, Yoichi and Troncoso, Paulina and Umehata, Hideki and Yun, Min (2019) First [N ii]122 μ m Line Detection in a QSO-SMG Pair BRI 1202−0725 at z = 4.69. The Astrophysical Journal, 883 (2). L29. ISSN 2041-8213

[thumbnail of Lee_2019_ApJL_883_L29.pdf] Text
Lee_2019_ApJL_883_L29.pdf - Published Version

Download (1MB)

Abstract

We report the first detection obtained with the Atacama Large Millimeter/submillimeter Array of the [N ii] 122 μm line emission from a galaxy group BRI 1202−0725 at z = 4.69 consisting of a quasi-stellar object (QSO) and a submillimeter-bright galaxy (SMG). Combining this with a detection of [N ii] 205 μm line in both galaxies, we constrain the electron densities of the ionized gas based on the line ratio of [N ii] 122/205. The derived electron densities are ${26}_{-11}^{+12}$ and ${134}_{-39}^{+50}$ cm−3 for the SMG and the QSO, respectively. The electron density of the SMG is similar to that of the Galactic Plane and to the average of the local spirals. However, higher electron densities (by up to a factor of three) could be possible for systematic uncertainties of the line flux estimates. The electron density of the QSO is comparable to high-z star-forming galaxies at z = 1.5–2.3, obtained using rest-frame optical lines and with the lower limits suggested from stacking analysis on lensed starbursts at z = 1–3.6 using the same tracer of [N ii]. Our results suggest a large scatter of electron densities in global scale at fixed star formation rates for extreme starbursts. The success of the [N ii] 122 μm and 205 μm detections at z = 4.69 demonstrates the power of future systematic surveys of extreme starbursts at z > 4 for probing the interstellar medium conditions and the effects on surrounding environments.

Item Type: Article
Subjects: OA STM Library > Physics and Astronomy
Depositing User: Unnamed user with email support@oastmlibrary.com
Date Deposited: 31 May 2023 06:16
Last Modified: 25 Jul 2024 07:53
URI: http://geographical.openscholararchive.com/id/eprint/938

Actions (login required)

View Item
View Item